Abstract

We present a method for phase retrieval in propagation-based x-ray imaging, based on the contrast transfer and transport of intensity equation approaches. We show that the contrast transfer model does not coincide with the transport of intensity in the limit of small propagation distances, and we derive a new model that alleviates this problem. Using this model, we devise an algorithm to retrieve the phase from slowly varying samples that is valid beyond the limit of small distances. We show its utility by imaging in three dimensions a biological sample that causes both strong absorption and phase shift.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach

Linpeng Lu, Yao Fan, Jiasong Sun, Jialing Zhang, Xuejuan Wu, Qian Chen, and Chao Zuo
Opt. Lett. 46(7) 1740-1743 (2021)

Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue

Boliang Yu, Loriane Weber, Alexandra Pacureanu, Max Langer, Cecile Olivier, Peter Cloetens, and Françoise Peyrin
Opt. Express 26(9) 11110-11124 (2018)

Phase retrieval for arbitrary Fresnel-like linear shift-invariant imaging systems suitable for tomography

Stanislav Hrivňak, Andrej Hovan, Jozef Uličný, and Patrik Vagovič
Biomed. Opt. Express 9(9) 4390-4400 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription