Abstract

In this work, an optimum plane selection methodology is reported that can be applied to a wide range of single-beam phase retrieval techniques, based on the contrast transfer function. It is shown that the optimum measurement distances obtained by this method form a geometric series that maximizes the range of spatial frequencies to be recovered using a minimum number of planes. This allows a noise-robust phase reconstruction that does not rely on regularization techniques, i.e., an extensive search for a regularization parameter is avoided. Measurement systems that employ this optimization criteria give an instant deterministic noise-robust phase reconstruction with higher accuracy, and enable the phase retrieval of the entire object spectrum, including lower frequency components.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Contrast-transfer-function phase retrieval based on compressed sensing

Pablo Villanueva-Perez, Filippo Arcadu, Peter Cloetens, and Marco Stampanoni
Opt. Lett. 42(6) 1133-1136 (2017)

Optimum plane selection for transport-of-intensity-equation-based solvers

J. Martinez-Carranza, K. Falaggis, and T. Kozacki
Appl. Opt. 53(30) 7050-7058 (2014)

Robust contrast-transfer-function phase retrieval via flexible deep learning networks

Chen Bai, Meiling Zhou, Junwei Min, Shipei Dang, Xianghua Yu, Peng Zhang, Tong Peng, and Baoli Yao
Opt. Lett. 44(21) 5141-5144 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics