Abstract
The intensity distributions of a tightly focused radially polarized beam that has a double-ring-shaped transverse mode pattern were calculated based on vector diffraction theory. The distribution of the longitudinal component near the focus varied drastically with the degree of truncation of the incident beam by a pupil. When the ratio of the pupil radius to the beam radius was , the longitudinal component disappeared at the focal point, owing to destructive interference. This dark area surrounded by an intense light field was of the order of the wavelength, with excellent intensity symmetry.
© 2006 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (4)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription