Abstract

Stimulated Raman scattering from laser-irradiated microdroplets is observed from two distinct spatial regions, the droplet rim and a ringlike region encircling the laser beam axis on the droplet shadow face (the Descartes ring). With the use of two pulsed laser beams, a perturbing beam and a delayed stimulated-Raman-scattering pump beam, the physical mechanism for Descartes ring scattering is investigated. Evidence is obtained of a persistent mechanism that continues even after the perturbing laser pulse is turned off. This mechanism is tentatively identified as electrostriction. The possible existence of an additional prompt mechanism that requires overlap between perturbing and pump laser pulses is also discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef] [PubMed]
  2. R. G. Pinnick, A. Biswas, P. Chylek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. Jarzembski, G. Fernandez, Opt. Lett. 13, 270 (1988).
    [CrossRef]
  3. J.-Z. Zhang, D. H. Leach, R. K. Chang, Opt. Lett. 13, 270 (1988).
    [CrossRef] [PubMed]
  4. A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, Phys. Rev. A 40, 7413 (1989).
    [CrossRef] [PubMed]
  5. H. Latifi, A. Biswas, R. L. Armstrong, R. G. Pinnick, Appl. Opt. 29, 5387 (1990).
    [CrossRef] [PubMed]
  6. R. G. Pinnick, A. Biswas, J. D. Pendleton, R. L. Armstrong, “Aerosol-induced laser breakdown thresholds: effect of resonant particles,” Appl. Opt. (to be published).
  7. V. Srivastava, M. A. Jarzembski, Opt. Lett. 16, 126 (1991).
    [CrossRef] [PubMed]
  8. J.-G. Xie, T. E. Ruekgauer, J. Gu, R. L. Armstrong, R. G. Pinnick, Opt. Lett. 16, 1310 (1991).
    [CrossRef] [PubMed]
  9. H.-B. Lin, A. L. Huston, B. L. Justus, A. J. Campillo, Opt. Lett. 11, 614 (1986).
    [CrossRef] [PubMed]
  10. J.-Z. Zhang, R. K. Chang, Opt. Lett. 13, 916 (1988).
    [CrossRef] [PubMed]
  11. H. M. Lai, P. T. Leung, K. L. Poon, K. Young, J. Opt. Soc. Am. B 6, 2430 (1989).
    [CrossRef]

1991

1990

1989

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, Phys. Rev. A 40, 7413 (1989).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. L. Poon, K. Young, J. Opt. Soc. Am. B 6, 2430 (1989).
[CrossRef]

1988

1986

Armstrong, R. L.

Biswas, A.

H. Latifi, A. Biswas, R. L. Armstrong, R. G. Pinnick, Appl. Opt. 29, 5387 (1990).
[CrossRef] [PubMed]

A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, Phys. Rev. A 40, 7413 (1989).
[CrossRef] [PubMed]

R. G. Pinnick, A. Biswas, P. Chylek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. Jarzembski, G. Fernandez, Opt. Lett. 13, 270 (1988).
[CrossRef]

R. G. Pinnick, A. Biswas, J. D. Pendleton, R. L. Armstrong, “Aerosol-induced laser breakdown thresholds: effect of resonant particles,” Appl. Opt. (to be published).

Campillo, A. J.

Chang, R. K.

Chylek, P.

Creegan, E.

Fernandez, G.

Gu, J.

Huston, A. L.

Jarzembski, M.

Jarzembski, M. A.

Justus, B. L.

Lai, H. M.

Latifi, H.

Leach, D. H.

Leung, P. T.

Lin, H.-B.

Pendleton, J. D.

R. G. Pinnick, A. Biswas, J. D. Pendleton, R. L. Armstrong, “Aerosol-induced laser breakdown thresholds: effect of resonant particles,” Appl. Opt. (to be published).

Pinnick, R. G.

Poon, K. L.

Qian, S.-X.

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

Ruekgauer, T. E.

Srivastava, V.

Xie, J.-G.

Young, K.

Zhang, J.-Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Details of experimental arrangement used to perform two-beam studies of Descartes ring emission. (a) Irradiation geometry for 355-nm perturbing beam and 532-nm pump beam, (b) scheme for producing delayed 532-nm pump beam, (c) timing sequence showing perturbing beam, pump beam, and SRS emission pulses.

Fig. 2
Fig. 2

Theoretical source function enhancement for 65.4-μm-radius water droplet irradiated by a 355-nm laser beam. The upper trace shows the equatorial plot of a normalized source function, and the lower trace gives its angular variation at the droplet surface. The largest surface peak (i.e., the peak near 20° in the lower trace) is recorded in the bottom row of Table 1.

Tables (1)

Tables Icon

Table 1 Measured and Calculated Descartes Ring Angle for CS2–Ethanol Mixtures and Pure Water

Metrics