Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor

Not Accessible

Your library or personal account may give you access

Abstract

Highly sensitive and miniaturized sensors are highly desirable for real-time analyte/sample detection. In this Letter, we propose a highly sensitive plasmonic sensing scheme with the miniaturized photonic crystal fiber (PCF) attributes. A large cavity is introduced in the first ring of the PCFs for the efficient field excitation of the surface plasmon polariton mode and proficient infiltration of the sensing elements. Due to the irregular air-hole diameter in the first ring, the cavity exhibits the birefringence behavior which enhances the sensing performance. The novel plasmonic material gold has been used considering the chemical stability in an aqueous environment. The guiding properties and the effects of the sensing performance with different parameters have been investigated by the finite element method, and the proposed PCFs have been fabricated using the stack-and-draw fiber drawing method. The proposed sensor performance was investigated based on the wavelength and amplitude sensing techniques and shows the maximum sensitivities of 11,000 nm/RIU and 1,420RIU1, respectively. It also shows the maximum sensor resolutions of 9.1×106 and 7×106RIU for the wavelength and amplitude sensing schemes, respectively, and the maximum figure of merits of 407. Furthermore, the proposed sensor is able to detect the analyte refractive indices in the range of 1.33–1.42; as a result, it will find the possible applications in the medical diagnostics, biomolecules, organic chemical, and chemical analyte detection.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor

Firoz Haider, Rifat Ahmmed Aoni, Rajib Ahmed, and Andrey E. Miroshnichenko
J. Opt. Soc. Am. B 35(11) 2816-2821 (2018)

Highly sensitive double D-shaped channel photonic crystal fiber based plasmonic refractive index sensor

M. Ifaz Ahmad Isti, M. Hussayeen Khan Anik, Samiha Nuzhat, Rubel Chandra Talukder, Sadia Sultana, Shovasis Kumar Biswas, and Hriteshwar Talukder
Opt. Continuum 1(3) 575-590 (2022)

Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.