Abstract

Experimental results on 1D and 2D phase-locking of laser diode arrays are presented. Attention is paid to the employment of the arrays consisting of wide aperture lasers diodes. Selection of the “in-phase” supermode, preferable for most of the cases, is attained in the external quarter Talbot (Lc=ZT/4=d2/2λ) cavity due to the output mirror tilt at the angle φm=λ/2d. Analysis of the parameters that influence on the phase-locking is given. Our experiments confirm theoretical predictions of the system stability and adequate selectivity for the laser diode array fill factor (FF) FF=0.6.

© 1999 Optical Society of America

1. Introduction

Considerable recent attention [1–12] has been focused on phase-locking of semiconductor lasers. Particular emphasis is placed on phase-locked semiconductor laser diode arrays (LDA) because of high efficiency of the system (≥30%), small size and scaling up possibility.

The array of N emitters allows for oscillation of N cavity supermodes. Single supermode oscillation is required to achieve diffractional limited beam. Theoretical simulations [1–3], earlier experiments with single mode emitters [4–6] displayed multimode regime preference, resulting in 3 and more times of diffractional limit excess in the output beam divergence. Employment of a spatial filter [7–9] prevented from undesired supermodes generation. Though this method proved to be reasonable and experimentally tested, it still resembles a complicated pinhole technique when the profile of the filter matches precisely distribution of the supermode allowed to oscillate.

Significant improvement of the selection is realized in the so called Talbot cavity in which the effect of self imaging of a periodical array of emitters occurs at Talbot ZT=2m(d/λ)2 m=1,2,3⋯ and sub-Talbot (2m+1)ZT/2 planes [3,10].

Earlier successful experiments were carried out employing Talbot cavity technique [2] to phase-lock 20 [9], 30 [11] small aperture (S<10 μm) emitters spaced at d<50 μm (FF=S/d<0.1). Despite the obvious advantages, there exist few problems with Talbot cavity technique employment.

  • High intensity is obtained if the cavity sustains single supermode, that, in turn takes place if FF<<1 (for example FF=0.08 [11]). Low FF, in turn, results in low output power emitted by phase-locked LDA of a fixed length.
  • Small value of FF results in multilobe far field pattern decreasing the power in the central lobe.
  • “In-phase” and “out-of phase” supermodes are not discriminated simultaneously even if the cavity round trip length is Lc=mZT.
  • Placing the mirror at Lc=ZT/4 it is possible both to select single “out-of-phase” supermode and to slightly decrease generation threshold (if compared with Lc=ZT/2) [12]. The problem in this case consists of two-lobe far field pattern that again is not optimal for high intensity radiation.

The problems mentioned above are widely known and suggest, probably, the solution of compromise depending on the aims to be achieved. The aim of this paper consists of the illustration of the actual feasibility of 1D and 2D phase-locking of LDA with wide aperture emitters placed with relatively high FF=0.6.

2. Experimental results review

In the experiments [13–15] on phase-locking, we employed LDA’s with wide aperture emitters (S=120 μm), spaced at d=200 μm (FF=0.6) (fig.1).

 

Fig.1. Experimental setup. 1-laser diode array, 2-cylindrical lens, 3-cavity output mirror, R=50%, 4-lens (F=10 ñì), 5-videocamera, 6-monitor, 7-oscilloscope

Download Full Size | PPT Slide | PDF

Attention was paid to the peculiarities of phase-locking if individual diodes emit multimode radiation. Our approach was aimed at the employment of powerful arrays. Phase-locking was demonstrated for the LDA of N=8 emitters in a cavity of length Lc=ZT/4=2.5 cm. Fig.2 displays far field pattern for “out-of phase” supermode.

 

Fig.2. Far field pattern of the “out-of-phase” supermode.

Download Full Size | PPT Slide | PDF

The parameters of the pattern are as follows:

  • 2 central lobes exhibit twice diffraction limit excess;
  • 2 lateral lobes are measured to have Full Width at Half Maximum (FWHM) δΨ=0.5 mrad in agreement with diffractional limit for the synthesized aperture Nd=1600 μm, λ=0.8 μm;
  • contrast parameter V = (Imax - Imin)/(Imax+Imin) = 0.97 revealing high coherence of the output beam;
  • intensity of the “in-phase” lobes is approximately 10 times less than that of “out-of-phase” supermode confirming high selectivity of the cavity.
  • the observed far-field patterns were obtained at injection current 0.5 a (Ith)<I<1.5 a (3Ith) per single diode, where Ith=0.5 a is the threshold injection current per single diode for phase-locked mode oscillation in the external cavity (out-of-phase supermode).

In most of the applications the “in-phase” cavity supermode is preferable as it has one central lobe in which most of energy should be concentrated. For the quarter Talbot cavity the feedback is sufficient to sustain the oscillation, but the “in-phase” supermode has the highest generation threshold in such a cavity. Tilting the output mirror it is possible to tune the desired “in-phase” supermode. The possibility of “in-phase” supermode selection in the ZT/4 cavity with the tilted mirror (φm=λ/2d) was discussed in paper [16]. From the theoretical estimations it follows that the generation threshold for the “in-phase” supermode depends slightly on the number N of phase-locked emitters if the array with relatively high FF is employed. So, if the evidence for the “in-phase” supermode selection is given for N=8 emitters, than there will be no problems with N=16, 25⋯ and so on. Generation of the “in-phase” supermode was demonstrated with the tilted mirror in our experiments on phase-locking of two LDA’s (2D configuration).

Relatively large length of the external cavity (Lc=2.5÷5 cm) forces to employ collimating optics (cylindrical lenses), that, in principle complicates 2D phase-locking as it is necessary to decrease fast axis radiation divergence to allow generation development in the Talbot cavity, that, in turn, diminishes the efficiency of coupling between neighbor diode arrays.

Another circumstance that influence on the phase-locking consists of the uniform parameters of the laser diodes. Special attention was paid to selection of the LDA with slight deviation of the optical properties.

The experiments were carried out with two LDA’s of N=8 diodes separated by 1600 μm. At this stage the collective mode of the two LDA’s existence in the quarter-Talbot cavity (Lc=ZT/4) with the tilted mirror (φm=λ/2d) was studied. The far field pattern is presented on fig.3.

 

Fig.3 (a). Far field pattern of the “in-phase” supermode for independent generation of the 2 laser diode arrays in a quarter-Talbot cavity.

Download Full Size | PPT Slide | PDF

 

Fig.3 (b). Far field pattern of the “in-phase” supermode for 2D phase-locking of the 2 laser diode arrays in a quarter-Talbot cavity.

Download Full Size | PPT Slide | PDF

The patterns exhibit independent (a) and phase-locked (b) generation of the arrays. For the phase-locked regime:

  • diffractional lobes angle corresponds to equation φ=mλ/dx, at λ=0.8 μm, dx=1600 μm;
  • FWHM of the lobes is twice narrower the distance between the peaks in x axis;
  • operating conditions: pulse duration - 400 ns, pulsed power - 3 W.

The features highlighted above point out 2D phase-locking for the system of two LDA’s involving N=8 wide aperture laser diodes. The chosen parameters allowed for fast axis and slow axis diffractional lobes FWHM δΨ=0.25 mrad and δΨ=0.5 mrad correspondingly.

3. Limitations in phase-locking

Successful phase-locking of a large synthesized aperture depends on simultaneous matching of several conditions that can be divided into 3 groups. The first group includes admissible range of cavity parameters variation: cavity length δLc and angle positioning of external mirror φm. The second group consists of spectral parameters variation: bandwidth of the spectral interval δλp allowing phase-locking, detuning δλ0 of the phase-locked wavelength λp from the center of gain profile λ0 (δλ00p). Besides, correlated and non-correlated phase errors <δφ2> in the channels of LDA should be included in this group. The third group unifies parameters that are governed by technological processes of LDA manufacturing, mounting, AR-coatings covering and so on. We summarize theoretical limitations and compare them with experimental available data.

Consider the cavity parameters. Paper [3] presents estimation of the variation of the reproduction coefficient δγ of the near field distribution with respect to mirror displacement δLc:

δγ(δLczT)2(12πFF2)2

As it follows from eq.(1) FF influences intracavity losses primarily. In our experiment δLc=1 cm, ZT=10 cm, FF=0.6 and eq. (1) results in δγ=0.008, that is 20% displacement from ZT/4 plane decreases reproduction coefficient only in the third order. Theoretical estimation agrees experimentally observed weak dependence of output radiation properties change with the mirror displacement in our experiment that is a direct consequence of high FF.

The accuracy of external mirror angular positioning φm deduced in [3] under assumption φm<<λ/d, δγ<<1 follows from equation:

δγN4(φm/θ)2

Assuming δγ≈0.1, individual laser divergence θ≈0.2, N=10, eq.(2) gives φm≈0.6 mrad, that satisfies requirement φm<<λ/d=4 mrad for our experimental conditions λ=0.8 μm, d=200 μm. Eq. (2) elucidates the fact of strong dependence on the total size of the array. The relationship φm~1/N2 that follows from eq. (2) points out the necessity of precise cavity alignment for large N.

If the angle mirror tilt is not small (φm≥λ/d) than for a set of angles φm=mλ/(2d) it is possible to obtain phase-locking so that cavity supermodes coincide with that of φm=0. Additional losses δγ resulted from the tilt are estimated as:

δγ/γ(2πFF)2(φmγ/d)2

Eq. (3) is valid if f<<1. The possibility of supermodes generation with significantly tilted mirror was confirmed in our experiments.

Summarizing estimations (1–3) we conclude that cavity parameters play important role but do not limit drastically phase-locking especially for the array with high FF.

The second group of parameters that unifies admissible range of spectral and phase detunings is of great importance and, probably, plays the crucial role in phase-locking. Deviation of lasers resonance wavelengths δλL brings to slight dephasing first and than breaks phase-locking if wavelengths interval extends over interval of phase-locked bandwidth δλp. Existence of noise (spontaneous emission, scattering on the coupling optical elements) also influence on phase-locking negatively making δλp narrower.

For the case of Talbot like phase-locking δλp is given [18]:

δλpTalbot12λ22Lc(NMβPn2(G0NM))

where M-is coupling constant, P-noise power, β=α0l/Is, G00l-g0, α0-active medium gain, g0-active medium losses. Eq.(4) is valid for δλ0=0 and reveals that δλp increases with N and diminishes with Pn. Theoretical simulations predict significant increase (>10 times) of allowed for phase-locking bandwidth δλp if δλ0≠0 and suggest optimal value δλ0opt that maximize δλp. It is important to highlight that δλ0 can be, in principle, arbitrary within the limits of active medium gain profile. This circumstance is truly important and, probably, comprise the only feasibility to obtain phase-locking of powerful arrays in which element-to-element wavelength shift exists due to heat release.

In the case of nearest neighbor emitters coupling and neglecting spontaneous emission term

δλpneλ22LcMcos(πvN+1)

where v - is supermode number.

For either “in-phase” or “out-of-phase” supermode and N>>1 eq.(5) gives:

δλpneλ22LcM

Comparison of eq.(4,6) shows that spectral conditions in the case of nearest emitters coupling are N/2 times severe suggesting the preference of Talbot like coupling.

In the description above, laser diodes of the array were assumed identical so that path-length errors are constant for all of the diodes. If such assumption is excluded and non correlated phase deviation between the channels <δφ2> is taken into consideration than additional cavity losses can be written as [3]:

γγeδφ2/2

Experiments with liquid crystal array (LCA) [19,20] inserted in the Talbot cavity displayed the necessity to control both correlated (tilt of a focusing lens) and non-correlated phase errors. For the non-correlated errors it is shown that a 0.10 π element-to-element route-mean square (rms) phase difference produces 9.5% reduction in far field lobes intensity while a 0.26 π rms phase difference results in 50 % lobes intensity decrease. Hence, λ/8 phase distortions should be taken into account.

The third group of technological parameters, doubtlessly, is very important. To achieve coupling with minimal losses in Talbot cavity lasers should provide equal intensities of the output radiation. Otherwise, interference of N beams inside the cavity will not result in zero field intensity exactly between the emitters and maximum of field intensity falling exactly on the emitters.

Another technological limitation arises from the admissible variation of LDA period d. Consider Δn as a random deviation of the n-th diode from nominal position, so that <Δn>=0, <ΔnΔm>=Δ2δnm, δnm is Kronecker data. Analysis [21] shows that if N(Δ/d)<<1 supermode eigenvalue experience decrease:

γ2γ02e(πNΔ/8dp)2

where γ0 - is supermode eigenvalue in the absence of displacement, p=Lc/ZT. To estimate the role of displacement suppose the relative reduction in the square of |γ|2/|γ0|2 should not exceed 20%, that gives:

Δ<110Nd

Standard powerful LDA has d=400 mkm and N=25 that results in Δ<1.6 mkm that is quite “allowed” accuracy of manufacturing.

In conclusion of phase-locking limitations consideration one may deduce that non-correlated errors and spectral detunings are of prime importance and special care should be taken to obtain powerful lobes of the output radiation.

4. Conclusion

In the presented paper we analyzed both 1D and 2D phase-locking of laser diode arrays. Special attention was given to the consideration of wide aperture laser diodes employment for phase-locking of the arrays with high FF that is required for high power output radiation. Emphasis is given to FF=0.5÷5-0.65 because of:

  • standard powerful arrays have S=200 μm, d=400 μm, so that FF=0.5;
  • FF=0.5÷5-0.65 still provides cavity supermodes selection;
  • FF=0.65 is optimal for power conversion from side lobes to the central one (85%) [17];
  • high FF provides stability of the output power at significant distortion of the cavity length;
  • high FF allows for weak dependence of the “in-phase” supermode losses on the number of emitters N in a cavity with the tilted mirror.

Our experiments both confirm actual feasibility of 1D and 2D phase-locking of LDA’s with specified parameters and illustrate theoretical predictions of the system stability and selectivity, so that:

  • phase-locking is obtained in the external quarter Talbot cavity (Lc=ZT/4) for N=8 wide aperture (S=120 μm) laser diodes in the array of high FF=0.6. It allowed diffraction lobes FWHM δΨ=0.5 mrad;
  • high value of FF provided stability of the output radiation parameters for cavity mirror displacement of 20% from ZT/4 plane;
  • “In-phase” supermode generation was selected in the cavity with tilted mirror (φm=λ/2d) placed at ZT/4 plane;
  • 2D phase-locking is demonstrated for the two LDA’s. The chosen parameters allowed for fast axis and slow axis diffractional lobes FWHM δΨ=0.25 mrad and δΨ=0.5 mrad correspondingly.

Acknowledgments

This work was supported by CILAS, France (Marcoussis), contract #135454

References and links

1. J. K. Butler, D.E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293 (1983). [CrossRef]  

2. D. Botez, “Array-mode far-field patterns for phase-locked diode laser arrays: coupled mode theory versus simple diffraction theory,” IEEE Journal of Quantum Electron. 21, N.11, 1752 (1985). [CrossRef]  

3. A. A. Golubentsev, V. V. Likhanskii, and A. P. Napartovich, “Theory of phase synchronization of laser sets,” Sov. Phys. JETP 66, 676 (1987).

4. D. E. Ackley, “Single longitudinal mode operation of high power multiple-stripe injection lasers,” Appl. Phys. Lett. 42, 152 (1983). [CrossRef]  

5. D. Botez and J. C. Connolly, “High-power phase-locked arrays of index-guided diode lasers,” Appl. Phys. Lett. 43, 1096 (1983). [CrossRef]  

6. D.R. Scifres, R. A. Sprague, W. Streifer, and R. D. Burnham, “Focusing of a 7700-A high power phased array semiconductor laser,” Appl. Phys. Lett. 41, 1121 (1982). [CrossRef]  

7. J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985). [CrossRef]  

8. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. , 55, 334 (1989). [CrossRef]  

9. F. X. D’Amato, E. T. Siebert, and C. Rouchoudhri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816 (1988). [CrossRef]  

10. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771 (1988). [CrossRef]  

11. R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991). [CrossRef]  

12. D. Mehuys, W. Streifer, R. Waarts, and D. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823 (1991). [CrossRef]   [PubMed]  

13. V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica). [CrossRef]  

14. V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica). [CrossRef]  

15. V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica). [CrossRef]  

16. A. F. Glova, N. N. Elkin, A. Yu. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. (in Russian) 23, 630 (1996).

17. O. R. Kachurin, F. V. Lebedev, M. A. Napartovich, and M. E. Khlynov, “Control of the phased laser array radiation pattern,” Quantum Electron. (in Russian) 18, 387 (1991).

18. I. M. Beldyugin, M. V. Zolotarev, and I. V. Shinkareva, “An effect of noise and spread of resonant frequencies on phase-locking of optically coupled lasers,” Quantum Electron. (in Russian) 18, 1493 (1991).

19. J. W. Cassarly, J. C. Ehlert, J. M. Finlan, K. M. Flood, R. Waarts, D. Mehuys, D. Nam, and D. Welch, “Intracavity phase correction of an external Talbot cavity laser with the use of liquid crystals,” Opt. Lett. 17, 607 (1992). [CrossRef]   [PubMed]  

20. S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994). [CrossRef]  

21. V. V. Apollonov, V. I. Kislov, and A. M. Prokhorov, “Phase-locking of a semiconductor diode array in an external cavity,” Quantum Electron. (in Russian) 23, 1081 (1996).

References

  • View by:
  • |
  • |
  • |

  1. J. K. Butler, D.E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293 (1983).
    [Crossref]
  2. D. Botez, “Array-mode far-field patterns for phase-locked diode laser arrays: coupled mode theory versus simple diffraction theory,” IEEE Journal of Quantum Electron. 21, N.11, 1752 (1985).
    [Crossref]
  3. A. A. Golubentsev, V. V. Likhanskii, and A. P. Napartovich, “Theory of phase synchronization of laser sets,” Sov. Phys. JETP 66, 676 (1987).
  4. D. E. Ackley, “Single longitudinal mode operation of high power multiple-stripe injection lasers,” Appl. Phys. Lett. 42, 152 (1983).
    [Crossref]
  5. D. Botez and J. C. Connolly, “High-power phase-locked arrays of index-guided diode lasers,” Appl. Phys. Lett. 43, 1096 (1983).
    [Crossref]
  6. D.R. Scifres, R. A. Sprague, W. Streifer, and R. D. Burnham, “Focusing of a 7700-A high power phased array semiconductor laser,” Appl. Phys. Lett. 41, 1121 (1982).
    [Crossref]
  7. J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
    [Crossref]
  8. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.,  55, 334 (1989).
    [Crossref]
  9. F. X. D’Amato, E. T. Siebert, and C. Rouchoudhri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816 (1988).
    [Crossref]
  10. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771 (1988).
    [Crossref]
  11. R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991).
    [Crossref]
  12. D. Mehuys, W. Streifer, R. Waarts, and D. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823 (1991).
    [Crossref] [PubMed]
  13. V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
    [Crossref]
  14. V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
    [Crossref]
  15. V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
    [Crossref]
  16. A. F. Glova, N. N. Elkin, A. Yu. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. (in Russian)  23, 630 (1996).
  17. O. R. Kachurin, F. V. Lebedev, M. A. Napartovich, and M. E. Khlynov, “Control of the phased laser array radiation pattern,” Quantum Electron. (in Russian)  18, 387 (1991).
  18. I. M. Beldyugin, M. V. Zolotarev, and I. V. Shinkareva, “An effect of noise and spread of resonant frequencies on phase-locking of optically coupled lasers,” Quantum Electron. (in Russian)  18, 1493 (1991).
  19. J. W. Cassarly, J. C. Ehlert, J. M. Finlan, K. M. Flood, R. Waarts, D. Mehuys, D. Nam, and D. Welch, “Intracavity phase correction of an external Talbot cavity laser with the use of liquid crystals,” Opt. Lett. 17, 607 (1992).
    [Crossref] [PubMed]
  20. S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
    [Crossref]
  21. V. V. Apollonov, V. I. Kislov, and A. M. Prokhorov, “Phase-locking of a semiconductor diode array in an external cavity,” Quantum Electron. (in Russian)  23, 1081 (1996).

1998 (2)

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

1997 (1)

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

1996 (2)

A. F. Glova, N. N. Elkin, A. Yu. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. (in Russian)  23, 630 (1996).

V. V. Apollonov, V. I. Kislov, and A. M. Prokhorov, “Phase-locking of a semiconductor diode array in an external cavity,” Quantum Electron. (in Russian)  23, 1081 (1996).

1994 (1)

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

1992 (1)

1991 (4)

O. R. Kachurin, F. V. Lebedev, M. A. Napartovich, and M. E. Khlynov, “Control of the phased laser array radiation pattern,” Quantum Electron. (in Russian)  18, 387 (1991).

I. M. Beldyugin, M. V. Zolotarev, and I. V. Shinkareva, “An effect of noise and spread of resonant frequencies on phase-locking of optically coupled lasers,” Quantum Electron. (in Russian)  18, 1493 (1991).

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991).
[Crossref]

D. Mehuys, W. Streifer, R. Waarts, and D. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823 (1991).
[Crossref] [PubMed]

1989 (1)

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.,  55, 334 (1989).
[Crossref]

1988 (2)

F. X. D’Amato, E. T. Siebert, and C. Rouchoudhri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816 (1988).
[Crossref]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

1987 (1)

A. A. Golubentsev, V. V. Likhanskii, and A. P. Napartovich, “Theory of phase synchronization of laser sets,” Sov. Phys. JETP 66, 676 (1987).

1985 (2)

D. Botez, “Array-mode far-field patterns for phase-locked diode laser arrays: coupled mode theory versus simple diffraction theory,” IEEE Journal of Quantum Electron. 21, N.11, 1752 (1985).
[Crossref]

J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
[Crossref]

1983 (3)

J. K. Butler, D.E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293 (1983).
[Crossref]

D. E. Ackley, “Single longitudinal mode operation of high power multiple-stripe injection lasers,” Appl. Phys. Lett. 42, 152 (1983).
[Crossref]

D. Botez and J. C. Connolly, “High-power phase-locked arrays of index-guided diode lasers,” Appl. Phys. Lett. 43, 1096 (1983).
[Crossref]

1982 (1)

D.R. Scifres, R. A. Sprague, W. Streifer, and R. D. Burnham, “Focusing of a 7700-A high power phased array semiconductor laser,” Appl. Phys. Lett. 41, 1121 (1982).
[Crossref]

Ackley, D. E.

