Abstract

Photoconductive semiconductors that contain deep-level traps can be used as optical phase detectors because of the photocurrents generated by moving space-charge electric fields formed inside the material by transient optical interference patterns. Two narrow-linewidth Nd:YAG nonplanar ring oscillator lasers were successfully phase locked with InP:Fe, GaAs:Cr, GaAs, and CdTe:V crystals used as optical phase detectors.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Kazovsky, J. Lightwave Technol. LT-4, 182 (1986).
    [CrossRef]
  2. F. Davidson, C. T. Field, IEEE Photon. Technol. Lett. 5, 1238 (1993).
    [CrossRef]
  3. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  4. Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, J. Appl. Phys. 58, 45 (1985).
    [CrossRef]
  5. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
    [CrossRef]
  6. F. Davidson, C. Wang, C. T. Field, S. Trivedi, Opt. Lett. 19, 478 (1994).
    [CrossRef] [PubMed]

1994

1993

F. Davidson, C. T. Field, IEEE Photon. Technol. Lett. 5, 1238 (1993).
[CrossRef]

1990

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

1986

L. G. Kazovsky, J. Lightwave Technol. LT-4, 182 (1986).
[CrossRef]

1985

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, J. Appl. Phys. 58, 45 (1985).
[CrossRef]

1979

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Davidson, F.

F. Davidson, C. Wang, C. T. Field, S. Trivedi, Opt. Lett. 19, 478 (1994).
[CrossRef] [PubMed]

F. Davidson, C. T. Field, IEEE Photon. Technol. Lett. 5, 1238 (1993).
[CrossRef]

Field, C. T.

F. Davidson, C. Wang, C. T. Field, S. Trivedi, Opt. Lett. 19, 478 (1994).
[CrossRef] [PubMed]

F. Davidson, C. T. Field, IEEE Photon. Technol. Lett. 5, 1238 (1993).
[CrossRef]

Huignard, J.-P.

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Kazovsky, L. G.

L. G. Kazovsky, J. Lightwave Technol. LT-4, 182 (1986).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

Rajbenbach, H.

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Refregier, Ph.

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Sokolov, I. A.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

Solymar, L.

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Stepanov, S. I.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

Trivedi, S.

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Wang, C.

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Davidson, C. T. Field, IEEE Photon. Technol. Lett. 5, 1238 (1993).
[CrossRef]

J. Appl. Phys.

Ph. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, J. Appl. Phys. 58, 45 (1985).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, J. Appl. Phys. 68, 2216 (1990).
[CrossRef]

J. Lightwave Technol.

L. G. Kazovsky, J. Lightwave Technol. LT-4, 182 (1986).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Block diagram of the experimental setup. B.S.’s, beam splitters; N.D.’s, neutral-density optical filters; LWE122, LWE120, Lightwave Electronics Models 122 and 120 nonplanar ring oscillator lasers.

Fig. 2
Fig. 2

Block diagram of the phase-lock loop circuit. The current amplifier gain was Ge = 108 V/A, and the electrical bandwidth was 20 kHz.

Fig. 3
Fig. 3

Electrical spectrum of the photocurrent derived from the phase-locked lasers. The resolution bandwidth of the display is 0.1 Hz, and the y scale is 10 dB/division.

Tables (1)

Tables Icon

Table 1 Phase-Lock Loop Parameter Values

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

m ( t ) = m 0 exp { - j ( ω 1 - ω 2 ) t - j [ ϕ 1 ( t ) - ϕ 2 ( t ) ] } ,
E 1 ( t ) t + 1 + E D / E q τ M ( 1 + E D / E M ) E 1 ( t ) = j E D τ M ( 1 + E D / E M ) m ( t ) .
j Σ ( t ) = 1 L 0 L e μ n ( x , t ) E sc ( x , t ) d x ,
j Σ ( t ) = e μ n 0 4 ( 1 + E D / E M ) [ m ( t ) E 1 * ( t ) + c . c . ] .
S J Σ ( ω ) = [ e μ n 0 Q m 0 2 4 ( 1 + E D / E M ) ] 2 × | M Δ ϕ ( ω - ω d ) M Δ ϕ * ( - ω - ω d ) P - j ω | 2 .
( j Σ ) dc = σ 0 m 0 2 E D 2 × ω d τ M ( 1 + E D / E q ) 2 + ( ω d τ M ) 2 ( 1 + E D / E M ) 2 .
H ( s ) = ω n 2 τ 2 τ L 2 s 2 + ( τ 2 + τ L 2 ) s + 1 s 2 + 2 ξ ω n s + ω n 2 ,
ω d τ M = κ V off × 1 - { 1 - 4 [ ( 1 + E D / E M ) ( 1 + E D / E q ) V off / κ ] 2 } 1 / 2 2 ( 1 + E D / E M ) 2 ,

Metrics