Abstract

We report, for the first time, the nonlinear absorption at the 2 µm waveband of three Sb-related materials including two Sb compounds, GaSb and InSb, and one Sb alloy, Ge8Sb92. These saturable absorbers (SAs) were coated on tapered single mode fibers by the magnetron-sputtering deposition method. By incorporating these SAs into Tm-doped fiber lasers, ultrafast mode-locked solitons could be readily obtained. Stable pulse trains with 922 fs/753 fs/1005 fs pulse durations, 31.35 mW/37.70 mW/16.60 mW output powers, 93 dB/80 dB/92 dB signal-to-noise ratios were achieved with GaSb/InSb/Ge8Sb92, respectively. Our findings demonstrate that these materials can be widely used for photonic devices in the 2 µm waveband where ultrafast optical switching and modulating are desired.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ultrafast thulium-doped fiber lasers (TDFLs) have been attracted worldwide attention for decades for their capability of generating femtosecond pulses at 2 µm waveband which is the longest lasing wavelength region silica-based fiber could support. Compared with pulsed Yb-doped and Er-doped fiber lasers, ultrafast Tm-doped fiber lasers have unique applications such as medical surgery [1], plastic processing [2], eye-safe lidar [3] and mid-infrared spectroscopy [4].

In order to achieve femtosecond pulses in TDFLs, the mode-locking technique is commonly used which is locking the phase of longitudinal modes in a cavity to realize ultrashort pulses. Several methods have been demonstrated for mode-locking in TDFLs including artificial SAs which utilize mostly the Kerr nonlinearity of silica fiber and realize a power-related light transmittance such as nonlinear loop mirror [5,6] and nonlinear polarization rotation [7] and real SAs which are materials with saturated light absorption at certain wavelength range at high power density due to Pauli exclusion principal [8]. For decades, real SAs have been the focus of ultrafast optics for the superiority in compactness and stability [9]. As the only one SA that is commercially available, semiconductor saturable absorber mirrors (SESAMs) have dominance in long-term stability and fine-controlled fabrication, while their fabrication process is complicated and operation wavelength is limited. Many other SAs have been extensively investigated especially the low-dimensional materials including carbon nanotubes [10,11], graphene [1218], black phosphorus [19,20], transition metal dichalcogenides [2126], topological insulators [27]. These materials have been demonstrated to be excellent SAs with many unique features. However, low-dimensional materials usually suffer from relatively low heat-damage resistance and poor long-term stability [9]. Recently, semiconductor-based SAs have been brought into sight for their high damage threshold and simple fabrication process, particularly the Sb-related compounds and alloys for that they usually have small direct bandgaps (< 1 eV) which are suitable for the usage as an ultrafast mode-locker in Tm-doped fiber lasers. Moreover, bandgap of Sb-related alloys can be tuned by adjusting the ratio of component elements. Recently, it has been demonstrated that Sb metal thin film can be used as saturable absorber with high performance in the regions of 1.5 µm and 2 µm [28]; However, as a metal element, Sb usually possesses relatively high chemical activity than its compound form. Afterward, the nonlinear absorption of InSb was explored and InSb was also investigated as an ultrafast optical switcher in an Er-doped fiber laser at 1.5 µm waveband [29]. Except for these, no Sb-related compounds and alloys were investigated as nonlinear optical modulator. To explore the SA property of Sb-related materials in Tm-doped fiber lasers, more efforts need to be undertaken.

In recent years, several methods have been developed to fabricate thin-film SA to be incorporated in fiber laser system from solid raw materials, including top-down exfoliation like mechanical exfoliation (ME) [30] and liquid phase exfoliation (LPE) [31] and bottom-up deposition like chemical vapor deposition (CVD) [15], pulsed laser deposition (PLD) [32] and magnetron sputtering deposition (MSD) [22]. In contrast to ME, LPE and PLD, CVD and MSD methods are capable of finely controlling the thickness of the SA film (at nanometer scale) and allow to obtain SA film with more uniformed surface, whereby the modulation depth and insertion loss can be precisely tunable and the scattering loss can be greatly alleviated when the SA-film is interacted through evanescent field [22].

To mode-lock Tm-doped fiber lasers, in this paper, the MSD method was used to fabricate the thin films of three Sb-related materials with relatively low bandgap including two Sb compounds (GaSb and InSb) and one Sb alloy (Ge8Sb92). The nonlinear absorption of these materials at 2 µm wavebands was experimentally investigated for the first time. With the help of MSD method, evanescent-filed-based SA was fabricated by coating thin film on tapered single mode fibers. Incorporating the fabricated GaSb, InSb and Ge8Sb92 SAs into a Tm-doped fiber laser respectively, robust solitons were successfully obtained. The pulse trains mode-locked by GaSb/InSb/Ge8Sb92 thin films had 922 fs/753 fs/1005 fs pulse durations, 31.35 mW/37.7 mW/16.6 mW output powers, 93 dB/80 dB/92 dB signal-to-noise ratios, respectively. These experimental demonstrations show that two Sb-related compounds (GaSb and InSb) and one Sb alloy (Ge8Sb92) can be promising candidates as ultrafast nonlinear optical modulators used for femtosecond pulse generation in 2 µm region.

2. Fabrication and characterizations of SA samples

SA samples used in experiments were fabricated by MSD method. Firstly, standard single mode fiber was tapered by a hydrogen-oxygen flame-based fiber processing machine. The tapered microfiber had a waist diameter of 15 µm and a tapered length of 1 cm which was precisely controlled by the predetermined program of the fiber processing machine. Then these tapered fibers were placed in magnetron sputtering chamber for further thin film deposition. The sputtered precursor materials were commercial GaSb, InSb and Ge8Sb92 targets all with 99.99% purity. After setting the target and the tapered fiber in the chamber, the vacuum pressure of the chamber was pulled to 1×10−3 Pa by a molecular pump. Next, pure argon gas was injected into chamber and the flow rate was controlled and monitored by a gas flow meter. Argon gas was ionized by strong electric field. The Ar3+ was accelerated and bombarded the target. Atoms from target were released and condensed on the prefabricated samples. As this process continued, a uniform SA film was grown on the waist region of the tapered fiber. To achieve enough modulation depth while maintaining a relatively low non-saturable loss, in the coating process with a radio frequency delivered power, the deposition durations of GaSb, InSb and Ge8Sb92 film were determined to be 3 min/ 2 min/ 1min respectively.

Figure 1(a) shows scanning electron microscope (SEM) image of the tapered single mode fiber and the diameter of waist region was well controlled to be 15 µm. Figure 1(b) presents the microscope images of uncoated microfiber and SA-coated microfiber. After deposition process, a uniform and clean film was formed. The cross-section view of GaSb, InSb and Ge8Sb92 coating layer is shown in Figs. 1(d)-(f), where the thicknesses of these thin films were measured to be 85.3 nm, 91.9 nm and 59.5 nm respectively. Noted that, via magnetron sputtering deposition method, the films can be dense even at the submicron scale. When intracavity light passes through the microfiber, the waist with such a small diameter allows strong interaction between the lasing light and coated materials through evanescent field. Compared with other SA integration methods like sandwiching between fiber patch cords [25], interaction length can be greatly extended which results in a higher modulation depth. Moreover, evanescent field interaction can avoid direct contact with high density light in the center of fiber core which relieves the heat accumulation and thus increases the damage threshold of integrated SAs.

 figure: Fig. 1.

Fig. 1. (a) SEM image of tapered fiber. (b) microscope images of uncoated microfiber (top) and SA-coated microfiber (bottom). (c) linear transmission of deposited thin film. (d-f) SEM images of GaSb, InSb and Ge8Sb92 coating layer.

Download Full Size | PPT Slide | PDF

To investigate the linear transmittance of fabricated thin films, the GaSb, InSb and Ge8Sb92 targets were sputtered on precleaned coverslips using the same parameter as in the fabrication process of SA-coated microfiber. The linear transmittance spectrum ranging from 1500 nm to 2100 nm of these thin films are shown in Fig. 1(c). The transmittance of these films was gradually increasing with the increase of wavelength. In the range of 1800nm and 2000nm which corresponds to the gain spectrum of common Tm-doped fiber, the transmittance was all above 35%, which indicates that these films were suitable to be used as photonics devices with low insertion loss.

In order to confirm the elements composition of these deposited films, the Raman spectroscopy (RS, Horiba Scientific, LabRAM, 532 nm emission) and X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, K-Alpha+) measurements were conducted. The recorded data of RS is illustrated in Fig. 2(a). As can be seen from Fig. 2(a), the scattered peak of GaSb thin film was found at 144 cm−1. The RS of InSb film showed two peaks at 107 cm−1 and 142 cm−1, while three scattered peaks were acquired with the Ge8Sb92 film at 91 cm−1, 118 cm−1 and 138 cm−1. These peaks were in coincidence with previous publications [29,33], which confirmed the effectiveness of MSD in thin film fabrication. The normalized XPS results of GaSb, InSb and Ge8Sb92 film are shown in Figs. 2(b)-(d), respectively. These results were all calibrated with the reference adventitious C1s peak at 284.8 eV. As is shown, the peaks were all marked and related to corresponding elements that the film was composed of. From the high resolution XPS spectra of GaSb, InSb and Ge8Sb92 films, the positions of Sb3d3/2 and Sb3d5/2 were summarized in Table 1, showing that slight surface oxidation generally occurred for Sb-related materials. Meanwhile, Ga3d was found at 20.06 eV without observable splitting indicates that the Gallium was existing in the form of compounds. In3d3/2 and In3d5/2 peak were showing at 451.25 eV and 443.66 eV respectively without obvious loss features. Ge2p3 peak was observed at 1218.72 eV and no oxide peaks emerged. Accordingly, it was suggested that MSD-fabricated GaSb, InSb and Ge8Sb92 film were indeed composed of corresponding elements but with few Sb oxide due to exposure in air.

 figure: Fig. 2.

Fig. 2. Basic characterizations of GaSb, InSb and Ge8Sb92 thin films. (a) The Raman shift. (b-d) Full XPS spectra of GaSb, InSb and Ge8Sb92 thin films, respectively. (e-g) High resolution spectra of corresponding elements of GaSb, InSb and Ge8Sb92 thin films, respectively (h-j) Pump probe measurements of GaSb, InSb and Ge8Sb92 thin films, respectively.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Summary of Sb peaks of three Sb-related materials from XPS measurement

To investigate the ultrafast carrier kinetics of as-prepared thin films, their transient absorption was examined by pump-probe technique [34,35]. The pump beam was performed with a Ti: sapphire laser with a pulse width of 100 fs and a repetition rate of 1 kHz. Via optical parametric amplification, the pump wavelength was set to be 1600 nm, while the probe wavelength of GaSb, InSb and Ge8Sb92 film was determined to be 760, 400 and 470 nm respectively where the data collected showed more obvious ultrafast response. The pump pulse energy was 21.7 µJ, 6.45 µJ and 1.4 µJ respectively. The experimental results are present in Figs. 2(e)-(g), where the fittings were done according to the following equation:

$$y = {a_1}\ast \exp ( - (x - {x_0})/{\tau _1}) + {a_2}\ast \exp ( - (x - {x_0})/{\tau _2}) + {y_0}$$
where τ1 and τ2 represent the fast and slow relaxation time. The fitting curves showed that the τ1 and τ2 of GaSb/InSb/Ge8Sb92 film was 4.31 ps/1.24 ps/3.7 ps and 67.09 ps/166.40 ps/952.60 ps, respectively. The obtained results indicate the ultrafast response of these fabricated films. Subsequently, the laser-induced damage threshold measurement was carried out by a 800 nm Ti:sapphire oscillator with 100 fs pulse width. And the damage threshold of GaSb/InSb/Ge8Sb92-thin films which were tested to be 3.56/3.49/1.77 mJ/cm2 respectively.

A home-made mode-locked Tm-doped fiber laser was utilized to investigate the nonlinear absorption of fabricated thin film-coated microfiber samples [36]. The experimental setup is shown in Fig. 3(a). The mode-locked seed had a pulse width of 810 fs, a repetition rate of 55 MHz. The saturable absorption of GaSb, InSb and Ge8Sb92 film is shown in Figs. 3(b)-(d) respectively. The obtained experimental data can be fitted by the following equation:

$$T({P_{peak}}) = 1 - \frac{{\varDelta T}}{{1 + {P_{peak}}/{P_{sat}}}} - {\alpha _{ns}} - \beta \ast {P_{peak}}$$
where ΔT is the modulation depth, Psat denotes the saturation peak power, αns represents the non-saturable loss and β means the two-photon absorption (TPA) coefficient. As peak power continued to grow, the TPA effect began to dominate which led to evident reverse saturable absorption. By fitting curves shown in the figures, the modulation depth and saturation peak power were determined to be 1.18%/17.662%/16.58% and 43.68 W/8.63 W/0.84 W for GaSb/InSb/Ge8Sb92-coated microfiber, respectively.

 figure: Fig. 3.

Fig. 3. (a) setup for the nonlinear absorption measurement. The saturable absorption of GaSb (b), InSb (c) and Ge8Sb92 (d).

Download Full Size | PPT Slide | PDF

3. Mode-locking operations

3.1 Experimental setup

The setup of mode-locked Tm-doped fiber laser is illustrated in Fig. 4. The configuration of the cavity are listed as follows: a 976 nm laser diode with a maximum pump power of 2 W was used as a pump source, a three-port wavelength division multiplexer guided the pump light into cavity, a 3 m long Tm-doped single mode fiber was used as gain medium to provide intracavity gain, a polarization-independent optical isolator determined the circling direction of 2 µm lasing light, an as-prepared SA-coated microfiber performed an efficient mode-locker, an in-line polarization controller (PC) was utilized to adjust the intracavity birefringence, a three-port optical couple with an output ratio of 70% was used as an output port. In experiments, stable mode-locked pulses could be easily obtained by adjusting PC at a proper pump power.

 figure: Fig. 4.

Fig. 4. Experimental configuration of the mode-locked Tm-doped fiber laser. WDM, wavelength division multiplexer. OC, Output coupler. PI-ISO, polarization insensitive isolator. PC, polarization controller.

Download Full Size | PPT Slide | PDF

The characteristics of the mode-locked pulses was obtained and monitored by a photodetector (EOT ET-5000F), an oscilloscope (Rohde and Schwarzr RTO2024), a radio frequency (RF) spectrum analyzer (Rohde and Schwarzr FSV13), an optical spectrum analyzer (Yokogawa AQ6375B) and an autocorrelator (APE Pulsecheck).

3.2 Mode-locking experiment details

Figure 5 presents the experimental results of the mode-locked Tm-doped fiber laser with GaSb/InSb/Ge8Sb92-coated microfiber. These data were collected at pump powers of 500 mW, 548 mW and 520 mW for GaSb, InSb and Ge8Sb92 SA respectively, where stable mode-locking process could be lasting and sustained. Further increasing pump power would lead to the appearance of bound solitons which resulted from the peak power clamping effect. The average output powers were measured to be 31.35 mW, 37.70 mW and 16.60 mW respectively.

 figure: Fig. 5.

Fig. 5. Mode-locking results of GaSb (a, d, g), InSb (d, e, h) and Ge8Sb92 (c, f, i) thin films. (a-c) Measured spectra and corresponding sech2 fitting curves. (d-f) Autocorrelation traces. (g-i) Radio frequency spectra.

Download Full Size | PPT Slide | PDF

As can be seen from Figs. 5(a)-(c), obvious symmetric Kelly peaks can be observed at both sides of their central wavelength, which provides a solid evidence that the mode-locked lasers were operating in soliton state in anomalous dispersion region. Kelly sidebands originated from periodic disturbance from periodic intracavity loss and gain, with which circulating pulses had to maintain its soliton shape by radiating extra energy known as dispersive wave [37]. At certain frequencies that were phase-matching with propagating solitons, sharp peaks shown in Figs. 5(a)-(c) were formed. For GaSb, InSb and Ge8Sb92 mode-locked fiber lasers, the central wavelength and 3-dB bandwidth were measured to be 1883.58 nm/4.66 nm, 1864.14 nm/4.98 nm and 1879.88 nm/3.86 nm respectively. By fitting the spectral with sech2 function and deducting the dispersive wave as shown in Figs. 5(a)-(c), the real soliton energy of GaSb/InSb/Ge8Sb92 SA-based lasers is calculated to be 0.82 nJ/1.17 nJ/0.38 nJ respectively.

The autocorrelation traces of mode-locked pulses are presented in Figs. 5(d)-(f). Inserts of the figures show the measurement results with 50-ps delay time span, and no other peaks were observed indicating that mode-locked lasers were all operating in single soliton state. As shown in figures, good fits of Sech2 function of the delay time were obtained. The real pulse widths of GaSb, InSb and Ge8Sb92 mode-locked pulses were estimated to be 922 fs, 753 fs and 1005 fs, which resulted in time bandwidth products (TBPs) of 0.363, 0.324 and 0.329 respectively. Compared with the TBP of 0.315 of transform-limited Sech2 pulses, these mode-locked pulses were determined to be only slightly chirped.

The ratio frequency spectra of mode-locked pulses were all scanned with a span of 100 MHz and a resolution bandwidth (RBW) of 10 Hz. The results are depicted in Figs. 5(g)-(i) for GaSb, InSb and Ge8Sb92 films respectively. As a general indicator used to characterize the stability of a mode-locked fiber laser, the single-to-noise ratio (SNR) represents the contrast between detected pulses and background noise signal. For GaSb, InSb and Ge8Sb92 SA, peaks with outstanding SNRs of 93 dB, 80 dB and 92 dB were found at the fundamental repetition rates of 20.20 MHz, 20.88 MHz and 20.04 MHz respectively. The frequency spectra with a wider recording range are shown in the inserts, and the harmonics had remarkably high peaks even with frequency extending to 8 GHz, showing the extraordinary robustness of the mode-locked fiber lasers.

To verify the long-term operation stability of lasers mode-locked by these SAs, 4-hour running tests were conducted and the results are shown in Fig. 6. The data collection sampling interval was set to 1 second. An optical couple was fused at output port to monitor temporal pulse train to confirm its mode-locking state. In the whole experiment, the mode-locking state was well sustained and no obvious jitter was observed on oscilloscope. Through collected data, the coefficient of output power variation was calculated to be 0.50%/0.89%/0.41% for GaSb/InSb/Ge8Sb92 SA-based mode-locked fiber lasers respectively, indicating they were in a robust mode-locking state.

 figure: Fig. 6.

Fig. 6. Long-time operation stability of three SAs-based mode-locked fiber lasers. (a) GaSb. (b) InSb. (c) Ge8Sb92.

Download Full Size | PPT Slide | PDF

To summarize, a table was presented containing the main indictors of mode-locking performance of different materials. As can be seen in Table 2, the GaSb/InSb/Ge8Sb92 thin-film SAs have superiority in generating ultrashort pulses with relatively high stability. For three SAs proposed in this paper, as the same cavity was used, the repetition rate was nearly the same. However, different materials exhibited distinguishable mode-locking characteristics. The shortest pulse duration 753 fs was obtained by InSb with the highest output power simultaneously. Meanwhile, the SNR of InSb mode-locked pulse train was only measured to be 80 dB which was resulted from relatively high pump power. Nevertheless, this SNR is higher than many previous reports concerning mode-locking in 2 µm region. As for other materials, as high as above 90 dB SNRs were obtained implying outstanding stability of their mode-locking state. With respect to their saturable absorption performance, InSb film possessed the highest modulation depth and a moderate saturation peak power, which makes the InSb the better SA for mode-locked pulses generation.

Tables Icon

Table 2. Summary of Mode-Locked Fiber Lasers Based on different SAs

4. Conclusion

In conclusion, we have experimentally demonstrated ultrafast Tm-doped fiber lasers mode-locked by three Sb-related materials including GaSb, InSb and Ge8Sb92 for the first time to the best of our knowledge. These materials were magnetron-sputtered on microfiber to form dense and uniform thin films. The nonlinear absorption of these films at 2 µm waveband was detailly investigated. By virtue of fabricated GaSb, InSb and Ge8Sb92 SAs, robust solitons with pulse durations/ output powers/ SNRs of 922 fs/31.35 mW/93 dB, 753 fs/37.70 mW/80 dB and 1005 fs/16.60 mW/92 dB were obtained respectively. Our findings show that Sb-related material including compounds and alloys are of great potential in generating high-quality femtosecond pulses.

Funding

National Natural Science Foundation of China (12074264, 61775146, 61905148, 61935014, 61975136); Science and Technology Planning Project of Shenzhen Municipality (JCYJ20190808141011530, JCYJ20190808160205460, JCYJ20190808174201658); the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (2020B1212030010); Guangdong Provincial Key Laboratory of Semiconductor Micro Display (2020B121202003).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm,” Lasers Surg. Med. 37(1), 53–58 (2005). [CrossRef]  

2. C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-µm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014). [CrossRef]  

3. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49(4), 562–567 (2010). [CrossRef]  

4. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012). [CrossRef]  

5. J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-µm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014). [CrossRef]  

6. S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016). [CrossRef]  

7. C. Gao, Z. Wang, H. Luo, and L. Zhan, “High energy all-fiber Tm-doped femtosecond soliton laser mode-locked by nonlinear polarization rotation,” J. Lightwave Technol. 35(14), 2988–2993 (2017). [CrossRef]  

8. A. Marini, J. D. Cox, and F. J. García de Abajo, “Theory of graphene saturable absorption,” Phys. Rev. B 95(12), 125408 (2017). [CrossRef]  

9. T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020). [CrossRef]  

10. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009). [CrossRef]  

11. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004). [CrossRef]  

12. X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015). [CrossRef]  

13. H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, S. B. Lee, K. Lee, and D.-I. Yeom, “All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber,” Opt. Express 24(13), 14152–14158 (2016). [CrossRef]  

14. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012). [CrossRef]  

15. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–127976 (2013). [CrossRef]  

16. D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019). [CrossRef]  

17. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015). [CrossRef]  

18. J. Sotor, J. Bogusławski, T. Martynkien, P. Mergo, A. Krajewska, A. Przewłoka, W. StrupiŃski, and G. SoboŃ, “All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber,” Opt. Lett. 42(8), 1592–1595 (2017). [CrossRef]  

19. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015). [CrossRef]  

20. Q. Zhang, X. Jin, G. Hu, M. Zhang, Z. Zheng, and T. Hasan, “Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA,” Opt. Express 28(23), 34104–34110 (2020). [CrossRef]  

21. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5013 (2017). [CrossRef]  

22. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018). [CrossRef]  

23. J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018). [CrossRef]  

24. P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017). [CrossRef]  

25. M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019). [CrossRef]  

26. L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018). [CrossRef]  

27. K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015). [CrossRef]  

28. J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020). [CrossRef]  

29. Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020). [CrossRef]  

30. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015). [CrossRef]  

31. P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020). [CrossRef]  

32. P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015). [CrossRef]  

33. X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010). [CrossRef]  

34. A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002). [CrossRef]  

35. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016). [CrossRef]  

36. K. Viskontas and N. Rusteika, “All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors,” Opt. Fiber Technol. 31, 74–82 (2016). [CrossRef]  

37. J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019). [CrossRef]  

38. J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015). [CrossRef]  

39. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009). [CrossRef]  

40. M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019). [CrossRef]  

41. Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

42. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014). [CrossRef]  

43. X. Liu, X. Li, Y. Tang, and S. Zhang, “PbS nanoparticles saturable absorber for ultrafast pulse generation in 2-µm fiber laser,” Opt. Lett. 45(1), 161–164 (2020). [CrossRef]  

44. H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm,” Lasers Surg. Med. 37(1), 53–58 (2005).
    [Crossref]
  2. C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-µm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
    [Crossref]
  3. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49(4), 562–567 (2010).
    [Crossref]
  4. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  5. J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-µm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
    [Crossref]
  6. S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
    [Crossref]
  7. C. Gao, Z. Wang, H. Luo, and L. Zhan, “High energy all-fiber Tm-doped femtosecond soliton laser mode-locked by nonlinear polarization rotation,” J. Lightwave Technol. 35(14), 2988–2993 (2017).
    [Crossref]
  8. A. Marini, J. D. Cox, and F. J. García de Abajo, “Theory of graphene saturable absorption,” Phys. Rev. B 95(12), 125408 (2017).
    [Crossref]
  9. T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
    [Crossref]
  10. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
    [Crossref]
  11. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  12. X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
    [Crossref]
  13. H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, S. B. Lee, K. Lee, and D.-I. Yeom, “All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber,” Opt. Express 24(13), 14152–14158 (2016).
    [Crossref]
  14. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
    [Crossref]
  15. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–127976 (2013).
    [Crossref]
  16. D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019).
    [Crossref]
  17. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
    [Crossref]
  18. J. Sotor, J. Bogusławski, T. Martynkien, P. Mergo, A. Krajewska, A. Przewłoka, W. StrupiŃski, and G. SoboŃ, “All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber,” Opt. Lett. 42(8), 1592–1595 (2017).
    [Crossref]
  19. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
    [Crossref]
  20. Q. Zhang, X. Jin, G. Hu, M. Zhang, Z. Zheng, and T. Hasan, “Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA,” Opt. Express 28(23), 34104–34110 (2020).
    [Crossref]
  21. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5013 (2017).
    [Crossref]
  22. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
    [Crossref]
  23. J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
    [Crossref]
  24. P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
    [Crossref]
  25. M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
    [Crossref]
  26. L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
    [Crossref]
  27. K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
    [Crossref]
  28. J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
    [Crossref]
  29. Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
    [Crossref]
  30. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref]
  31. P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020).
    [Crossref]
  32. P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
    [Crossref]
  33. X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
    [Crossref]
  34. A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
    [Crossref]
  35. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
    [Crossref]
  36. K. Viskontas and N. Rusteika, “All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors,” Opt. Fiber Technol. 31, 74–82 (2016).
    [Crossref]
  37. J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
    [Crossref]
  38. J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015).
    [Crossref]
  39. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
    [Crossref]
  40. M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
    [Crossref]
  41. Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.
  42. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
    [Crossref]
  43. X. Liu, X. Li, Y. Tang, and S. Zhang, “PbS nanoparticles saturable absorber for ultrafast pulse generation in 2-µm fiber laser,” Opt. Lett. 45(1), 161–164 (2020).
    [Crossref]
  44. H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
    [Crossref]

2020 (7)

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Q. Zhang, X. Jin, G. Hu, M. Zhang, Z. Zheng, and T. Hasan, “Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA,” Opt. Express 28(23), 34104–34110 (2020).
[Crossref]

P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020).
[Crossref]

J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
[Crossref]

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

X. Liu, X. Li, Y. Tang, and S. Zhang, “PbS nanoparticles saturable absorber for ultrafast pulse generation in 2-µm fiber laser,” Opt. Lett. 45(1), 161–164 (2020).
[Crossref]

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

2019 (4)

J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
[Crossref]

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019).
[Crossref]

2018 (3)

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

2017 (5)

2016 (4)

S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
[Crossref]

H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, S. B. Lee, K. Lee, and D.-I. Yeom, “All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber,” Opt. Express 24(13), 14152–14158 (2016).
[Crossref]

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref]

K. Viskontas and N. Rusteika, “All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors,” Opt. Fiber Technol. 31, 74–82 (2016).
[Crossref]

2015 (7)

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref]

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
[Crossref]

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (2)

2010 (2)

R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49(4), 562–567 (2010).
[Crossref]

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

2009 (2)

2005 (1)

N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm,” Lasers Surg. Med. 37(1), 53–58 (2005).
[Crossref]

2004 (1)

2002 (1)

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
[Crossref]

Abramski, K. M.

Ahmad, H.

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

Ahmad Kamely, A.

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

Aitchison, B.

Aksienionek, M.

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015).
[Crossref]

Bai, Z.-Y.

S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
[Crossref]

Bao, Q.

Barnes, N. P.

Bayang, L.

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

Boguslawski, J.

J. Sotor, J. Bogusławski, T. Martynkien, P. Mergo, A. Krajewska, A. Przewłoka, W. StrupiŃski, and G. SoboŃ, “All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber,” Opt. Lett. 42(8), 1592–1595 (2017).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015).
[Crossref]

Brown, D. P.

Byer, R. L.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-µm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Cao, L.

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

Cha, Y.-H.

Chen, H.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
[Crossref]

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5013 (2017).
[Crossref]

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Chen, S.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

Chen, Y.

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

Cheng, P. K.

P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020).
[Crossref]

Cheng, X.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Cheng, Y.

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

Choi, S. Y.

Cox, J. D.

A. Marini, J. D. Cox, and F. J. García de Abajo, “Theory of graphene saturable absorption,” Phys. Rev. B 95(12), 125408 (2017).
[Crossref]

Dai, S.

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

De Young, R. J.

Digonnet, M. J. F.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-µm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Ding, J.

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

Fan, D.

Ferrari, A. C.

Fischer, M. C.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref]

Fried, N. M.

N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm,” Lasers Surg. Med. 37(1), 53–58 (2005).
[Crossref]

Gao, C.

García de Abajo, F. J.

A. Marini, J. D. Cox, and F. J. García de Abajo, “Theory of graphene saturable absorption,” Phys. Rev. B 95(12), 125408 (2017).
[Crossref]

Guo, C.

J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Guo, T.

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

Guo, W.

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

Guo, Z.

Hakulinen, T.

Han, W.-G.

S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
[Crossref]

Härkönen, A.

Hasan, T.

He, T.

Hou, J.

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
[Crossref]

Hu, G.

Hu, J.

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Jablonski, M.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jeong, D.-Y.

Jeong, H.

Jiang, G.

Jiang, Q.

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Jiang, T.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
[Crossref]

Jiang, X.

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Jiang, Z.

Jin, X.

Q. Zhang, X. Jin, G. Hu, M. Zhang, Z. Zheng, and T. Hasan, “Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA,” Opt. Express 28(23), 34104–34110 (2020).
[Crossref]

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Jung, M.

Kaskela, A.

Kauppinen, E. I.

Kelleher, E. J. R.

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref]

Kim, D.

D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019).
[Crossref]

Kim, J.

D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019).
[Crossref]

Kim, M. H.

Kivistö, S.

Koo, J.

Kowalczyk, M.

Kozinski, R.

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015).
[Crossref]

Krajewska, A.

Lee, H.

D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019).
[Crossref]

Lee, J.

D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref]

Lee, J. H.

Lee, K.

Lee, S.

Lee, S. B.

Li, H.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Li, J.

J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
[Crossref]

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5013 (2017).
[Crossref]

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-µm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref]

Li, K.

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

Li, L.

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
[Crossref]

Li, X.

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

X. Liu, X. Li, Y. Tang, and S. Zhang, “PbS nanoparticles saturable absorber for ultrafast pulse generation in 2-µm fiber laser,” Opt. Lett. 45(1), 161–164 (2020).
[Crossref]

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

Librant, K.

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015).
[Crossref]

Lin, R.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Lipinska, L.

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015).
[Crossref]

Liu, A.

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Liu, S.

S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
[Crossref]

Liu, X.

Liu, Y.

J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
[Crossref]

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-µm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref]

Luo, H.

Lv, S.

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

Macherzynski, W.

Marini, A.

A. Marini, J. D. Cox, and F. J. García de Abajo, “Theory of graphene saturable absorption,” Phys. Rev. B 95(12), 125408 (2017).
[Crossref]

Martynkien, T.

Mergo, P.

Miao, R.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Mou, C.

Nabila Aidit, S.

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

Nasibulin, A. G.

Nie, Q.

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

Okhotnikov, O. G.

Ouyang, H.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Paletko, P.

Park, J.

Park, N. H.

D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019).
[Crossref]

Pasternak, I.

Peng, J.

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

Perez-Bergquist, A. G.

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

Popa, D.

Popov, S. V.

Przewloka, A.

Qiu, X.

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

Ramli, R.

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

Riffe, D. M.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
[Crossref]

Robles, F. E.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref]

Rotermund, F.

Ruan, S.

J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
[Crossref]

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5013 (2017).
[Crossref]

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Rudy, C. W.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-µm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Rusteika, N.

K. Viskontas and N. Rusteika, “All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors,” Opt. Fiber Technol. 31, 74–82 (2016).
[Crossref]

Sabbah, A. J.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
[Crossref]

Set, S. Y.

SoboN, G.

Song, Y.-W.

Sotor, J.

StrupiNski, W.

Sun, B.

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

Sun, K.

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

Sun, Z.

J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
[Crossref]

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-µm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref]

Tanaka, Y.

Tang, C. Y.

P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020).
[Crossref]

Tang, D.

Tang, Y.

Taylor, J. R.

Thambiratnam, K.

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

Torrisi, F.

Tsang, Y. H.

P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020).
[Crossref]

Turitsyn, S. K.

Viskontas, K.

K. Viskontas and N. Rusteika, “All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors,” Opt. Fiber Technol. 31, 74–82 (2016).
[Crossref]

Wang, C.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Wang, F.

Wang, J.

J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
[Crossref]

J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
[Crossref]

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5013 (2017).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5013 (2017).
[Crossref]

Wang, L.

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

Wang, Q. J.

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

Wang, X. Y.

P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020).
[Crossref]

Wang, Y.

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
[Crossref]

Wang, Z.

Wangc, X.

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

Warren, W. S.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref]

Wei, K.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Wei, Q.

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

Wen, S.

Weng, J.

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

Wilson, J. W.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref]

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref]

Wu, D.

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

Wu, K.

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

Wu, M.

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

Wu, Q.

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Xu, T.

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

Xu, Z.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Yaguchi, H.

Yan, F.-P.

S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
[Crossref]

Yan, P.

J. Wang, H. Yuan, H. Chen, J. Yin, J. Li, T. He, C. Guo, P. Yan, J. Wang, R. Yang, X. Zeng, and S. Ruan, “Ultrafast pulse generation for Er- and Tm- doped fiber lasers with Sb thin film saturable absorber,” J. Lightwave Technol. 38(14), 3710–3716 (2020).
[Crossref]

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “Magnetron-sputtering deposited WTe2for an ultrafast thulium-doped fiber laser,” Opt. Lett. 42(23), 5010–5013 (2017).
[Crossref]

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Yan, Z.

J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
[Crossref]

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-µm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref]

Yang, R.

Yeom, D.-I.

Yin, J.

Yin, K.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
[Crossref]

You, J.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Yu, X.

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

Yuan, H.

Yuan, J.

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

Yusoff, N.

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

Zeng, L.-H.

P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020).
[Crossref]

Zeng, X.

Zhan, L.

Zhang, B.

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
[Crossref]

Zhang, C.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Zhang, H.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Zhang, J.

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

Zhang, L.

J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
[Crossref]

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-µm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref]

Zhang, L.-N.

S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
[Crossref]

Zhang, M.

Q. Zhang, X. Jin, G. Hu, M. Zhang, Z. Zheng, and T. Hasan, “Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA,” Opt. Express 28(23), 34104–34110 (2020).
[Crossref]

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

J. Wang, H. Chen, Z. Jiang, J. Yin, J. Wang, M. Zhang, T. He, J. Li, P. Yan, and S. Ruan, “Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride,” Opt. Lett. 43(9), 1998–2001 (2018).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref]

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Zhang, Q.

Q. Zhang, X. Jin, G. Hu, M. Zhang, Z. Zheng, and T. Hasan, “Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA,” Opt. Express 28(23), 34104–34110 (2020).
[Crossref]

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Zhang, R.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

Zhang, S.

Zhang, Y.

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

Zhang, Z.

Zhao, C.

Zharif Samion, M.

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

Zheng, X.

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Zheng, Y.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Zheng, Z.

Q. Zhang, X. Jin, G. Hu, M. Zhang, Z. Zheng, and T. Hasan, “Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA,” Opt. Express 28(23), 34104–34110 (2020).
[Crossref]

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Zhou, H.

S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
[Crossref]

Zhou, X.

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
[Crossref]

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

APL Photonics (1)

M. Zhang, J. Li, H. Chen, J. Zhang, J. Yin, T. He, J. Wang, M. Zhang, B. Zhang, J. Yuan, P. Yan, and S. Ruan, “Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics,” APL Photonics 4(9), 090801 (2019).
[Crossref]

Appl. Mater. Today (1)

Y. Wang, Y. Chen, X. Li, S. Lv, J. Hu, Z. Zhang, X. Wangc, and H. Chen, “Optical-intensity modulator with InSb nanosheets,” Appl. Mater. Today 21, 100852 (2020).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

H. Ahmad, R. Ramli, A. Ahmad Kamely, M. Zharif Samion, N. Yusoff, L. Bayang, S. Nabila Aidit, and K. Thambiratnam, “GeSe Evanescent Field Saturable Absorber for Mode-Locking in a Thulium/Holmium Fiber Laser,” IEEE J. Quantum Electron. 56(5), 1–8 (2020).
[Crossref]

IEEE J. Select. Topics Quantum Electron. (1)

P. Yan, H. Chen, A. Liu, K. Li, S. Ruan, J. Ding, X. Qiu, and T. Guo, “Self-Starting Mode-Locking by Fiber-Integrated WS2 Saturable Absorber Mirror,” IEEE J. Select. Topics Quantum Electron. 23(1), 33–38 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

S. Liu, F.-P. Yan, L.-N. Zhang, W.-G. Han, Z.-Y. Bai, and H. Zhou, “Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion,” J. Opt. 18(1), 015508 (2016).
[Crossref]

Lasers Surg. Med. (1)

N. M. Fried, “Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 µm,” Lasers Surg. Med. 37(1), 53–58 (2005).
[Crossref]

Nanoscale Res. Lett. (1)

X. Zhou, W. Guo, A. G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, and L. Wang, “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett. 6, 6 (2010).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (9)

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-µm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser,” Opt. Express 23(7), 9339–9346 (2015).
[Crossref]

H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, S. B. Lee, K. Lee, and D.-I. Yeom, “All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber,” Opt. Express 24(13), 14152–14158 (2016).
[Crossref]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–127976 (2013).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref]

Q. Zhang, X. Jin, G. Hu, M. Zhang, Z. Zheng, and T. Hasan, “Sub-150 fs dispersion-managed soliton generation from an all-fiber Tm-doped laser with BP-SA,” Opt. Express 28(23), 34104–34110 (2020).
[Crossref]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref]

Opt. Fiber Technol. (4)

M. Wu, X. Li, K. Wu, D. Wu, S. Dai, T. Xu, and Q. Nie, “All-fiber 2 µm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber,” Opt. Fiber Technol. 47, 152–157 (2019).
[Crossref]

L. Cao, X. Li, R. Zhang, D. Wu, S. Dai, J. Peng, J. Weng, and Q. Nie, “Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber,” Opt. Fiber Technol. 41, 187–192 (2018).
[Crossref]

K. Viskontas and N. Rusteika, “All-fiber wavelength-tunable picosecond nonlinear reflectivity measurement setup for characterization of semiconductor saturable absorber mirrors,” Opt. Fiber Technol. 31, 74–82 (2016).
[Crossref]

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-µm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Opt. Lett. (5)

Photonics Res. (7)

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3nanosheets at 2 µm,” Photonics Res. 3(3), 72–76 (2015).
[Crossref]

J. Li, Y. Wang, H. Luo, Y. Liu, Z. Yan, Z. Sun, and L. Zhang, “Kelly sideband suppression and wavelength tuning of a conventional soliton in a Tm-doped hybrid mode-locked fiber laser with an all-fiber Lyot filter,” Photonics Res. 7(2), 103–109 (2019).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photonics Res. 3(4), 119–124 (2015).
[Crossref]

P. K. Cheng, C. Y. Tang, X. Y. Wang, L.-H. Zeng, and Y. H. Tsang, “Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber,” Photonics Res. 8(4), 511–517 (2020).
[Crossref]

D. Kim, N. H. Park, H. Lee, J. Lee, D.-I. Yeom, and J. Kim, “Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation,” Photonics Res. 7(7), 742–747 (2019).
[Crossref]

T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, and H. Zhang, “Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect,” Photonics Res. 8(1), 78–90 (2020).
[Crossref]

Phys. Rev. B (2)

A. Marini, J. D. Cox, and F. J. García de Abajo, “Theory of graphene saturable absorption,” Phys. Rev. B 95(12), 125408 (2017).
[Crossref]

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
[Crossref]

Rev. Sci. Instrum. (1)

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref]

Sci. Rep. (2)

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, and Q. J. Wang, “High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction,” Sci. Rep. 5(1), 16624 (2015).
[Crossref]

Other (1)

Q. Jiang, M. Zhang, Q. Zhang, X. Jin, Q. Wu, X. Jiang, H. Zhang, and Z. Zheng, “Thulium-doped mode-locked fiber laser with MXene saturable absorber,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. SF3O.3.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) SEM image of tapered fiber. (b) microscope images of uncoated microfiber (top) and SA-coated microfiber (bottom). (c) linear transmission of deposited thin film. (d-f) SEM images of GaSb, InSb and Ge8Sb92 coating layer.
Fig. 2.
Fig. 2. Basic characterizations of GaSb, InSb and Ge8Sb92 thin films. (a) The Raman shift. (b-d) Full XPS spectra of GaSb, InSb and Ge8Sb92 thin films, respectively. (e-g) High resolution spectra of corresponding elements of GaSb, InSb and Ge8Sb92 thin films, respectively (h-j) Pump probe measurements of GaSb, InSb and Ge8Sb92 thin films, respectively.
Fig. 3.
Fig. 3. (a) setup for the nonlinear absorption measurement. The saturable absorption of GaSb (b), InSb (c) and Ge8Sb92 (d).
Fig. 4.
Fig. 4. Experimental configuration of the mode-locked Tm-doped fiber laser. WDM, wavelength division multiplexer. OC, Output coupler. PI-ISO, polarization insensitive isolator. PC, polarization controller.
Fig. 5.
Fig. 5. Mode-locking results of GaSb (a, d, g), InSb (d, e, h) and Ge8Sb92 (c, f, i) thin films. (a-c) Measured spectra and corresponding sech2 fitting curves. (d-f) Autocorrelation traces. (g-i) Radio frequency spectra.
Fig. 6.
Fig. 6. Long-time operation stability of three SAs-based mode-locked fiber lasers. (a) GaSb. (b) InSb. (c) Ge8Sb92.

Tables (2)

Tables Icon

Table 1. Summary of Sb peaks of three Sb-related materials from XPS measurement

Tables Icon

Table 2. Summary of Mode-Locked Fiber Lasers Based on different SAs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y = a 1 exp ( ( x x 0 ) / τ 1 ) + a 2 exp ( ( x x 0 ) / τ 2 ) + y 0
T ( P p e a k ) = 1 Δ T 1 + P p e a k / P s a t α n s β P p e a k

Metrics