Abstract

An optical configuration is described that uses an addressable reflective component (a liquid-crystal light valve) permitting free-space interconnections between points located on the same substrate. The scheme is attractive for generating programmable interconnections between electronic elements located on the same chip or wafer, in particular since it is highly resistant to system misalignment. Experimental results indicating a fan-out capability, which is desirable for clock signal distribution, are presented.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, Proc. IEEE 72, 850 (1984).
    [CrossRef]
  2. J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

1984

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

1975

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Bleha, W.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Boswell, D.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Fraas, L.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Grinberg, J.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Jacobson, A.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Kung, S. Y.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Miller, L.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Myer, G.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Opt. Eng.

J. Grinberg, A. Jacobson, W. Bleha, L. Miller, L. Fraas, D. Boswell, G. Myer, Opt. Eng. 14, 217 (1975).

Proc. IEEE

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic arrangement of the setup. A CRT presents a pattern (grating, hologram) on the LCLV that diffracts the readout light beam emitted by the LED. Reflected beams propagate toward mirror M, which in turn bounces beams back toward the original plane. Multiple images of the LED are picked up by detectors (PD) strategically located on the input plane.

Fig. 2
Fig. 2

Unfolded display of the optical train (Fig. 1). Planes 1 and 5 identically represent the input plane. The double representation of some elements results from the beam's traversing each one more than once on its path. Vertical and horizontal polarization are indicated. (a) Path from source toward the reflecting mirror. The vertically polarized beam is diffracted by the LCLV grating. (b) Return path for the original horizontally polarized light, now vertically polarized after traversing twice the λ/4 plate. (c) Return path for the original vertically polarized beams (now horizontally polarized).

Fig. 3
Fig. 3

View of the output plane (photographed from the rear). Note two similar clusters, one generated by a single fiber source, the second by two closely spaced fibers. A few orders (in the center of each cluster) are obstructed in this picture by the fibers that provide the light source for those distributions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( x 1 , y 1 ) = I ( x 1 , y 1 ) + I ( x 1 , y 1 ) ,
I 3 ( x 3 , y 3 ) = | h | 2 * I ( x 3 , y 3 ) + | h | 2 I * ( x 3 , y 3 ) ,
| h | 2 = a m n 2 | h ( x 3 m α F λ , y 3 n β F λ ) | 2 ,
| h | 2 = | h ( x 3 , y 3 ) | 2 ,
I 3 ( x 3 , y 3 ) = a m n 2 | h ( x 3 m α F λ , y 3 ) n β F λ | 2 * I ( x 3 , y 3 ) + | h ( x 3 , y 3 ) | 2 * I ( x 3 , y 3 ) .
I 5 ( x 5 , y 3 ) = a m n 2 | h ( x 5 m α F λ , y 5 n β F λ ) | 2 * I ( x 5 , y 5 ) * | h ( x 5 , y 5 ) | 2 + | h ( x 5 , y 5 ) | 2 * I ( x 5 , y 5 ) * a m n 2 | h ( x 5 m α F λ , y 5 n β F λ ) | 2 .

Metrics