Abstract

A binary grating has been used to achieve coherent summation of diode-laser-pumped Nd:YAG ring lasers operating at 1.06 μm. Mutual coherence of two such devices was achieved by optical injection locking. This is believed to be the first demonstration of cw injection locking of solid-state lasers other than semiconductor diode lasers. By combining two beams, an efficiency of 75% (92% of the theoretical limit) has been demonstrated in a configuration that could be used to combine a large number of individual lasers.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Veldkamp, J. R. Leger, G. J. Swanson, Opt. Lett. 11, 303(1986).
    [CrossRef] [PubMed]
  2. J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
    [CrossRef]
  3. H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
    [CrossRef]
  4. U. Killat, G. Rabe, W. Rave, Fiber Integ. Opt. 4, 159 (1982).
    [CrossRef]
  5. H. L. Stover, W. H. Steier, Appl. Phys. Lett. 8, 91 (1966).
    [CrossRef]
  6. C. L. Buczek, R. J. Freiberg, M. L. Skolnick, Proc. IEEE 61, 1411 (1973).
    [CrossRef]
  7. C. N. Man, A. Brillet, Opt. Lett. 9, 333 (1984).
    [CrossRef] [PubMed]
  8. S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
    [CrossRef]
  9. C. L. Tang, H. Statz, J. Appl. Phys. 38, 323 (1967).
    [CrossRef]

1986 (2)

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

W. B. Veldkamp, J. R. Leger, G. J. Swanson, Opt. Lett. 11, 303(1986).
[CrossRef] [PubMed]

1984 (1)

1982 (1)

U. Killat, G. Rabe, W. Rave, Fiber Integ. Opt. 4, 159 (1982).
[CrossRef]

1981 (1)

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

1973 (1)

C. L. Buczek, R. J. Freiberg, M. L. Skolnick, Proc. IEEE 61, 1411 (1973).
[CrossRef]

1971 (1)

H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

1967 (1)

C. L. Tang, H. Statz, J. Appl. Phys. 38, 323 (1967).
[CrossRef]

1966 (1)

H. L. Stover, W. H. Steier, Appl. Phys. Lett. 8, 91 (1966).
[CrossRef]

Brillet, A.

Buczek, C. L.

C. L. Buczek, R. J. Freiberg, M. L. Skolnick, Proc. IEEE 61, 1411 (1973).
[CrossRef]

Dammann, H.

H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Freiberg, R. J.

C. L. Buczek, R. J. Freiberg, M. L. Skolnick, Proc. IEEE 61, 1411 (1973).
[CrossRef]

Görtler, K.

H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Killat, U.

U. Killat, G. Rabe, W. Rave, Fiber Integ. Opt. 4, 159 (1982).
[CrossRef]

Kimura, T.

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Kobayashi, S.

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Leger, J. R.

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

W. B. Veldkamp, J. R. Leger, G. J. Swanson, Opt. Lett. 11, 303(1986).
[CrossRef] [PubMed]

Man, C. N.

Rabe, G.

U. Killat, G. Rabe, W. Rave, Fiber Integ. Opt. 4, 159 (1982).
[CrossRef]

Rave, W.

U. Killat, G. Rabe, W. Rave, Fiber Integ. Opt. 4, 159 (1982).
[CrossRef]

Skolnick, M. L.

C. L. Buczek, R. J. Freiberg, M. L. Skolnick, Proc. IEEE 61, 1411 (1973).
[CrossRef]

Statz, H.

C. L. Tang, H. Statz, J. Appl. Phys. 38, 323 (1967).
[CrossRef]

Steier, W. H.

H. L. Stover, W. H. Steier, Appl. Phys. Lett. 8, 91 (1966).
[CrossRef]

Stover, H. L.

H. L. Stover, W. H. Steier, Appl. Phys. Lett. 8, 91 (1966).
[CrossRef]

Swanson, G. J.

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

W. B. Veldkamp, J. R. Leger, G. J. Swanson, Opt. Lett. 11, 303(1986).
[CrossRef] [PubMed]

Tang, C. L.

C. L. Tang, H. Statz, J. Appl. Phys. 38, 323 (1967).
[CrossRef]

Veldkamp, W. B.

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

W. B. Veldkamp, J. R. Leger, G. J. Swanson, Opt. Lett. 11, 303(1986).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

H. L. Stover, W. H. Steier, Appl. Phys. Lett. 8, 91 (1966).
[CrossRef]

Fiber Integ. Opt. (1)

U. Killat, G. Rabe, W. Rave, Fiber Integ. Opt. 4, 159 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kobayashi, T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

J. Appl. Phys. (1)

C. L. Tang, H. Statz, J. Appl. Phys. 38, 323 (1967).
[CrossRef]

Opt. Commun. (1)

H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (1)

C. L. Buczek, R. J. Freiberg, M. L. Skolnick, Proc. IEEE 61, 1411 (1973).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the beam-summation experiment.

Fig. 2
Fig. 2

Transmission of a Fabry–Perot interferometer (150-MHz free spectral range) with master and slave lasers (a) unlocked and (b) injection locked. Photographs show the output of 150 consecutive scans over 4 sec.

Fig. 3
Fig. 3

Summation of two equal-intensity beams derived from a single laser. The powers at detectors D0 and D1 are displayed versus time as the phase of one beam was varied. The theoretical limits are 0.0 and 4.0.

Fig. 4
Fig. 4

Summation of the master and slave lasers. The power at detector D0 is displayed during unlocked (0–65 msec) and injection-locked (65–120 msec) operation. Dashed lines indicate the corresponding theoretical limits.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ f L = Δ f c ( P M / P S ) 1 / 2 ,

Metrics