Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Propagation properties of dark solitons

Not Accessible

Your library or personal account may give you access

Abstract

We numerically study the initial-value problem of the nonlinear Schrödinger equation in the normal-dispersion regime of an optical fiber. A nonchirped hyperbolic tangent input pulse having arbitrary amplitude is found to evolve into a primary dark soliton having a constant amplitude and speed. The effect of the input amplitude is to alter the pulse width of the primary dark soliton. In addition, a set of secondary dark solitons of smaller amplitude moving away from the primary pulse is also generated. It is also shown that nonlinear dark pulses in optical fibers are more stable than bright pulses with respect to loss and noise.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Generation, propagation, and amplification of dark solitons

W. Zhao and E. Bourkoff
J. Opt. Soc. Am. B 9(7) 1134-1144 (1992)

Interactions between dark solitons

W. Zhao and E. Bourkoff
Opt. Lett. 14(24) 1371-1373 (1989)

Periodic amplification of dark solitons using stimulated Raman scattering

W. Zhao and E. Bourkoff
Opt. Lett. 14(15) 808-810 (1989)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved