Abstract

We propose a scheme to generate squeezed states of magnon and phonon modes and verify squeezing transfer between different modes of distinct frequencies in a cavity magnomechanical system which is composed of a microwave cavity and a yttrium iron garnet sphere. We present that by activating the magnetostrictive force in the ferrimagnet, realized by driving the magnon mode with red-detuned and blue-detuned microwave fields, the driven magnon mode can be prepared in a squeezed state. Moreover, the squeezing can be transferred to the cavity mode via the cavity-magnon beamsplitter interaction with strong magnomechanical coupling. We show that under the weak coupling regime, large mechanical squeezing of phonon mode can be achieved, which verifies that our scheme can find the existence of quantum effects at macroscopic scales. Furthermore, distinct parameter regimes for obtaining large squeezing of the magnons and phonons are given, which is the principal feature of our scheme. The considered scheme can be extended to hybrid optical systems, and can facilitate the advancement for realization of strong mechanical squeezing in cavity magnomechanical systems.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Cavity magnomechanical systems [1,2], including cavity-magnon system of yttrium iron garnet (YIG), have attracted extensive attention and witnessed magnificent achievement in last decades years. The main reason is that YIGs possess rather high spin density and low damping rate, which is prerequisite for creating strong coupling [36] between the magnon mode of YIG and microwave cavity photon mode and makes it possible to accomplish quantum information transfer. Further, beneficial from hybrid systems constructed by the magnon mode of YIG microwave photons [7], some intriguing phenomena, such as magnon-induced nonreciprocal transmission [8], the theoretical study [9] and experimental demonstration [10] of Kerr effect, magnon-induced optical high-order sideband generation [11], and enhanced sideband responses by tuning magnon-photon coupling strength [12] have been widely investigated, leading to novel and potential applications in quantum information processing and quantum communication [1315]. Besides, some interesting physical problems have also been investigated in the system of cavity-magnon polaritons, such as enhancement of magnon-magnon entanglement inside a cavity [16], steady Bell state generation via magnon-photon coupling [17], nonreciprocal entanglement [18], ground state cooling of magnomechanical resonator [19], and magnon-blockade in a parity-time symmetric cavity-magnon system [20], etc.

Squeezed state, an important quantum state, serves as fundamental and vital resource for continuous variable information processing [21], owing to particular utility for improving measurement sensitivity [2224], exploring the quantum and classical borderline [25,26], and studying decoherence theories at large scales [27]. Inspired by these superior characteristics, many schemes have been proposed to generate the squeezed state based on a number of platforms or systems, in which the cavity magnomechanical system is a strikingly hot investigated platform. Particularly, the authors in Ref. [28] have proposed the engineering of magnon mode squeezing and the squeezing transfer to the phonon mode through a squeezed vacuum cavity field and a red-detuned laser pulse driving the magnon mode. Cavity optomechanical (COM) system, which drastically enhances the coupling between microwave cavity photons and mechanical motion by radiation-pressure interaction, has made tremendous progress, for example, the quantum squeezing of mechanical motion [2938], macroscopic entanglement of two massive harmonic oscillators [39,40], the analysis of high-order sideband signals of optomechanical system [41], enhanced photon blockade with parametric amplification [42], the manipulation of multi-transparency windows [43], and the ground-state cooling of the mechanical oscillator [4450], etc. Similar to the radiation-pressure interaction in the COM system, the magnetostrictive interaction [1] in the cavity magnomechanical system, which is responsible for the coupling between the magnon mode and the phonon mode caused by the deformation of geometry structure of the sphere, can account for many abundent and interesting phenomena occurring in the cavity magnomechanical system.

In this paper, we propose a scheme to generate the squeezed states of magnons and phonons and demonstrate the squeezing transfer in a cavity magnomechanical system consisting of cavity microwave photons, magnons, and phonons. Different from the method in Ref. [28], we apply two-tone microwave fields to drive the YIG, which leads to the generation of squeezed state of the driven magnon mode [34], instead of the prerequisite with a squeezed vacuum cavity field. Moreover, making use of equal resonance frequencies, we find that the reversible squeezing transfer process occurs between the magnon mode and the cavity mode via the magnetic dipole interaction (cavity-magnon beamsplitter interaction) [2]. Under the rotating-wave approximation, large mechanical squeezing of phonon mode can be obtained with weak effective coupling strengths between the magnon mode and the phonon mode, namely, the amplitudes of two-tone microwave fields. The squeezing is in the stationary state in the long time limit and is robust against environment thermal noise. We investigate the system through the standard Langevin formalism and the linearized Hamiltonian, and give the ratio of blue-detuned driven to red-detuned driven magnomechanical coupling for the maximal squeezing of phonon mode. Also, our scheme could inspire other experimental application of parametrically coupled bosonic modes, e.g., superconducting circuits.

The paper is organized as follows: In Sec. 2, we describe the model, give the quantum Langevin equations and the steady-state mean values of the magnon mode, and obtain the final effective Hamiltonian. In Sec. 3, by using the effective Hamiltonian derived in Sec. 2, we calculate the quantum Langevin equations for fluctuation operators, and further give the dynamical equation for covariance matrix, i.e., the solutions of quantum Langevin equations. In Sec. 4, we first show that the driven magnon mode can be squeezed due to the simultaneous driving of two microwave fields, and then we show that the squeezing can be transferred to the cavity mode through equal resonance frequencies. We also demonstrate the squeezing swapping between the phonon mode and the cavity or magnon mode, via altering red-detuned and blue-detuned magnomechanical couplings. Finally, a conclusion is given in Sec. 5.

2. Model and Hamiltonian

As schematically shown in Fig. 1, the proposed system is a hybrid cavity magnomechanical system, where magnons couple to microwave cavity photons and phonons via magnetic dipole interaction and magnetostrictive interaction, respectively. The magnon mode is represented by collective motion of a large number of spins in the ferrimagnet. The phonon mode originates from the deformation of the geometry structure caused by the magnetostrictive interaction. The YIG is adjusted in the suitable direction of bias magnetic field ($z$ direction) such that the magnetostrictive interaction is activated, which can be significantly enhanced by driving the magnon mode with a microwave field. Here, we use two microwave fields (not shown in the system sketch) with distinct amplitudes $E_{\pm }$ applied to the magnon mode. The total Hamiltonian of the syetem is written as ($\hbar =1$)

$$\begin{aligned} H =&\omega_{a}a^{\dagger}a+\omega_{b}b^{\dagger}b+\omega_{m}m^{\dagger}m+g(a+a^{\dagger})(m+m^{\dagger})+\eta m^{\dagger}m(b^{\dagger}+b) \\ &+[(E_{+}e^{{-}i\omega_{+}t}+E_{-}e^{{-}i\omega_{-}t})m^{\dagger}+\mathrm{H.c.}], \end{aligned}$$
where $a^{\dagger} (a)$, $b^{\dagger} (b)$, and $m^{\dagger} (m)$ are bosonic creation (annihilation) operators of the cavity mode, the phonon mode, and the magnon mode, corresponding to resonance frequencies $\omega _{a}$, $\omega _{b}$, and $\omega _{m}$, respectively. The coupling strength $g$ denotes linear coupling between the magnon mode and cavity mode, and $\eta$ is the general magnomechanical coupling strength. The frequencies of the two driven fields are denoted by $\omega _{\pm }$. We adopt the rotating-wave approximation (RWA) to the magnetic dipole interaction, reducing $g(a+a^{\dagger})(m+m^{\dagger})$ to $g(am^{\dagger}+a^{\dagger}m)$. Due to any realistic model coupling to the environment, this coupling leads to a damping channel introduced into the system, and allows environmental noise to perturb the system. In this case, the quantum Langevin equations (QLEs) are given by
$$\begin{aligned} \dot{a} =&-(i\omega_{a}+\frac{\gamma_{a}}{2})a-igm+\sqrt{\gamma_{a}}a_{in}, \\ \dot{b} =&-(i\omega_{b}+\frac{\gamma_{b}}{2})b-i\eta m^{\dagger}m+\sqrt{\gamma_{b}}b_{in}, \\ \dot{m} =&-(i\omega_{m}+\frac{\gamma_{m}}{2})m-iga-i\eta m(b^{\dagger}+b) \\ &-i(E_{+}e^{{-}i\omega_{+}t}+E_{-}e^{{-}i\omega_{-}t})+\sqrt{\gamma_{m}}m_{in}, \end{aligned}$$
where $\gamma _{a}$, $\gamma _{b}$, and $\gamma _{m}$ respectively stand for the decay rates of the cavity mode, the phonon mode, and the magnon mode; $a_{in}$, $b_{in}$, and $m_{in}$ are input noise operators associated with the cavity mode decay $\gamma _{a}$, the phonon mode decay $\gamma _{b}$, and the magnon mode decay $\gamma _{m}$, which are zero mean values, satisfying correlation functions $\langle a_{in}(t)a_{in}^{\dagger}(t') \rangle =\delta (t-t')$, $\langle a_{in}^{\dagger}(t)a_{in}(t') \rangle =0$, $\langle m_{in}(t)m_{in}^{\dagger}(t')\rangle =\delta (t-t')$, $\langle m_{in}^{\dagger}(t)m_{in}(t')\rangle =0$, $\langle b_{in}(t)b_{in}^{\dagger}(t') \rangle =(n_{th}+1)\delta (t-t')$, and $\langle b_{in}^{\dagger}(t)b_{in}(t') \rangle =n_{th}\delta (t-t')$, where $n_{th}$ represents the equilibrium mean thermal excitation number of the phonon mode. It is worth noting that the correlation functions of cavity mode and magnon mode are valid only at temperatures much lower than magnets’s and cavity’s frequency. Due to the strong external microwave fields applied to the magnon mode, and owing to the beamsplitter interaction between the cavity and the magnon mode, large amplitudes of the cavity and magnon modes are guaranteed. Therefore, we substitute the sum of steady-state mean values and quantum fluctuations for the operators in Eq. (2), namely, $\mathcal {O} =\mathcal {O}_s+\delta \mathcal {O} (\mathcal {O}=a, b, m)$. Based on the displacement transformations, the linearized QLEs for steady-state mean values and fluctuation operators are given as below
$$\begin{aligned} \dot{a}_{s} =&-(i\omega_{a}+\frac{\gamma_{a}}{2})a_{s}-igm_{s}, \\ \dot{b}_{s} =&-(i\omega_{b}+\frac{\gamma_{b}}{2})b_{s}-i\eta \left | m_{s} \right | ^{2}, \\ \dot{m}_{s} =&-(i\omega_{m}+\frac{\gamma_{m}}{2})m_{s}-iga_{s}-i\eta m_{s}(b_{s}^{{\ast}}+b_{s})-i(E_{+}e^{{-}i\omega_{+}t}+E_{-}e^{{-}i\omega_{-}t}), \\ \delta \dot{a} =&-(i \omega_{a}+\frac{\gamma_{a}}{2})\delta a-ig\delta m+\sqrt{\gamma_{a}}a_{in}, \\ \delta \dot{b} =&-(i\omega_{b}+\frac{\gamma_{b}}{2})\delta b-i\eta (m_{s}^{{\ast}}\delta m+m_{s}\delta m^{\dagger})+\sqrt{\gamma_{b}}b_{in}, \\ \delta \dot{m} =&-i[\omega_{m}+\eta (b_{s}^{{\ast}}+b_{s})]\delta m-\frac{\gamma_{m}}{2}\delta m-ig\delta a-i\eta m_{s}(\delta b^{\dagger}+\delta b)+\sqrt{\gamma_{m}}m_{in}. \end{aligned}$$

It is not difficult to calculate the solution of $m_{s}$ from the dynamical equations of steady-state mean value in Eq. (3). By dropping the small term $\eta (b_{s}^{\ast }+b_{s})$, we obtain

$$\begin{aligned} m_{s}(t) &\approx m_{+}e^{{-}i\omega_{+}t}+m_{-}e^{{-}i\omega_{-}t}, \\ m_{{\pm}} &=\frac{E_{{\pm}}}{\pm \omega_{b}+i\frac{\gamma_{m}}{2}-\frac{g^{2}}{\omega_{{\pm}}-\omega_{a}+i\frac{\gamma_{a}}{2}}}. \end{aligned}$$

It is worth emphasizing that, $\omega _{+}$ is the blue-detuned driven frequency, $\omega _{+}=\omega _{m}+\omega _{b}$, and $\omega _{-}$ is the red-detuned driven frequency, $\omega _{-}=\omega _{m}-\omega _{b}$. Now we linearize the Hamiltonian in Eq. (1) by dropping the small term $\eta (b_{s}^{\ast }+b_{s})$, the linearized Hamiltonian is thus given by

$$\begin{aligned} H' =&\omega_{a}\delta a^{\dagger}\delta a+\omega_{b}\delta b_{}^{\dagger}\delta b+\omega_{m}\delta m^{\dagger}\delta m+g(\delta a\delta m^{\dagger}+\delta a^{\dagger}\delta m) \\ &+\eta(m_{s}^{{\ast}}\delta m+m_{s} \delta m ^{\dagger})(\delta b^{\dagger}+\delta b). \end{aligned}$$

It is convenient to work in the interaction picture. Transforming the Hamiltonian of Eq. (5) into the interaction picture through the unitary time evolution operator $U(t)=\exp [-it(\omega _{a}\delta a^{\dagger} \delta a + \omega _{m} \delta m^{\dagger} \delta m +\omega _{b}\delta b^{\dagger}\delta b)]$, assuming $\omega _{a}=\omega _{m}$, we obtain the final effective Hamiltonian, followed by

$$\begin{aligned} H_{eff} =&\Delta_{am}\delta a^{\dagger} \delta a+ g(\delta a\delta m^{\dagger}+\delta a^{\dagger}\delta m)+[\delta m^{\dagger} (G_{+}\delta b^{\dagger}+G_{-}\delta b) \\ &+\delta m^{\dagger}(e^{{-}2i\omega_{b}t}G_{+}\delta b+e^{2i\omega_{b}t}G_{-}\delta b^{\dagger})+\mathrm{H.c.}], \end{aligned}$$
where $\Delta _{am}=\omega _{a}-\omega _{m}$ and $G_{\pm }=\eta m_{\pm }$ with the effective magnomechanical couplings between the magnon mode and the phonon mode. Without loss of generality, we assume $G_{\pm }$ to be real.

 figure: Fig. 1.

Fig. 1. Sketch of the system. One macroscopic YIG is placed inside the cavity near the maximum magnetic field of the cavity mode, and simultaneously in a uniform bias magnetic field which mediates the coupling between the cavity mode and the magnon mode. The bias magnetic field ($z$ direction), the drive magnetic field ($y$ direction), and the magnetic field ($x$ direction) of the cavity mode are mutually perpendicular at the site of the sphere.

Download Full Size | PPT Slide | PDF

3. Quantum Langevin equations and solution

In this section, we first utilize the effective Hamiltonian of the previous section to gain the QLEs, and then derive the dynamical equations of quadrature fluctuations via the covariance matrix approach. Considering that the dynamics of system evolves as dictated by effective Hamiltonian of Eq. (6), we obtain the QLEs for quantum fluctuations, given by

$$\begin{aligned} \delta\dot{a} =&-i\Delta _{am}\delta a-ig\delta m-\frac{\gamma_{a}}{2}\delta a+\sqrt{\gamma_{a}}a_{in}, \\ \delta\dot{b} =&-\frac{\gamma_{b}}{2}\delta b-if_{1}(t)\delta m-if_{2}(t)\delta m^{\dagger}+\sqrt{\gamma_{b}}b_{in}, \\ \delta\dot{m} =&-ig\delta a-\frac{\gamma _{m}}{2}\delta m-if_{3}(t)\delta b-if_{2}(t)\delta b^{\dagger}+\sqrt{\gamma_{m}}m_{in}, \end{aligned}$$
where $f_{1}(t)=G_{-}+e^{2i\omega _{b}t}G_{+}$, $f_{2}(t)=G_{+}+e^{2i\omega _{b}t}G_{-}$, and $f_{3}(t)=G_{-}+e^{-2i\omega _{b}t}G_{+}$. It is worth noting that, the operators $\left \{ \delta a, \delta m, \delta b \right \}$ of Eq. (7) are envelopes after rotation, $\delta a_{e}=\delta ae^{i\omega _{a}t}$, $\delta m_{e}=\delta me^{i\omega _{m}t}$, and $\delta b_{e}=\delta be^{i\omega _{b}t}$. Here we adopt the same notation for the sake of simplicity. In order to simplify the expressions, the QLEs of Eq. (7) can be written in a compact form:
$$\dot{u}(t)=A(t)u(t)+n(t),$$
where $u(t)=[\delta X_{a}(t),\delta Y_{a}(t),\delta X_{b}(t),\delta Y_{b}(t),\delta X_{m}(t),\delta Y_{m}(t)]^{T}$ is the vector of quadrature fluctuation operators, defined by $\delta X_{a}=\frac {\delta a+\delta a^{\dagger}}{\sqrt {2}}$, $\delta Y_{a}=\frac {\delta a-\delta a^{\dagger}}{\sqrt {2}i}$, $\delta X_{b}=\frac {\delta b+\delta b^{\dagger}}{\sqrt {2}}$, $\delta Y_{b}=\frac {\delta b-\delta b^{\dagger}}{\sqrt {2}i}$, $\delta X_{m}=\frac {\delta m+\delta m ^{\dagger}}{\sqrt {2}}$, and $\delta Y_{m}=\frac {\delta m-\delta m ^{\dagger}}{\sqrt {2}i}$, $n(t)=[\sqrt {\gamma _{a}}X_{a,in},\sqrt {\gamma _{a}}Y_{a,in}, \sqrt {\gamma _{b}}X_{b,in}, \sqrt {\gamma _{b}}Y_{b,in}, \sqrt {\gamma _{m}}X_{m,in}, \\\sqrt {\gamma _{b}}Y_{m,in}]^{T}$ is the vector of the corresponding noises, and
$$\begin{aligned} A(t)= \begin{pmatrix} -\frac{\gamma_{a}}{2} & \Delta_{am} & 0 & 0 & 0 & g\\ -\Delta_{am} & -\frac{\gamma_{a}}{2} & 0 & 0 & -g & 0 \\ 0 & 0 & -\frac{\gamma_{b}}{2} & 0 & I(f_{12}^{+}) & \mathcal {R}(f_{12}^{-})\\ 0 & 0 & 0 & -\frac{\gamma_{b}}{2} & -\mathcal {R}(f_{12}^{+}) & I(f_{12}^{-}) \\ 0 & g & I(f_{23}^{+}) & -\mathcal{R}(f_{23}^{-}) & -\frac{\gamma_{m}}{2} & 0 \\ -g & 0 & -\mathcal{R}(f_{23}^{+}) & -I(f _{23}^{-}) & 0 & -\frac{\gamma_{m}}{2} \end{pmatrix}, \end{aligned}$$
where $f$ is a complex number with $f_{jk}^{\pm }=f_{j}(t)\pm f_{k}(t)$, $I(f)$ and $\mathcal {R}( f )$ represent the imaginary parts and real parts of $f$, respectively. The formal solution of Eq. (8) is expressed as
$$u(t)=R(t)u(0)+R(t)\int_{0}^{t} \mathrm{d}\tau' R^{{-}1}(\tau')n(\tau'),$$
where $R(t)=\mathcal {T} \exp \big [\int _{0}^{t}\mathrm {d}\tau A(\tau ) \big ]R(0)$ with $\mathcal {T}$ operators related to time order. To obtain the squeezing of targeted fluctuation operators, we introduce the $6\times 6$ covariance matrix $V(t)$, defined by
$$V_{jk}(t)=\frac{\left \langle u_{j}(t)u_{k}(t)+u_{k}(t)u_{j}(t) \right \rangle }{2}.$$

Combining Eq. (10) and Eq. (11), we can obtain

$$V=R(t)V(0)R^{T}(t)+R(t)M(t)R^{T}(t),$$
where
$$\begin{aligned} M(t) &=\frac{1}{2}\big[W(t)+W^{T}(t)\big], \\ W(t) &= \int_{0}^{t} \mathrm{d}\tau \int_{0}^{t} \mathrm{d}\tau'R^{{-}1}(\tau')C(\tau, \tau')\left[R^{{-}1}(\tau)\right]^{T}, \end{aligned}$$
with $C(\tau , \tau ')$ noise operator correlated matrix with its matrix element $C_{jk}(\tau , \tau ')= \left \langle n_{j}(\tau )n_{k}(\tau ') \right \rangle$. Obviously,
$$\frac{ \left \langle n_{j}(\tau)n_{k}(\tau')+n_{k}(\tau')n_{j}(\tau)\right \rangle }{2}=D_{jk}\delta(\tau-\tau'),$$
where $D_{jk}$ is the matrix element of the diagonal matrix $D$, $D = \textrm{Diag}[\gamma _{a}/2, \gamma _{a}/2, \gamma _{b}(n_{th}+1/2), \gamma _{b}(n_{th}+1/2), \gamma _{m}/2, \gamma _{m}/2]$. Substituting Eq. (14) into Eq. (13), we obtain
$$M(t)=\int_{0}^{t}\mathrm{d}\tau R^{{-}1}(\tau)D(\tau)\left[R^{{-}1}(\tau)\right]^{T}.$$

