Abstract

Quantitative phase recovery of phase objects is achieved by a direct inversion using the defocused weak object transfer function. The presented method is noniterative and is based on partially coherent principles. It also takes into account the optical properties of the system and gives the phase of the object directly. The proposed method is especially suitable for application to weak phase objects, such as live and unstained biological samples but, surprisingly, has also been shown to work with comparatively strong phase objects.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative phase microscopy via optimized inversion of the phase optical transfer function

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(28) 8566-8579 (2015)

Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach

Linpeng Lu, Yao Fan, Jiasong Sun, Jialing Zhang, Xuejuan Wu, Qian Chen, and Chao Zuo
Opt. Lett. 46(7) 1740-1743 (2021)

Efficient quantitative phase microscopy using programmable annular LED illumination

Jiaji Li, Qian Chen, Jialin Zhang, Yan Zhang, Linpeng Lu, and Chao Zuo
Biomed. Opt. Express 8(10) 4687-4705 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics