Abstract

Plasmon toroidal mode is a unique electromagnetic resonance that cannot be expanded by general electronic or magnetic multipoles. Usually, this mode excitation needs complicated nanostructures, which is a challenge for sample fabrications, especially for nanodesigns with optical resonant frequencies. In this work, we designed a circular V-groove array and studied its toroidal-mode excitation by angle-resolved reflection experimentally and numerically. Our results show that a plasmon toroidal mode around wavelength 700 nm can be excited in this simple nanostructure for incident angles larger than 20°. Compared to reported papers, our design can realize the optical excitation of plasmon toroidal mode, which is useful in high-sensitivity plasmon sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of plasmonic toroidal metamaterials at optical frequencies

Yao-Wei Huang, Wei Ting Chen, Pin Chieh Wu, Vassili Fedotov, Vassili Savinov, You Zhe Ho, Yuan-Fong Chau, Nikolay I. Zheludev, and Din Ping Tsai
Opt. Express 20(2) 1760-1768 (2012)

Optical characteristics associated with magnetic resonance in toroidal metamaterials of vertically coupled plasmonic nanodisks

Qiang Zhang, Jun Jun Xiao, and Sheng Lei Wang
J. Opt. Soc. Am. B 31(5) 1103-1108 (2014)

Unidirectional scattering induced by the toroidal dipolar excitation in the system of plasmonic nanoparticles

Lixin Ge, Liang Liu, Shiwei Dai, Jiwang Chai, Qianju Song, Hong Xiang, and Dezhuan Han
Opt. Express 25(10) 10853-10862 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription