Abstract

A novel optical ultrasonic detector that relies on frequency modulation of a microchip laser is proposed and demonstrated. When the laser is placed in a time-varying acoustic field, the microchip laser cavity length is periodically modulated, creating a frequency-modulated optical output in which the frequency shift is linearly proportional to the acoustic-wave amplitude. With a confocal Fabry–Perot slope filter and a Nd:YAG microchip laser operating at 1.06 μm, a detector response of 7.5 MHz/kPa was measured at an acoustic frequency of 7.75 MHz. A one-dimensional acoustic model is developed to explain the observed detector performance.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Staudenraus, W. Eisenmenger, Ultrasonics 31, 267 (1993).
    [CrossRef]
  2. K. S. Chiang, H. L. W. Chan, J. L. Gardner, J. Lightwave Technol. 8, 1221 (1990).
    [CrossRef]
  3. G. E. Mcdearman, J. Lightwave Technol. 5, 647 (1987).
    [CrossRef]
  4. J. J. Alcoz, C. E. Lee, H. R. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
    [CrossRef] [PubMed]
  5. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, Opt. Lett. 16, 273 (1991).
    [CrossRef] [PubMed]
  6. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, E. J. Friebele, Opt. Lett. 18, 1973 (1993).
    [CrossRef] [PubMed]
  7. A. J. A. Bruinsma, P. Van Zuylen, C. W. Lamberts, A. J. T. deKrijger, in Proceedings of Second International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), p. 399.
  8. J. J. Zayhowski, A. Mooradian, Opt. Lett. 14, 24 (1989).
    [CrossRef] [PubMed]
  9. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), pp. 86–90.
  10. B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, Fla., 1990), Vol. 1, p. 130.
  11. M. Schwartz, Information Transmission, Modulation, and Noise (McGraw-Hill, New York, 1980), pp. 259–278.
  12. A. R. Selfridge, IEEE Trans. Sonics Ultrason. FU-32, 381 (1985).
    [CrossRef]
  13. O. L. Anderson, in Physical Acoustics, Principles and Methods, W. P. Mason, R. N. Thurston, eds. (Academic, New York, 1965), Vol. 3B, p. 77.

1993 (2)

1991 (1)

1990 (2)

J. J. Alcoz, C. E. Lee, H. R. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef] [PubMed]

K. S. Chiang, H. L. W. Chan, J. L. Gardner, J. Lightwave Technol. 8, 1221 (1990).
[CrossRef]

1989 (1)

1987 (1)

G. E. Mcdearman, J. Lightwave Technol. 5, 647 (1987).
[CrossRef]

1985 (1)

A. R. Selfridge, IEEE Trans. Sonics Ultrason. FU-32, 381 (1985).
[CrossRef]

Alcoz, J. J.

J. J. Alcoz, C. E. Lee, H. R. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef] [PubMed]

Anderson, O. L.

O. L. Anderson, in Physical Acoustics, Principles and Methods, W. P. Mason, R. N. Thurston, eds. (Academic, New York, 1965), Vol. 3B, p. 77.

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, Fla., 1990), Vol. 1, p. 130.

Berkoff, T. A.

Brennan, D. D.

Bruinsma, A. J. A.

A. J. A. Bruinsma, P. Van Zuylen, C. W. Lamberts, A. J. T. deKrijger, in Proceedings of Second International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), p. 399.

Chan, H. L. W.

K. S. Chiang, H. L. W. Chan, J. L. Gardner, J. Lightwave Technol. 8, 1221 (1990).
[CrossRef]

Chiang, K. S.

K. S. Chiang, H. L. W. Chan, J. L. Gardner, J. Lightwave Technol. 8, 1221 (1990).
[CrossRef]

Claus, R. O.

deKrijger, A. J. T.

A. J. A. Bruinsma, P. Van Zuylen, C. W. Lamberts, A. J. T. deKrijger, in Proceedings of Second International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), p. 399.

Eisenmenger, W.

J. Staudenraus, W. Eisenmenger, Ultrasonics 31, 267 (1993).
[CrossRef]

Friebele, E. J.

Gardner, J. L.

K. S. Chiang, H. L. W. Chan, J. L. Gardner, J. Lightwave Technol. 8, 1221 (1990).
[CrossRef]

Gunther, M. F.

Kersey, A. D.

Lamberts, C. W.

A. J. A. Bruinsma, P. Van Zuylen, C. W. Lamberts, A. J. T. deKrijger, in Proceedings of Second International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), p. 399.

Lee, C. E.

J. J. Alcoz, C. E. Lee, H. R. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef] [PubMed]

Mcdearman, G. E.

G. E. Mcdearman, J. Lightwave Technol. 5, 647 (1987).
[CrossRef]

Mooradian, A.

Murphy, K. A.

Putman, M. A.

Schwartz, M.

M. Schwartz, Information Transmission, Modulation, and Noise (McGraw-Hill, New York, 1980), pp. 259–278.

Selfridge, A. R.

A. R. Selfridge, IEEE Trans. Sonics Ultrason. FU-32, 381 (1985).
[CrossRef]

Sirkis, J. S.

Staudenraus, J.

J. Staudenraus, W. Eisenmenger, Ultrasonics 31, 267 (1993).
[CrossRef]

Taylor, H. R.

J. J. Alcoz, C. E. Lee, H. R. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef] [PubMed]

Van Zuylen, P.

A. J. A. Bruinsma, P. Van Zuylen, C. W. Lamberts, A. J. T. deKrijger, in Proceedings of Second International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), p. 399.

Vengsarkar, A. M.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), pp. 86–90.

Zayhowski, J. J.

IEEE Trans. Sonics Ultrason. (1)

A. R. Selfridge, IEEE Trans. Sonics Ultrason. FU-32, 381 (1985).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. J. Alcoz, C. E. Lee, H. R. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

K. S. Chiang, H. L. W. Chan, J. L. Gardner, J. Lightwave Technol. 8, 1221 (1990).
[CrossRef]

G. E. Mcdearman, J. Lightwave Technol. 5, 647 (1987).
[CrossRef]

Opt. Lett. (3)

Ultrasonics (1)

J. Staudenraus, W. Eisenmenger, Ultrasonics 31, 267 (1993).
[CrossRef]

Other (5)

O. L. Anderson, in Physical Acoustics, Principles and Methods, W. P. Mason, R. N. Thurston, eds. (Academic, New York, 1965), Vol. 3B, p. 77.

A. J. A. Bruinsma, P. Van Zuylen, C. W. Lamberts, A. J. T. deKrijger, in Proceedings of Second International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), p. 399.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), pp. 86–90.

B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, Fla., 1990), Vol. 1, p. 130.

M. Schwartz, Information Transmission, Modulation, and Noise (McGraw-Hill, New York, 1980), pp. 259–278.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an optical sensor for detecting ultrasound with a microchip laser. HR, highly reflecting.

Fig. 2
Fig. 2

Optical frequency spectra relative to the center optical frequency with various ultrasonic pressures on the microchip. The ultrasonic frequency in each case is 7.75 MHz.

Fig. 3
Fig. 3

Simulation of the optical spectra in Fig. 2 assuming FM modulation.

Fig. 4
Fig. 4

Data (symbols) and linear fit (solid curve) of the magnitude of the frequency shift for a 0.55-mm Nd:YAG microchip versus the incident acoustic pressure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ν ( t ) ν 0 = - Δ L ( t ) L = - 1 L 0 L S ( x , t ) d x .
Δ ν ( t ) = ν 0 A T Z 2 v 2 B ( k 2 L ) exp ( - i 2 π ν a t ) ,
B ( k 2 L ) = i t 12 k 2 L [ 1 + ( r 23 - 1 ) exp ( i k 2 L ) - r 23 exp ( 2 i k 2 L ) 1 - r 21 r 23 exp ( 2 i k 2 L ) ] .
I ( ν ) q = - [ J q ( Δ ν FM ν a ) ] 2 δ ( ν 0 + q ν a ) .

Metrics