Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrashort-pulse propagation in optical fibers

Not Accessible

Your library or personal account may give you access

Abstract

A more exact model is suggested for the description of nonlinear light propagation in fibers. In addition to the previously discussed self-phase modulation, parametric, dispersion, self-steepening, and Raman self-scattering effects, this model also takes into account the Stokes losses associated with the material excitation, the dependence of nonlinear effects on the light frequency, and the frequency dependence of the fiber mode area. The self-steepening effect is taken into account more correctly in comparison with previous models. The effects influence considerably the femtosecond soliton propagation. The model is generalized for the case of various fiber dispersion properties along the fiber length. The possibility of obtaining high-quality pulses of less than 15-fsec duration by compression of fundamental solitons with approximately 100-fsec duration in fibers with slowly decreasing dispersion is shown.

© 1990 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultrashort-soliton interactions in optical fibers

B. J. Hong and C. C. Yang
Opt. Lett. 15(19) 1061-1063 (1990)

Description of ultrashort pulse propagation in multimode optical fibers

Francesco Poletti and Peter Horak
J. Opt. Soc. Am. B 25(10) 1645-1654 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.