Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Y junctions in photonic crystal channel waveguides: high transmission and impedance matching

Not Accessible

Your library or personal account may give you access

Abstract

We investigate the efficiency of transmission through photonic crystal Y junctions and show the importance of matching mode symmetries. Furthermore, we show that by adding tuning holes to the input waveguide it is possible to achieve almost perfect impedance matching, leading ideally to unitary transmission through the junction. The model system is based on a triangular photonic lattice of holes in dielectrics to reflect experimental reality.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Low-loss, wide-angle Y splitter at ∼1.6-µm wavelengths built with a two-dimensional photonic crystal

S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos
Opt. Lett. 27(16) 1400-1402 (2002)

Effective equations for photonic-crystal waveguides and circuits

Sergei F. Mingaleev and Yuri S. Kivshar
Opt. Lett. 27(4) 231-233 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved