Abstract

For restoration of an image degraded with a shift-invariant point-spread function (PSF), partial images segmented from the degraded image are blind deconvolved in parallel for estimation of the common PSF in each partial image. An object function is reconstructed by deconvolution of the whole image with the PSF. A technique for calibrating contamination caused by the segmentation is developed. Results for a computer-generated image and an atmospherically degraded solar image are presented.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Ayers, J. C. Dainty, Opt. Lett. 13, 547 (1988).
    [CrossRef] [PubMed]
  2. B. L. K. Davey, R. G. Lane, R. H. T. Bates, Opt. Commun. 69, 353 (1989).
    [CrossRef]
  3. S. M. Jefferies, J. C. Christou, Astrophys. J. 415, 862 (1993).
    [CrossRef]
  4. T. J. Schulz, J. Opt. Soc. Am. A 10, 1064 (1993).
    [CrossRef]
  5. N. Miura, N. Baba, Opt. Commun. 89, 375 (1992).
    [CrossRef]
  6. N. Miura, S. Kuwamura, N. Baba, S. Isobe, M. Noguchi, Appl. Opt. 32, 6514 (1993).
    [CrossRef] [PubMed]
  7. O. von der Lühe, Astron. Astrophys. 268, 374 (1993).
  8. D. S. Acton, R. C. Smithson, Appl. Opt. 31, 3161 (1992).
    [CrossRef] [PubMed]
  9. T. J. Holmes, J. Opt. Soc. Am. A 9, 1052 (1992).
    [CrossRef] [PubMed]
  10. R. G. Lane, J. Opt. Soc. Am. A 9, 1508 (1992).
    [CrossRef]

1993 (4)

S. M. Jefferies, J. C. Christou, Astrophys. J. 415, 862 (1993).
[CrossRef]

O. von der Lühe, Astron. Astrophys. 268, 374 (1993).

T. J. Schulz, J. Opt. Soc. Am. A 10, 1064 (1993).
[CrossRef]

N. Miura, S. Kuwamura, N. Baba, S. Isobe, M. Noguchi, Appl. Opt. 32, 6514 (1993).
[CrossRef] [PubMed]

1992 (4)

1989 (1)

B. L. K. Davey, R. G. Lane, R. H. T. Bates, Opt. Commun. 69, 353 (1989).
[CrossRef]

1988 (1)

Acton, D. S.

Ayers, G. R.

Baba, N.

Bates, R. H. T.

B. L. K. Davey, R. G. Lane, R. H. T. Bates, Opt. Commun. 69, 353 (1989).
[CrossRef]

Christou, J. C.

S. M. Jefferies, J. C. Christou, Astrophys. J. 415, 862 (1993).
[CrossRef]

Dainty, J. C.

Davey, B. L. K.

B. L. K. Davey, R. G. Lane, R. H. T. Bates, Opt. Commun. 69, 353 (1989).
[CrossRef]

Holmes, T. J.

Isobe, S.

Jefferies, S. M.

S. M. Jefferies, J. C. Christou, Astrophys. J. 415, 862 (1993).
[CrossRef]

Kuwamura, S.

Lane, R. G.

R. G. Lane, J. Opt. Soc. Am. A 9, 1508 (1992).
[CrossRef]

B. L. K. Davey, R. G. Lane, R. H. T. Bates, Opt. Commun. 69, 353 (1989).
[CrossRef]

Miura, N.

Noguchi, M.

Schulz, T. J.

Smithson, R. C.

von der Lühe, O.

O. von der Lühe, Astron. Astrophys. 268, 374 (1993).

Appl. Opt. (2)

Astron. Astrophys. (1)

O. von der Lühe, Astron. Astrophys. 268, 374 (1993).

Astrophys. J. (1)

S. M. Jefferies, J. C. Christou, Astrophys. J. 415, 862 (1993).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (2)

N. Miura, N. Baba, Opt. Commun. 89, 375 (1992).
[CrossRef]

B. L. K. Davey, R. G. Lane, R. H. T. Bates, Opt. Commun. 69, 353 (1989).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Effect of frame segmentation.

Fig. 2
Fig. 2

Schematic description of leakage effects

Fig. 3
Fig. 3

Images reconstructed (a) with the conventional AD method and (b) with the present method.

Fig. 4
Fig. 4

Solar image reconstruction: (a) bias-subtracted image of the solar granulation, (b) image reconstructed from (a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = f ( x , y ) * h ( x , y ) .
g n ( x , y ) = w n ( x , y ) g ( x , y ) = [ w n ( x , y ) f ( x , y ) } * h ( x , y ) + c n ( x , y )             ( n = 1 , , N ) ,
c n ( x , y ) = w n ( x , y ) { [ w n ( x , y ) f ( x , y ) ] * h ( x , y ) } - w n ( x , y ) { [ w n ( x , y ) f ( x , y ) ] * h ( x , y ) } ,
w n ( x , y ) = 1 - w n ( x , y ) ,
g n ( k + 1 ) ( x , y ) = w n ( x , y ) [ g ( x , y ) - f ( k ) ( x , y ) * h ( k ) ( x , y ) ] + [ w n ( x , y ) f ( k ) ( x , y ) ] * h ( k ) ( x , y ) ( k > 0 ) ,
g n ( 0 ) ( x , y ) = w n ( x , y ) g ( x , y ) .

Metrics