Abstract

Self-aligning optical heterodyning is demonstrated with an acceptance angle as large as 40°. The receiver consists of a strontium barium niobate (SBN) crystal, a detector, and collecting lenses. The incoming beam interferes with the local oscillator to create a real-time grating in the SBN crystal, which diffracts and aligns the signal with the local oscillator. Heterodyne detection occurs as long as the written grating can diffract the input signal. All alignment requirements between the signal and local oscillator are automatically satisfied by the diffraction process, which permits the large acceptance angle. Insensitivity with respect to crystal orientation and background radiation has also been demonstrated.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. Delange, IEEE Spectrum 5, 77 (1968).
    [CrossRef]
  2. O. Andrade, B. J. Rye, J. Phys. D 7, 280 (1974).
    [CrossRef]
  3. O. Mandel, E. Wolf, J. Opt. Soc. Am. 65, 415 (1975).
    [CrossRef]
  4. A. E. Siegman, Appl. Opt. 5, 1588 (1966).
    [CrossRef] [PubMed]
  5. H. de Monchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
    [CrossRef]
  6. The name pilot was arrived at during a personal discussion with R. Bondurant of Lincoln Laboratory, Lexington, Mass.
  7. R. A. Fisher, Optical Phase Conjugation (Academic, New York, 1983).
  8. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
    [CrossRef]
  9. J. Hong, P. Yeh, D. Psaltis, D. Brady, Opt. Lett. 15, 344 (1990).
    [CrossRef] [PubMed]

1990 (1)

1988 (1)

H. de Monchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

1975 (1)

O. Mandel, E. Wolf, J. Opt. Soc. Am. 65, 415 (1975).
[CrossRef]

1974 (1)

O. Andrade, B. J. Rye, J. Phys. D 7, 280 (1974).
[CrossRef]

1968 (1)

O. E. Delange, IEEE Spectrum 5, 77 (1968).
[CrossRef]

1966 (1)

Andrade, O.

O. Andrade, B. J. Rye, J. Phys. D 7, 280 (1974).
[CrossRef]

Brady, D.

de Monchenault, H.

H. de Monchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[CrossRef]

Delange, O. E.

O. E. Delange, IEEE Spectrum 5, 77 (1968).
[CrossRef]

Fisher, R. A.

R. A. Fisher, Optical Phase Conjugation (Academic, New York, 1983).

Hong, J.

Huignard, J. P.

H. de Monchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Mandel, O.

O. Mandel, E. Wolf, J. Opt. Soc. Am. 65, 415 (1975).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Psaltis, D.

Rye, B. J.

O. Andrade, B. J. Rye, J. Phys. D 7, 280 (1974).
[CrossRef]

Siegman, A. E.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Wolf, E.

O. Mandel, E. Wolf, J. Opt. Soc. Am. 65, 415 (1975).
[CrossRef]

Yeh, P.

Appl. Opt. (1)

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

IEEE Spectrum (1)

O. E. Delange, IEEE Spectrum 5, 77 (1968).
[CrossRef]

J. Appl. Phys. (1)

H. de Monchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

O. Mandel, E. Wolf, J. Opt. Soc. Am. 65, 415 (1975).
[CrossRef]

J. Phys. D (1)

O. Andrade, B. J. Rye, J. Phys. D 7, 280 (1974).
[CrossRef]

Opt. Lett. (1)

Other (2)

The name pilot was arrived at during a personal discussion with R. Bondurant of Lincoln Laboratory, Lexington, Mass.

R. A. Fisher, Optical Phase Conjugation (Academic, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Wide-acceptance-angle heterodyne detection experiment involving three laser beams at λ = 514.5 nm: signal, pilot, and LO. The signal frequency is shifted by 40 MHz by an acousto-optic modulator. Single-mode, polarization-preserving fiber is used to ensure mode matching between pilot and signal. The output, containing the LO and the diffracted signal, is focused onto the detector. BS’s, beam splitters.

Fig. 2
Fig. 2

Geometry of the diffraction process. Coupling is away from the C axis because electrons are the primary carriers. All three beams are e polarized to take advantage of the largest electro-optic coefficient of SBN, r33. The external beam crossing angle θ and rotation angle ϕ are shown. 2θ, input angle (signal–LO angle); ϕ, rotation angle (crystal face normal–input beam angular bisector angle); γ, grating plane–signal angle.

Fig. 3
Fig. 3

Heterodyne signal dependence on signal direction, crystal orientation, and background light intensity. (a) Heterodyne signal as a function of angle θ. As the relative angle between the signal and the LO is varied from approximately 10° to 60°, the heterodyne signal shows a slight and predictable decline in amplitude of approximately 7–8 dB. (b) The effect of background light on the heterodyne signal for various LO powers.

Fig. 4
Fig. 4

Possible geometry for increasing the heterodyne signal as a function of LO.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = exp ( - α z cos γ i ) sin 2 [ π d ( e 2 * Δ e 1 ) 2 0 λ n cos γ i ] ,
i c ( t ) = 2 F 1 / 2 ( e μ h ν ) ( P s P LO cos ω t ) .
m = 2 I pilot I LO I pilot + I LO + I background .

Metrics