D. E. Ackley, “Single longitudinal mode operation of high power multiple-stripe injection lasers,” Appl. Phys. Lett. 42, 152 (1983).
[Crossref]

Ackley, D.E.

J. K. Butler, D.E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293 (1983).
[Crossref]

Apollonov, V. V.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, V. I. Kislov, and A. M. Prokhorov, “Phase-locking of a semiconductor diode array in an external cavity,” Quantum Electron. (in Russian)  23, 1081 (1996).

Beldyugin, I. M.

I. M. Beldyugin, M. V. Zolotarev, and I. V. Shinkareva, “An effect of noise and spread of resonant frequencies on phase-locking of optically coupled lasers,” Quantum Electron. (in Russian)  18, 1493 (1991).

Botez, D.

D. Botez, “Array-mode far-field patterns for phase-locked diode laser arrays: coupled mode theory versus simple diffraction theory,” IEEE Journal of Quantum Electron. 21, N.11, 1752 (1985).
[Crossref]

D. Botez and J. C. Connolly, “High-power phase-locked arrays of index-guided diode lasers,” Appl. Phys. Lett. 43, 1096 (1983).
[Crossref]

J. K. Butler, D.E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293 (1983).
[Crossref]

Burnham, R. D.

J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
[Crossref]

D.R. Scifres, R. A. Sprague, W. Streifer, and R. D. Burnham, “Focusing of a 7700-A high power phased array semiconductor laser,” Appl. Phys. Lett. 41, 1121 (1982).
[Crossref]

Butler, J. K.

J. K. Butler, D.E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293 (1983).
[Crossref]

Cassarly, J. W.

Cassarly, W.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

Connolly, J. C.

D. Botez and J. C. Connolly, “High-power phase-locked arrays of index-guided diode lasers,” Appl. Phys. Lett. 43, 1096 (1983).
[Crossref]

Cross, P.S.

J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
[Crossref]

D’Amato, F. X.

F. X. D’Amato, E. T. Siebert, and C. Rouchoudhri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816 (1988).
[Crossref]

Derzhavin, S. I.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

Ehlert, J.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

Ehlert, J. C.

Elkin, N. N.

A. F. Glova, N. N. Elkin, A. Yu. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. (in Russian)  23, 630 (1996).

Finlan, J.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

Finlan, J. M.

Flood, K.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

Flood, K. M.

Glova, A. F.

A. F. Glova, N. N. Elkin, A. Yu. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. (in Russian)  23, 630 (1996).

Golubentsev, A. A.

A. A. Golubentsev, V. V. Likhanskii, and A. P. Napartovich, “Theory of phase synchronization of laser sets,” Sov. Phys. JETP 66, 676 (1987).

Kachurin, O. R.

O. R. Kachurin, F. V. Lebedev, M. A. Napartovich, and M. E. Khlynov, “Control of the phased laser array radiation pattern,” Quantum Electron. (in Russian)  18, 387 (1991).

Kazakov, A. A.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

Khlynov, M. E.

O. R. Kachurin, F. V. Lebedev, M. A. Napartovich, and M. E. Khlynov, “Control of the phased laser array radiation pattern,” Quantum Electron. (in Russian)  18, 387 (1991).

Kislov, V. I.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, V. I. Kislov, and A. M. Prokhorov, “Phase-locking of a semiconductor diode array in an external cavity,” Quantum Electron. (in Russian)  23, 1081 (1996).

Koval, Yu. P.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

Kuzminov, V. V.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

Lebedev, F. V.

O. R. Kachurin, F. V. Lebedev, M. A. Napartovich, and M. E. Khlynov, “Control of the phased laser array radiation pattern,” Quantum Electron. (in Russian)  18, 387 (1991).

Leger, J. R.

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.,  55, 334 (1989).
[Crossref]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

Likhanskii, V. V.

A. A. Golubentsev, V. V. Likhanskii, and A. P. Napartovich, “Theory of phase synchronization of laser sets,” Sov. Phys. JETP 66, 676 (1987).

Lysikov, A. Yu.

A. F. Glova, N. N. Elkin, A. Yu. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. (in Russian)  23, 630 (1996).

Mashkovsky, D. A.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

Mehuys, D.

Nam, D.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

J. W. Cassarly, J. C. Ehlert, J. M. Finlan, K. M. Flood, R. Waarts, D. Mehuys, D. Nam, and D. Welch, “Intracavity phase correction of an external Talbot cavity laser with the use of liquid crystals,” Opt. Lett. 17, 607 (1992).
[Crossref] [PubMed]

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991).
[Crossref]

Napartovich, A. P.

A. F. Glova, N. N. Elkin, A. Yu. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. (in Russian)  23, 630 (1996).

A. A. Golubentsev, V. V. Likhanskii, and A. P. Napartovich, “Theory of phase synchronization of laser sets,” Sov. Phys. JETP 66, 676 (1987).

Napartovich, M. A.

O. R. Kachurin, F. V. Lebedev, M. A. Napartovich, and M. E. Khlynov, “Control of the phased laser array radiation pattern,” Quantum Electron. (in Russian)  18, 387 (1991).

Prokhorov, A. M.

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, V. I. Kislov, and A. M. Prokhorov, “Phase-locking of a semiconductor diode array in an external cavity,” Quantum Electron. (in Russian)  23, 1081 (1996).

Rouchoudhri, C.

F. X. D’Amato, E. T. Siebert, and C. Rouchoudhri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816 (1988).
[Crossref]

Sanders, S.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

Scifres, D.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991).
[Crossref]

Scifres, D. R.

J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
[Crossref]

Scifres, D.R.

D.R. Scifres, R. A. Sprague, W. Streifer, and R. D. Burnham, “Focusing of a 7700-A high power phased array semiconductor laser,” Appl. Phys. Lett. 41, 1121 (1982).
[Crossref]

Scott, M. L.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

Shinkareva, I. V.

I. M. Beldyugin, M. V. Zolotarev, and I. V. Shinkareva, “An effect of noise and spread of resonant frequencies on phase-locking of optically coupled lasers,” Quantum Electron. (in Russian)  18, 1493 (1991).

Siebert, E. T.

F. X. D’Amato, E. T. Siebert, and C. Rouchoudhri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816 (1988).
[Crossref]

Sprague, R. A.

D.R. Scifres, R. A. Sprague, W. Streifer, and R. D. Burnham, “Focusing of a 7700-A high power phased array semiconductor laser,” Appl. Phys. Lett. 41, 1121 (1982).
[Crossref]

Streifer, W.

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991).
[Crossref]

D. Mehuys, W. Streifer, R. Waarts, and D. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823 (1991).
[Crossref] [PubMed]

J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
[Crossref]

D.R. Scifres, R. A. Sprague, W. Streifer, and R. D. Burnham, “Focusing of a 7700-A high power phased array semiconductor laser,” Appl. Phys. Lett. 41, 1121 (1982).
[Crossref]

Thornton, R. L.

J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
[Crossref]

Veldkamp, W. B.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

Waarts, R.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

J. W. Cassarly, J. C. Ehlert, J. M. Finlan, K. M. Flood, R. Waarts, D. Mehuys, D. Nam, and D. Welch, “Intracavity phase correction of an external Talbot cavity laser with the use of liquid crystals,” Opt. Lett. 17, 607 (1992).
[Crossref] [PubMed]

D. Mehuys, W. Streifer, R. Waarts, and D. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823 (1991).
[Crossref] [PubMed]

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991).
[Crossref]

Welch, D.

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

J. W. Cassarly, J. C. Ehlert, J. M. Finlan, K. M. Flood, R. Waarts, D. Mehuys, D. Nam, and D. Welch, “Intracavity phase correction of an external Talbot cavity laser with the use of liquid crystals,” Opt. Lett. 17, 607 (1992).
[Crossref] [PubMed]

D. Mehuys, W. Streifer, R. Waarts, and D. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823 (1991).
[Crossref] [PubMed]

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991).
[Crossref]

Yaeli, J.

J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
[Crossref]

Zolotarev, M. V.

I. M. Beldyugin, M. V. Zolotarev, and I. V. Shinkareva, “An effect of noise and spread of resonant frequencies on phase-locking of optically coupled lasers,” Quantum Electron. (in Russian)  18, 1493 (1991).

Appl. Phys. Lett. (10)

D. E. Ackley, “Single longitudinal mode operation of high power multiple-stripe injection lasers,” Appl. Phys. Lett. 42, 152 (1983).
[Crossref]

D. Botez and J. C. Connolly, “High-power phase-locked arrays of index-guided diode lasers,” Appl. Phys. Lett. 43, 1096 (1983).
[Crossref]

D.R. Scifres, R. A. Sprague, W. Streifer, and R. D. Burnham, “Focusing of a 7700-A high power phased array semiconductor laser,” Appl. Phys. Lett. 41, 1121 (1982).
[Crossref]

J. Yaeli, W. Streifer, D. R. Scifres, P.S. Cross, R. L. Thornton, and R. D. Burnham, “Array mode selection utilizing an external cavity configuration,” Appl. Phys. Lett. 47, 89 (1985).
[Crossref]

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.,  55, 334 (1989).
[Crossref]

F. X. D’Amato, E. T. Siebert, and C. Rouchoudhri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816 (1988).
[Crossref]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction limited, AlGaAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett. 58, 2586 (1991).
[Crossref]

J. K. Butler, D.E. Ackley, and D. Botez, “Coupled-mode analysis of phase-locked injection laser arrays,” Appl. Phys. Lett. 44, 293 (1983).
[Crossref]

S. Sanders, R. Waarts, D. Nam, D. Welch, D. Scifres, J. Ehlert, W. Cassarly, J. Finlan, and K. Flood, “High-power coherent two-dimensional semiconductor laser array,” Appl. Phys. Lett. 64, 1478 (1994).
[Crossref]

IEEE Journal of Quantum Electron. (1)

D. Botez, “Array-mode far-field patterns for phase-locked diode laser arrays: coupled mode theory versus simple diffraction theory,” IEEE Journal of Quantum Electron. 21, N.11, 1752 (1985).
[Crossref]

Opt. Lett. (2)

Quantum Electron. (7)

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Investigation of linear and two-dimensional arrays of semiconductor laser diodes in an external cavity,” Quantum Electron. 27, 850 (1997). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Spatial phase-locking of linear arrays of 4 and 12 wide aperture semiconductor laser diodes in an external cavity,” Quantum Electron. 28, 257 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

V. V. Apollonov, S. I. Derzhavin, V. I. Kislov, A. A. Kazakov, Yu. P. Koval, V. V. Kuzminov, D. A. Mashkovsky, and A. M. Prokhorov, “Phase-locking of eight wide-aperture semiconductor laser diodes in one-dimensional and two-dimensional configurations in an external Talbot cavity,” Quantum Electron. 28, 344 (1998). (Translated from Russian Kvantovaya Electronica).
[Crossref]

A. F. Glova, N. N. Elkin, A. Yu. Lysikov, and A. P. Napartovich, “External Talbot cavity with in-phase mode selection,” Quantum Electron. (in Russian)  23, 630 (1996).

O. R. Kachurin, F. V. Lebedev, M. A. Napartovich, and M. E. Khlynov, “Control of the phased laser array radiation pattern,” Quantum Electron. (in Russian)  18, 387 (1991).

I. M. Beldyugin, M. V. Zolotarev, and I. V. Shinkareva, “An effect of noise and spread of resonant frequencies on phase-locking of optically coupled lasers,” Quantum Electron. (in Russian)  18, 1493 (1991).

V. V. Apollonov, V. I. Kislov, and A. M. Prokhorov, “Phase-locking of a semiconductor diode array in an external cavity,” Quantum Electron. (in Russian)  23, 1081 (1996).

Sov. Phys. JETP (1)

A. A. Golubentsev, V. V. Likhanskii, and A. P. Napartovich, “Theory of phase synchronization of laser sets,” Sov. Phys. JETP 66, 676 (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1.
Fig.1.

Experimental setup. 1-laser diode array, 2-cylindrical lens, 3-cavity output mirror, R=50%, 4-lens (F=10 ñì), 5-videocamera, 6-monitor, 7-oscilloscope

Fig.2.
Fig.2.

Far field pattern of the “out-of-phase” supermode.

Fig.3 (a).
Fig.3 (a).

Far field pattern of the “in-phase” supermode for independent generation of the 2 laser diode arrays in a quarter-Talbot cavity.

Fig.3 (b).
Fig.3 (b).

Far field pattern of the “in-phase” supermode for 2D phase-locking of the 2 laser diode arrays in a quarter-Talbot cavity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δ γ ( δ L c z T ) 2 ( 1 2 π FF 2 ) 2
δ γ N 4 ( φ m / θ ) 2
δγ / γ ( 2 πFF ) 2 ( φ m γ / d ) 2
δ λ p Talbot 1 2 λ 2 2 L c ( NM β P n 2 ( G 0 NM ) )
δ λ p ne λ 2 2 L c M cos ( πv N + 1 )
δ λ p ne λ 2 2 L c M
γ γ e δ φ 2 / 2
γ 2 γ 0 2 e ( πNΔ / 8 dp ) 2
Δ < 1 10 N d

Metrics