Further, by substituting Eq. (15) into Eq. (12), the derivative of the covariance matrix is given by

$$\dot{V} (t)=A(t)V(t)+V(t)A^{T}(t)+D.$$

Therefore, the time evolution of covariance matrix can completely govern the dynamics of the present system. Next we concentrate on our interested squeezing. The degree of squeezing can be expressed in the dB unit, which can be evaluated by

$$S={-}10\log_{10}{\left[\left \langle \delta Q(t)^{2} \right \rangle /\left \langle \delta Q(t)^{2}\right \rangle_{vac}\right]} ,$$
where $\left \langle \delta Q(t)^{2}\right \rangle _{vac}=1/2$ ($Q$ is a mode quadrature) denotes vacuum fluctuations, and $\left \langle \delta Q(t)^{2}\right \rangle$ is the diagonal element of the covariance matrix $V(t)$.

4. Squeezing dynamics with and without rotating-wave approximation

4.1 With rotating-wave approximation

At the beginning of our study, we pay attention to the case of the weak coupling regime, namely, $G_{-}, G_{+}<< \omega _{b}$, which implies high frequency oscillating terms can be discarded in Eq. (9). We adopt experimentally realistic parameters [1]: $\gamma _{a}=0.1\omega _{b}$ (units of $\omega _{b}$), $\gamma _{m}=\gamma _{a}$, and $\gamma _{b}=10^{-5}\omega _{b}$. The equal resonance frequencies are employed, $\Delta _{am}=0$, which plays a vital role in achieving squeezing transfer process. In Fig. 2, we show the mean square fluctuations (variances) as a function of time $t$ for the phonon mode, the magnon mode, and the cavity mode under two conditions of RWA and without RWA, which demonstrates that the numerical simulation under the RWA is consistent with the consequence without the RWA. It is clear that at the beginning parts of time increasing, the mean square fluctuations of the magnon mode and the cavity mode both start to decline as a result of the combination of red-detuned and blue-detuned driven microwave fields [34]. However, as the time grows, their evolution curves finally approch to vacuum fluctuation. By contrast, the phonon mode variance is always below vacuum fluctuation value and finally decreases to a stable value. In order to illustrate the squeezing phenomena of the three modes in the so-called phase space, we depict the respective Wigner functions [21] in the steady state in Fig. 3, which agree well with the squeezing behavior of Fig. 2. Figure 3(a) shows a contraction along the amplitude quadrature $\delta X_{b}$ axis and a stretch along the phase quadrature $\delta Y_{b}$ axis. In comparison, no squeezing occurs for the magnon mode and the cavity mode because of circular images in Fig. 3(b) and Fig. 3(c). In the following, the role of the blue-detuned microwave field which plays in the squeezing generation is explained.

 figure: Fig. 2.

Fig. 2. The evolution of mean square fluctuations for the phonon mode $\left \langle \delta X_{b}(t)^{2} \right \rangle$ (a), the magnon mode $\left \langle \delta X_{m}(t)^{2} \right \rangle$ (b), and the cavity mode $\left \langle \delta Y_{a}(t)^{2} \right \rangle$ (c) with the RWA (dashed lines) and without the RWA (solid lines). Other parameters are: $G_{-}=0.01\omega _{b}$, $G_{+}=0.009\omega _{b}$, $g=0.01\omega _{b}$, and $n_{th}=0$.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. The Wigner function for the phonon mode (a), the magnon mode (b), and the cavity mode (c) with the RWA. All the figures are drawn in the steady state, and the parameters are the same as in Fig. 2.

Download Full Size | PPT Slide | PDF

In Fig. 4, we plot the phonon mode quadrature squeezing as a function of $G_{+}/G_{-}$ under the condition of RWA. The squeezing of the phonon mode first increases with the enhancement of the ratio $G_{+}/G_{-}$ and then decreases with the ratio $G_{+}/G_{-}$. There exists an optimal ratio for the strongest squeezing of the phonon mode. It is concluded that the squeezing of phonon mode can not surpass 3dB if blue-detuned driven microwave field is not applied or is not large enough, implying that two-tone field pulse is an essential contribution to the squeezing generation. To clearly show the robustness of phonon mode squeezing to the environment, we plot the squeezing degree for phonon mode in the steady state at different mechanical noises $n_{th}=0,10,50$ as function of time $t$ in Fig. 4(a). From the plot, we find even when phonon thermal occupation $n_{th}=50$, the squeezing of the phonon mode still exists, which is robust about environment thermal noise. The squeezing degree for phonon mode as a function of the ratio $G_{+}/G_{-}$ at different $\gamma _{m}$ for the steady state is displayed in Fig. 4(b). By comparing the three lines, we see that for larger magnon decay rate $\gamma _{m}$, smaller $G_{+}/G_{-}$ is needed to obtain mechanical squeezing. From the Fig. 4(c), we see that the mechanical squeezing is immune to the cavity decay rate $\gamma _{a}$, which implies that our proposal can be effectively simplified as a protocal of two coupled bosonic modes. For larger $\gamma _{a}$, the largest squeezing requires larger ratio $G_{+}/G_{-}$. In Fig. 4(d), we show that it is only in the region $G_{-}>G_{+}$ which ensures stability that the mechanical squeezing occurs. In addition, it can also intuitively show the optimal proportion region of maximum squeezing value.

 figure: Fig. 4.

Fig. 4. The squeezing degree of the phonon mode as function of $G_{+}/G_{-}$ at (a) different $n_{th}$, the red dashed, blue dot, and pink dot-dashed curves correspond to $n_{th}=0, 10$, and $50$, respectively, (b) different magnon decay rate $\gamma _{m}$, the red dashed, blue dot, and pink dot-dashed lines correspond to $\gamma _{m}=0.1\omega _{b}, \omega _{b}, 10\omega _{b}$, and (c) different cavity decay rate $\gamma _{a}$, the red dashed, green solid, and black dot curves correspond to $\gamma _{a}=0.1\omega _{b}, 10\omega _{b}, 100\omega _{b}$. (d) The squeezing degree of the phonon mode versus $G_{+}$ and $G_{-}$. $\gamma _{m}=0.1\omega _{b}$ in (a) and (c), $n_{th}=0$ in (b) and (c), and $\gamma _{a}=0.1\omega _{b}$ in (a) and (b). $G_{-}=0.01\omega _{b}$ is used in (a), (b), and (c). In (d), $n_{th}=0$, $\gamma _{m}=0.1\omega _{b}$, and $\gamma _{a}=0.1\omega _{b}$. The other parameters are the same as in Fig. 2.

Download Full Size | PPT Slide | PDF

The physical mechanism for the influence of the blue-detuned driven microwave filed can be explained in detail as follows. Under the RWA, the direct magnetostrictive force between the magnon mode and the phonon mode of YIG is denoted by $\delta m^{\dagger}(G_{+}\delta b^{\dagger}+G_{-}\delta b)$+H.c. in Eq. (6). Making use of the standard squeezing transformation, we can rewrite the term as $G_{eff}(\delta m^{\dagger}\delta B)$+H.c., with $G_{eff}=\sqrt {G_{-}^{2}-G_{+}^{2}}$, $\delta B = \textrm{cosh} (r) \delta b + \textrm{sinh} (r) \delta b^{\dagger}$ being the Bogoliubov mode, and $r$=ln[$(G_{-}+G_{+}) / (G_{-}-G_{+})$]/2 being the squeezing parameter. When there is no blue-detuned microwave field causing magnetostrictive coupling $G_{-}$, the squeezing parameter $r$ is zero, which accounts for no mechanical squeezing. Indeed, two competing factors make joint decisions for the mechanical squeezing. Apart from squeezing parameter $r$, the effective direct coupling between the phonon mode and the magnon mode, represented by $G_{eff}$, is also a decisive factor. The squeezing parameter $r$ increases with the enhancement of the ratio $G_{+}/G_{-}$, while $G_{eff}$ decreases with the enhancement of the ratio $G_{+}/G_{-}$. As a consequence, a tradeoff between these two competing factors leads to the maximal squeezing.

4.2 Without rotating-wave approximation

In this subsection, we consider the case where the magnon-phonon effective couplings ($G_{-}, G_{+}$) are comparable to the mechanical resonance frequency $\omega _{b}$. We need to numerically solve Eq. (16) without the RWA. From the Fig. 5, it is observed that mean square fluctuation curves for the cavity mode and the magnon mode evolve with time periodically. Here it is necessary to compare the main differences between our scheme and the previous literatures in the generated squeezing of the magnon mode. The authors in Ref. [51] proposed a scheme involved using a nonmagnetic conductor and a ferromagnet, and demonstrated the generated squeezing via dipolar interaction, while two-tone driven microwave fileds and specific magnon-phonon effective couplings ($G_{-}$, $G_{+}$) are essential for our scheme. In Ref. [52], the authors proposed a setup where a ferromagnetic ellipsoid tuned by an external magnetic field is kept inside a microwave cavity, the magnetic Hamiltonian of the reference includes a component which is similar to the coupling between the cavity field and the parametric amplifier in optomechanical system with an optical parametric amplifier [53], while the component $[(E_{+}e^{-i\omega _{+}t}+E_{-}e^{-i\omega _{-}t})m^{\dagger}+\mathrm {H.c.}]$ in Eq. (1) is contribute to the squeezing generation. Therefore, the physical mechanism of the squeezing of the magnon mode in our scheme is obviously different from the two schemes. In fact, under the strong coupling regime, the mean square fluctuation for the phonon mode is beyond the vacuum fluctuation (not shown in the figure). This is because heat swapping emerges when the system is in the strong coupling regime which enables reversible energy exchange between cavity photons and magnons. Meanwhile, quantum backaction heating resulted from the counter-rotating terms are the accompanying effect opposed to radiation pressure-like utilized to cool the mechanical motion. Note that the instant of the biggest squeezing for the magnon mode is the instant of the smallest squeezing for the cavity mode, and vice versa, which verifies that the optimal squeezing appears alternately between the two modes and could be highly prospective for the squeezing transfer between distinct modes in hybrid optical systems.

 figure: Fig. 5.

Fig. 5. The evolution of mean square fluctuations of the magnon mode (green solid line), and the cavity mode (black dot line) with strong magnomechanical couplings without the RWA. The parameters are: $G_{-}=\omega _{b}$, $G_{+}=0.9\omega _{b}$, and $g=0.32\omega _{b}$, and the other parameters are the same as in Fig. 2. The insert shows the evolution of mean square fluctuations for the two modes in the long time limit.

Download Full Size | PPT Slide | PDF

5. Conclusions

In conclusion, we have proposed a scheme to acheive the squeezing generation of magnons and phonons in a hybrid cavity-magnon system, by driving the magnon mode with two-tone microwave fields, without any explicit measurement or feedback. We show that strong squeezing of the phonon mode can be achieved under the weak coupling regime. Furthermore, we also show that the driven magnon mode is first squeezed and the squeezing transfers to the cavity mode by stimulating cavity-magnon beamsplitter (state-swap) interaction. We demonstrate that distinct parametric regimes for obtaining ideal squeezing for phonon mode or cavity mode and magnon mode are required, namely, different red-detuned and blue-detuned driven magnomechanical couplings. Besides, when only the red-detuned laser is applied or the applied blue-detuned laser is not strong enough, the squeezing can not be generated. We realize the squeezed states of magnons and phonons in a large object, which represent genuinely macroscopic quantum states [28]. Thus our scheme is enlightening in the field of quantum-to-classical borderline, tests of decoherence theories, as well as for improvement of measurement precision.

Funding

National Natural Science Foundation of China (61822114, 12074330, 62071412).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

1. J. Li and S. Y. Zhu, “Entangling two magnon modes via magnetostrictive interaction,” New J. Phys. 21(8), 085001 (2019). [CrossRef]  

2. X. F. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2(3), e1501286 (2016). [CrossRef]  

3. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014). [CrossRef]  

4. J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016). [CrossRef]  

5. M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014). [CrossRef]  

6. D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015). [CrossRef]  

7. X. F. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, “Optomagnonic Whispering Gallery Microresonators,” Phys. Rev. Lett. 117(12), 123605 (2016). [CrossRef]  

8. C. Kong, H. Xiong, and Y. Wu, “Magnon-Induced Nonreciprocity Based on the Magnon Kerr Effect,” Phys. Rev. Appl. 12(3), 034001 (2019). [CrossRef]  

9. G. Q. Zhang, Y. P. Wang, and J. Q. You, “Theory of the magnon Kerr effect in cavity magnonics,” Sci. China: Phys., Mech. Astron. 62(8), 987511 (2019). [CrossRef]  

10. Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016). [CrossRef]  

11. W. L. Xu, Y. P. Gao, T. J. Wang, and C. Wang, “Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system,” Opt. Express 28(15), 22334–22344 (2020). [CrossRef]  

12. S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019). [CrossRef]  

13. L. Mazzola and M. Paternostro, “Distributing fully optomechanical quantum correlations,” Phys. Rev. A 83(6), 062335 (2011). [CrossRef]  

14. K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010). [CrossRef]  

15. K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles,” Phys. Rev. Lett. 102(2), 020501 (2009). [CrossRef]  

16. H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020). [CrossRef]  

17. H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020). [CrossRef]  

18. Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020). [CrossRef]  

19. Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020). [CrossRef]  

20. L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020). [CrossRef]  

21. S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005). [CrossRef]  

22. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980). [CrossRef]  

23. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992). [CrossRef]  

24. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004). [CrossRef]  

25. W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44(10), 36–44 (1991). [CrossRef]  

26. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef]  

27. A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013). [CrossRef]  

28. J. Li, S. Y. Zhu, and G. S. Agarwal, “Squeezed states of magnons and phonons in cavity magnomechanics,” Phys. Rev. A 99(2), 021801 (2019). [CrossRef]  

29. C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019). [CrossRef]  

30. M. Benito, C. SanchezMunoz, and C. Navarrete-Benlloch, “Degenerate parametric oscillation in quantum membrane optomechanics,” Phys. Rev. A 93(2), 023846 (2016). [CrossRef]  

31. W. J. Gu and G. X. Li, “Feedback-Enhanced Parametric Squeezing of Mechanical Motion,” Phys. Rev. Lett. 111(20), 207203 (2013). [CrossRef]  

32. J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83(3), 033820 (2011). [CrossRef]  

33. G. S. Agarwal and S. A. Kumar, “Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states,” Phys. Rev. Lett. 67(26), 3665–3668 (1991). [CrossRef]  

34. A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88(6), 063833 (2013). [CrossRef]  

35. R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019). [CrossRef]  

36. J. S. Zhang and A. X. Chen, “Large mechanical squeezing beyond 3dB of hybrid atom-optomechanical systems in a highly unresolved sideband regime,” Opt. Express 28(9), 12827–12836 (2020). [CrossRef]  

37. X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019). [CrossRef]  

38. Z. C. Zhang and X. G. Wang, “Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling,” Opt. Express 28(3), 2732–2743 (2020). [CrossRef]  

39. R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018). [CrossRef]  

40. C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018). [CrossRef]  

41. X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018). [CrossRef]  

42. D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020). [CrossRef]  

43. M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019). [CrossRef]  

44. Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013). [CrossRef]  

45. X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Simultaneous cooling of two mechanical oscillators in dissipatively coupled optomechanical systems,” Phys. Rev. A 100(2), 023807 (2019). [CrossRef]  

46. S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback,” Phys. Rev. Lett. 80(4), 688–691 (1998). [CrossRef]  

47. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99(9), 093901 (2007). [CrossRef]  

48. X. Xu, T. Purdy, and J. M. Taylor, “Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath,” Phys. Rev. Lett. 118(22), 223602 (2017). [CrossRef]  

49. Y. C. Liu, Y. F. Shen, Q. Gong, and Y. F. Xiao, “Optimal limits of cavity optomechanical cooling in the strong-coupling regime,” Phys. Rev. A 89(5), 053821 (2014). [CrossRef]  

50. D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018). [CrossRef]  

51. A. Kamra and W. Belzig, “Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport,” Phys. Rev. Lett. 116(14), 146601 (2016). [CrossRef]  

52. S. SharmaV. A. S. V. BittencourtA. D. KarenowskaS. V. Kusmimskiy, “Spin cat states in a ferromagnetic insulator,” arXiv:2009.00128.

53. G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93(4), 043844 (2016). [CrossRef]  

References

  • View by:

  1. J. Li and S. Y. Zhu, “Entangling two magnon modes via magnetostrictive interaction,” New J. Phys. 21(8), 085001 (2019).
    [Crossref]
  2. X. F. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2(3), e1501286 (2016).
    [Crossref]
  3. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
    [Crossref]
  4. J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016).
    [Crossref]
  5. M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
    [Crossref]
  6. D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
    [Crossref]
  7. X. F. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, “Optomagnonic Whispering Gallery Microresonators,” Phys. Rev. Lett. 117(12), 123605 (2016).
    [Crossref]
  8. C. Kong, H. Xiong, and Y. Wu, “Magnon-Induced Nonreciprocity Based on the Magnon Kerr Effect,” Phys. Rev. Appl. 12(3), 034001 (2019).
    [Crossref]
  9. G. Q. Zhang, Y. P. Wang, and J. Q. You, “Theory of the magnon Kerr effect in cavity magnonics,” Sci. China: Phys., Mech. Astron. 62(8), 987511 (2019).
    [Crossref]
  10. Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
    [Crossref]
  11. W. L. Xu, Y. P. Gao, T. J. Wang, and C. Wang, “Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system,” Opt. Express 28(15), 22334–22344 (2020).
    [Crossref]
  12. S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019).
    [Crossref]
  13. L. Mazzola and M. Paternostro, “Distributing fully optomechanical quantum correlations,” Phys. Rev. A 83(6), 062335 (2011).
    [Crossref]
  14. K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010).
    [Crossref]
  15. K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles,” Phys. Rev. Lett. 102(2), 020501 (2009).
    [Crossref]
  16. H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020).
    [Crossref]
  17. H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
    [Crossref]
  18. Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020).
    [Crossref]
  19. Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
    [Crossref]
  20. L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
    [Crossref]
  21. S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
    [Crossref]
  22. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980).
    [Crossref]
  23. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
    [Crossref]
  24. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
    [Crossref]
  25. W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44(10), 36–44 (1991).
    [Crossref]
  26. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [Crossref]
  27. A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013).
    [Crossref]
  28. J. Li, S. Y. Zhu, and G. S. Agarwal, “Squeezed states of magnons and phonons in cavity magnomechanics,” Phys. Rev. A 99(2), 021801 (2019).
    [Crossref]
  29. C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019).
    [Crossref]
  30. M. Benito, C. SanchezMunoz, and C. Navarrete-Benlloch, “Degenerate parametric oscillation in quantum membrane optomechanics,” Phys. Rev. A 93(2), 023846 (2016).
    [Crossref]
  31. W. J. Gu and G. X. Li, “Feedback-Enhanced Parametric Squeezing of Mechanical Motion,” Phys. Rev. Lett. 111(20), 207203 (2013).
    [Crossref]
  32. J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83(3), 033820 (2011).
    [Crossref]
  33. G. S. Agarwal and S. A. Kumar, “Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states,” Phys. Rev. Lett. 67(26), 3665–3668 (1991).
    [Crossref]
  34. A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88(6), 063833 (2013).
    [Crossref]
  35. R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019).
    [Crossref]
  36. J. S. Zhang and A. X. Chen, “Large mechanical squeezing beyond 3dB of hybrid atom-optomechanical systems in a highly unresolved sideband regime,” Opt. Express 28(9), 12827–12836 (2020).
    [Crossref]
  37. X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
    [Crossref]
  38. Z. C. Zhang and X. G. Wang, “Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling,” Opt. Express 28(3), 2732–2743 (2020).
    [Crossref]
  39. R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
    [Crossref]
  40. C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
    [Crossref]
  41. X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
    [Crossref]
  42. D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020).
    [Crossref]
  43. M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
    [Crossref]
  44. Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
    [Crossref]
  45. X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Simultaneous cooling of two mechanical oscillators in dissipatively coupled optomechanical systems,” Phys. Rev. A 100(2), 023807 (2019).
    [Crossref]
  46. S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback,” Phys. Rev. Lett. 80(4), 688–691 (1998).
    [Crossref]
  47. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99(9), 093901 (2007).
    [Crossref]
  48. X. Xu, T. Purdy, and J. M. Taylor, “Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath,” Phys. Rev. Lett. 118(22), 223602 (2017).
    [Crossref]
  49. Y. C. Liu, Y. F. Shen, Q. Gong, and Y. F. Xiao, “Optimal limits of cavity optomechanical cooling in the strong-coupling regime,” Phys. Rev. A 89(5), 053821 (2014).
    [Crossref]
  50. D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018).
    [Crossref]
  51. A. Kamra and W. Belzig, “Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport,” Phys. Rev. Lett. 116(14), 146601 (2016).
    [Crossref]
  52. SharmaS.BittencourtV. A. S. V.KarenowskaA. D.KusmimskiyS. V., “Spin cat states in a ferromagnetic insulator,” arXiv:2009.00128.
  53. G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93(4), 043844 (2016).
    [Crossref]

2020 (9)

W. L. Xu, Y. P. Gao, T. J. Wang, and C. Wang, “Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system,” Opt. Express 28(15), 22334–22344 (2020).
[Crossref]

H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020).
[Crossref]

H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
[Crossref]

Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020).
[Crossref]

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

J. S. Zhang and A. X. Chen, “Large mechanical squeezing beyond 3dB of hybrid atom-optomechanical systems in a highly unresolved sideband regime,” Opt. Express 28(9), 12827–12836 (2020).
[Crossref]

Z. C. Zhang and X. G. Wang, “Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling,” Opt. Express 28(3), 2732–2743 (2020).
[Crossref]

D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020).
[Crossref]

2019 (10)

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Simultaneous cooling of two mechanical oscillators in dissipatively coupled optomechanical systems,” Phys. Rev. A 100(2), 023807 (2019).
[Crossref]

R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019).
[Crossref]

X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
[Crossref]

J. Li, S. Y. Zhu, and G. S. Agarwal, “Squeezed states of magnons and phonons in cavity magnomechanics,” Phys. Rev. A 99(2), 021801 (2019).
[Crossref]

C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019).
[Crossref]

S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019).
[Crossref]

J. Li and S. Y. Zhu, “Entangling two magnon modes via magnetostrictive interaction,” New J. Phys. 21(8), 085001 (2019).
[Crossref]

C. Kong, H. Xiong, and Y. Wu, “Magnon-Induced Nonreciprocity Based on the Magnon Kerr Effect,” Phys. Rev. Appl. 12(3), 034001 (2019).
[Crossref]

G. Q. Zhang, Y. P. Wang, and J. Q. You, “Theory of the magnon Kerr effect in cavity magnonics,” Sci. China: Phys., Mech. Astron. 62(8), 987511 (2019).
[Crossref]

2018 (4)

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
[Crossref]

D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018).
[Crossref]

2017 (1)

X. Xu, T. Purdy, and J. M. Taylor, “Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath,” Phys. Rev. Lett. 118(22), 223602 (2017).
[Crossref]

2016 (7)

A. Kamra and W. Belzig, “Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport,” Phys. Rev. Lett. 116(14), 146601 (2016).
[Crossref]

G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93(4), 043844 (2016).
[Crossref]

M. Benito, C. SanchezMunoz, and C. Navarrete-Benlloch, “Degenerate parametric oscillation in quantum membrane optomechanics,” Phys. Rev. A 93(2), 023846 (2016).
[Crossref]

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

X. F. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, “Optomagnonic Whispering Gallery Microresonators,” Phys. Rev. Lett. 117(12), 123605 (2016).
[Crossref]

X. F. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2(3), e1501286 (2016).
[Crossref]

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016).
[Crossref]

2015 (1)

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

2014 (3)

M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
[Crossref]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
[Crossref]

Y. C. Liu, Y. F. Shen, Q. Gong, and Y. F. Xiao, “Optimal limits of cavity optomechanical cooling in the strong-coupling regime,” Phys. Rev. A 89(5), 053821 (2014).
[Crossref]

2013 (4)

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref]

W. J. Gu and G. X. Li, “Feedback-Enhanced Parametric Squeezing of Mechanical Motion,” Phys. Rev. Lett. 111(20), 207203 (2013).
[Crossref]

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88(6), 063833 (2013).
[Crossref]

2011 (2)

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83(3), 033820 (2011).
[Crossref]

L. Mazzola and M. Paternostro, “Distributing fully optomechanical quantum correlations,” Phys. Rev. A 83(6), 062335 (2011).
[Crossref]

2010 (1)

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010).
[Crossref]

2009 (1)

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles,” Phys. Rev. Lett. 102(2), 020501 (2009).
[Crossref]

2008 (1)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

2007 (1)

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99(9), 093901 (2007).
[Crossref]

2005 (1)

S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

2004 (1)

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[Crossref]

1998 (1)

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback,” Phys. Rev. Lett. 80(4), 688–691 (1998).
[Crossref]

1992 (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

1991 (2)

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44(10), 36–44 (1991).
[Crossref]

G. S. Agarwal and S. A. Kumar, “Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states,” Phys. Rev. Lett. 67(26), 3665–3668 (1991).
[Crossref]

1980 (1)

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980).
[Crossref]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Agarwal, G. S.

J. Li, S. Y. Zhu, and G. S. Agarwal, “Squeezed states of magnons and phonons in cavity magnomechanics,” Phys. Rev. A 99(2), 021801 (2019).
[Crossref]

G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93(4), 043844 (2016).
[Crossref]

G. S. Agarwal and S. A. Kumar, “Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states,” Phys. Rev. Lett. 67(26), 3665–3668 (1991).
[Crossref]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

An, C. S.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Asjad, M.

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

Aspelmeyer, M.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles,” Phys. Rev. Lett. 102(2), 020501 (2009).
[Crossref]

Bai, C. H.

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020).
[Crossref]

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
[Crossref]

C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018).
[Crossref]

Bassi, A.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013).
[Crossref]

Belzig, W.

A. Kamra and W. Belzig, “Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport,” Phys. Rev. Lett. 116(14), 146601 (2016).
[Crossref]

Benito, M.

M. Benito, C. SanchezMunoz, and C. Navarrete-Benlloch, “Degenerate parametric oscillation in quantum membrane optomechanics,” Phys. Rev. A 93(2), 023846 (2016).
[Crossref]

Bourhill, J.

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Buu, O.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[Crossref]

Camarota, B.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[Crossref]

Cao, C.

X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
[Crossref]

Caves, C. M.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980).
[Crossref]

Chen, A. X.

Chesi, S.

R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019).
[Crossref]

Clerk, A. A.

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88(6), 063833 (2013).
[Crossref]

Creedon, D. L.

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016).
[Crossref]

M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
[Crossref]

Cui, W. X.

X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
[Crossref]

Damskägg, E.

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980).
[Crossref]

Fan, Y. H.

M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
[Crossref]

Fang, Y. N.

R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019).
[Crossref]

Farr, W. G.

M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
[Crossref]

Ficek, Z.

H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020).
[Crossref]

Gao, Y. P.

W. L. Xu, Y. P. Gao, T. J. Wang, and C. Wang, “Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system,” Opt. Express 28(15), 22334–22344 (2020).
[Crossref]

X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
[Crossref]

Gong, Q.

Y. C. Liu, Y. F. Shen, Q. Gong, and Y. F. Xiao, “Optimal limits of cavity optomechanical cooling in the strong-coupling regime,” Phys. Rev. A 89(5), 053821 (2014).
[Crossref]

Goryachev, M.

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016).
[Crossref]

M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
[Crossref]

Gröblacher, S.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

Gu, W. J.

W. J. Gu and G. X. Li, “Feedback-Enhanced Parametric Squeezing of Mechanical Motion,” Phys. Rev. Lett. 111(20), 207203 (2013).
[Crossref]

Guo, Y. Q.

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Simultaneous cooling of two mechanical oscillators in dissipatively coupled optomechanical systems,” Phys. Rev. A 100(2), 023807 (2019).
[Crossref]

Gürsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Hammerer, K.

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles,” Phys. Rev. Lett. 102(2), 020501 (2009).
[Crossref]

Han, X.

D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020).
[Crossref]

X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
[Crossref]

He, Q. Y.

H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020).
[Crossref]

H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
[Crossref]

Hong, S. K.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

Hu, C. M.

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

Huai, S. N.

S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019).
[Crossref]

Huang, S.

G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93(4), 043844 (2016).
[Crossref]

Ishikawa, T.

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
[Crossref]

Ishino, S.

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
[Crossref]

Jiang, L.

X. F. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2(3), e1501286 (2016).
[Crossref]

k. Zhang, D.

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

Kamra, A.

A. Kamra and W. Belzig, “Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport,” Phys. Rev. Lett. 116(14), 146601 (2016).
[Crossref]

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99(9), 093901 (2007).
[Crossref]

Kong, C.

C. Kong, H. Xiong, and Y. Wu, “Magnon-Induced Nonreciprocity Based on the Magnon Kerr Effect,” Phys. Rev. Appl. 12(3), 034001 (2019).
[Crossref]

Kostylev, M.

M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
[Crossref]

Kostylev, N.

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016).
[Crossref]

Kronwald, A.

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88(6), 063833 (2013).
[Crossref]

Kumar, S. A.

G. S. Agarwal and S. A. Kumar, “Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states,” Phys. Rev. Lett. 67(26), 3665–3668 (1991).
[Crossref]

LaHaye, M. D.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[Crossref]

Law, C. K.

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83(3), 033820 (2011).
[Crossref]

Li, G. X.

W. J. Gu and G. X. Li, “Feedback-Enhanced Parametric Squeezing of Mechanical Motion,” Phys. Rev. Lett. 111(20), 207203 (2013).
[Crossref]

Li, J.

J. Li, S. Y. Zhu, and G. S. Agarwal, “Squeezed states of magnons and phonons in cavity magnomechanics,” Phys. Rev. A 99(2), 021801 (2019).
[Crossref]

J. Li and S. Y. Zhu, “Entangling two magnon modes via magnetostrictive interaction,” New J. Phys. 21(8), 085001 (2019).
[Crossref]

Li, T. F.

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

Liao, J. Q.

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83(3), 033820 (2011).
[Crossref]

Liu, H. Y.

Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020).
[Crossref]

Liu, J. S.

Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020).
[Crossref]

Liu, S. T.

D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020).
[Crossref]

C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018).
[Crossref]

Liu, X. F.

X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
[Crossref]

Liu, Y. C.

Y. C. Liu, Y. F. Shen, Q. Gong, and Y. F. Xiao, “Optimal limits of cavity optomechanical cooling in the strong-coupling regime,” Phys. Rev. A 89(5), 053821 (2014).
[Crossref]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref]

Liu, Y. L.

S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019).
[Crossref]

Liu, Y. M.

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

Liu, Y. X.

S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019).
[Crossref]

Lochan, K.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013).
[Crossref]

Loock, P. V.

S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Löschnauer, C.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

Luan, X. S.

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref]

Lukin, M. D.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010).
[Crossref]

Luo, X. Q.

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

Mancini, S.

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback,” Phys. Rev. Lett. 80(4), 688–691 (1998).
[Crossref]

Marinkovic, I.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

Marquardt, F.

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88(6), 063833 (2013).
[Crossref]

Massel, F.

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

Mazzola, L.

L. Mazzola and M. Paternostro, “Distributing fully optomechanical quantum correlations,” Phys. Rev. A 83(6), 062335 (2011).
[Crossref]

Nakamura, Y.

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
[Crossref]

Navarrete-Benlloch, C.

M. Benito, C. SanchezMunoz, and C. Navarrete-Benlloch, “Degenerate parametric oscillation in quantum membrane optomechanics,” Phys. Rev. A 93(2), 023846 (2016).
[Crossref]

Nooshi, N.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99(9), 093901 (2007).
[Crossref]

Nori, F.

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

Ockeloen-Korppi, C. F.

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

Paternostro, M.

L. Mazzola and M. Paternostro, “Distributing fully optomechanical quantum correlations,” Phys. Rev. A 83(6), 062335 (2011).
[Crossref]

Pirkkalainen, J. M.

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

Polzik, E. S.

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles,” Phys. Rev. Lett. 102(2), 020501 (2009).
[Crossref]

Purdy, T.

X. Xu, T. Purdy, and J. M. Taylor, “Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath,” Phys. Rev. Lett. 118(22), 223602 (2017).
[Crossref]

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Rabl, P.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010).
[Crossref]

Riedinger, R.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

SanchezMunoz, C.

M. Benito, C. SanchezMunoz, and C. Navarrete-Benlloch, “Degenerate parametric oscillation in quantum membrane optomechanics,” Phys. Rev. A 93(2), 023846 (2016).
[Crossref]

Sandberg, V. D.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980).
[Crossref]

Satin, S.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013).
[Crossref]

Schwab, K. C.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[Crossref]

Shen, Y. F.

Y. C. Liu, Y. F. Shen, Q. Gong, and Y. F. Xiao, “Optimal limits of cavity optomechanical cooling in the strong-coupling regime,” Phys. Rev. A 89(5), 053821 (2014).
[Crossref]

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Sillanpää, M. A.

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

Singh, T. P.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013).
[Crossref]

Sørensen, A. S.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010).
[Crossref]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Stannigel, K.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010).
[Crossref]

Tabuchi, Y.

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
[Crossref]

Tang, H. X.

X. F. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2(3), e1501286 (2016).
[Crossref]

X. F. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, “Optomagnonic Whispering Gallery Microresonators,” Phys. Rev. Lett. 117(12), 123605 (2016).
[Crossref]

Taylor, J. M.

X. Xu, T. Purdy, and J. M. Taylor, “Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath,” Phys. Rev. Lett. 118(22), 223602 (2017).
[Crossref]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980).
[Crossref]

Tobar, M. E.

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016).
[Crossref]

M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
[Crossref]

Tombesi, P.

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback,” Phys. Rev. Lett. 80(4), 688–691 (1998).
[Crossref]

Ulbricht, H.

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013).
[Crossref]

Usami, K.

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

Vitali, D.

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback,” Phys. Rev. Lett. 80(4), 688–691 (1998).
[Crossref]

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Wallucks, A.

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

Wang, C.

W. L. Xu, Y. P. Gao, T. J. Wang, and C. Wang, “Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system,” Opt. Express 28(15), 22334–22344 (2020).
[Crossref]

X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
[Crossref]

Wang, D. Y.

D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020).
[Crossref]

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019).
[Crossref]

X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
[Crossref]

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018).
[Crossref]

Wang, H. F.

D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020).
[Crossref]

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019).
[Crossref]

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
[Crossref]

Wang, H.-F.

D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018).
[Crossref]

Wang, L.

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

Wang, S. P.

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

Wang, T.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Wang, T. J.

W. L. Xu, