Abstract

An analytical expression for the carrier deficit ΔN from the nominal threshold carrier density Nt of an above-threshold biased semiconductor laser has been deduced. As a result, both the mode spectra and the mode-suppression ratio of a semiconductor laser can be studied analytically. The measured dependence of the mode-suppression ratio on the wavelength difference between the gain peak and its nearest cavity mode of the semiconductor laser confirms the theoretical predictions.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).
  2. B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR-coated diode facets,” IEEE Photon. Technol. Lett. (to be published).
  3. L. Thylen, IEEE J. Quantum Electron. 24, 1532 (1988).
    [CrossRef]
  4. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Laser (Van Nostrand Reinhold. New York, 1986).
  5. K. Kishino, S. Aoki, Y. Suemaysu, IEEE J. Quantum Electron. QE-18, 343 (1982).
    [CrossRef]

1988

L. Thylen, IEEE J. Quantum Electron. 24, 1532 (1988).
[CrossRef]

1982

K. Kishino, S. Aoki, Y. Suemaysu, IEEE J. Quantum Electron. QE-18, 343 (1982).
[CrossRef]

T. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Laser (Van Nostrand Reinhold. New York, 1986).

Aoki, S.

K. Kishino, S. Aoki, Y. Suemaysu, IEEE J. Quantum Electron. QE-18, 343 (1982).
[CrossRef]

Burrus, C. A.

T. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Chen, J.

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR-coated diode facets,” IEEE Photon. Technol. Lett. (to be published).

Copeland, J. A.

T. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Dentai, A. G.

T. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Laser (Van Nostrand Reinhold. New York, 1986).

Kishino, K.

K. Kishino, S. Aoki, Y. Suemaysu, IEEE J. Quantum Electron. QE-18, 343 (1982).
[CrossRef]

Lee, T.

T. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Lu, Y.

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR-coated diode facets,” IEEE Photon. Technol. Lett. (to be published).

Luo, B.

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR-coated diode facets,” IEEE Photon. Technol. Lett. (to be published).

Marcuse, D.

T. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Suemaysu, Y.

K. Kishino, S. Aoki, Y. Suemaysu, IEEE J. Quantum Electron. QE-18, 343 (1982).
[CrossRef]

Thylen, L.

L. Thylen, IEEE J. Quantum Electron. 24, 1532 (1988).
[CrossRef]

Wu, L.

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR-coated diode facets,” IEEE Photon. Technol. Lett. (to be published).

IEEE J. Quantum Electron.

T. Lee, C. A. Burrus, J. A. Copeland, A. G. Dentai, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

L. Thylen, IEEE J. Quantum Electron. 24, 1532 (1988).
[CrossRef]

K. Kishino, S. Aoki, Y. Suemaysu, IEEE J. Quantum Electron. QE-18, 343 (1982).
[CrossRef]

Other

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Laser (Van Nostrand Reinhold. New York, 1986).

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR-coated diode facets,” IEEE Photon. Technol. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Carrier deficit ΔN versus the bias current for γ = 5 × 10−5, γ = 3 × 10−5, and γ = 1 × 10−5.

Fig. 2
Fig. 2

Variations of MSR with bias current for different δ values.

Fig. 3
Fig. 3

Comparison between the measured MSR (dots) and the theoretically predicted MSR (solid curve).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S m + = γ B N 2 W + n / [ λ m 2 L ( 1 - R 1 R 2 J m 2 ) ] ,
W + = 2 R 1 ( J m - 1 ) [ R 1 R 2 ( J m + 1 ) - 1 ] G m 2 + ( 4 n π / λ m ) 2 + ( R 1 R 2 J m 2 - 1 ) L G m + ( J m - 1 ) [ ( 1 - R 1 ) + R 1 J m ( 1 - R 2 ) ] G m 2
J m = exp ( G m L ) .
G m = a Γ { N [ 1 - ( λ m - λ g ) 2 / Q g 2 ] - N o } - α .
I / ( e V ) = F ( N ) + a u m { N [ 1 - ( λ m - λ g ) 2 / Q g 2 ] - N o } × ( S m + + S m - ) ,
F ( N ) = A N + B N 2 + C N 3 ,
a Γ ( N t - N o ) = α - ln ( R 1 R 2 ) / ( 2 L ) .
I / ( e V ) F ( N ) + ( G o + α ) γ B N 2 π Q g 2 a Γ 2 L 2 Δ λ N Δ N W ,
Δ N = e V ( G o + α ) γ B N t 3 / 2 π Q g 2 ( I - I t ) a Γ 2 L 2 Δ λ W ,
P m = h ν ( 1 - R 2 ) γ B N t 2 V 4 a Γ 2 G 0 L [ Δ N + N t ( λ m - λ g ) 2 / Q g 2 ] ,
MSR = 10 log [ Δ N + N t ( 1 - δ ) 2 ( Δ λ ) 2 / Q g 2 Δ N + N t δ 2 ( Δ λ ) 2 / Q g 2 ] ( dB ) .

Metrics