Abstract

A dry-etching-assisted femtosecond laser lithography technology is proposed to in-site fabricate micro-optical components with an ultra-smooth three-dimensional continuous profile on a non-planar substrate. Owing to the nanometric resolution of femtosecond laser multi-photon polymerization and dry etching, smooth micro-optical components can be realized on hard materials with surface roughness of approximately 1.5 nm. With flexible and arbitrary designability of femtosecond laser lithography, various high-quality micro-optical components are realized on sapphire. These results indicate that dry-etching-assisted femtosecond laser lithography has promising potential for versatile fabrication of arbitrary ultra-smooth micro/nanostructures on hard materials.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Control of diameter and numerical aperture of microlens by a single ultra-short laser pulse

Hua Fan, Xiao-Wen Cao, Lei Wang, Zhen-Ze Li, Qi-Dai Chen, Saulius Juodkazis, and Hong-Bo Sun
Opt. Lett. 44(21) 5149-5152 (2019)

Convex silica microlens arrays via femtosecond laser writing

Jian-Guan Hua, Hang Ren, Ao Jia, Zhen-Nan Tian, Lei Wang, Saulius Juodkazis, Qi-Dai Chen, and Hong-Bo Sun
Opt. Lett. 45(3) 636-639 (2020)

Microfabrication of axicons by glass blowing at a wafer-level

José Vicente Carrión, Jorge Albero, Maciej Baranski, Christophe Gorecki, and Nicolas Passilly
Opt. Lett. 44(13) 3282-3285 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics