Abstract

Longitudinal strains in optical fibers have been found to produce a large differential phase shift between the first-and second-order spatial modes propagating in a two-mode fiber. This differential phase shift between the modes is both calculated and measured to be dispersive with respect to wavelength. For fibers with highly elliptical core geometries, which propagate only one lobe orientation of the second-order mode, the differential phase shift is also found to be polarization dependent.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, Opt. Lett. 12, 729 (1987).
    [CrossRef] [PubMed]
  2. M. R. Layton, J. A. Bucaro, Appl. Opt. 18, 666 (1979).
    [CrossRef] [PubMed]
  3. A. W. Snyder, X. H. Zheng, J. Opt. Soc. Am. A 3, 600 (1986).
    [CrossRef]
  4. J. N. Blake, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 177 (1986).
    [CrossRef] [PubMed]
  5. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
    [CrossRef]
  6. W. V. Sorin, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 106 (1986).
    [CrossRef] [PubMed]

1987 (1)

1986 (3)

1982 (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

1979 (1)

Blake, J. N.

Bucaro, J. A.

Huang, S. Y.

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Kim, B. Y.

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Layton, M. R.

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Shaw, H. J.

Snyder, A. W.

Sorin, W. V.

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Zheng, X. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Fractional change in the LP01 to LP11 mode beat length per unit axial strain, K(V), and (b) the ratio of the length stretched to the beat length necessary for achieving a 2π differential phase shift between the LP01 and LP11 modes, [1 − K(V)]−1, for circular core step-index fibers versus V number.

Fig. 2
Fig. 2

Experimental setup for measuring strain effects in an elliptical core fiber.

Fig. 3
Fig. 3

Measurement of the stretching δl2π required to induce a 2π differential phase shift between the LP01 and LP11 modes, versus wavelength, for both polarizations. Short-dashed lines show the unstrained LP01 to LP11 mode beat lengths for both polarizations. Short-and-long-dashed lines show theoretical values of δl2π for a circular core fiber having the same LP11 mode cutoff and LP01 to LP11 mode beat length as the elliptical core fiber tested. (a) Fiber provided by Polaroid Corporation. Core ellipse, 4.1 μm × 2.2 μm; Δ = 0.0031. (b) Fiber provided by Andrew Corporation. Core ellipse, nominally 2 μm × 1 μm; Δ = 0.033.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

L B = 2 π a ( 2 Δ ) 1 / 2 f ( V ) ,
δ L B = L B l δ l = ( L B a a l + L B Δ Δ l + L B f f V V l ) δ l .
n l = n 3 2 l [ p 12 σ ( p 11 + p 12 ) ] ,
L B a a l = 0.17 L B l ,
L B Δ Δ l = 0.102 n 2 L B l ,
L B f f V V l = ( 0.204 n 2 + 0.17 ) V f V f ( V ) L B l .
δ L B L B = K ( V ) δ l l ,
m + 1 = l L B + 1 = l + δ l 2 π L B + δ L B .
δ l 2 π L B = 1 1 K ( V ) .

Metrics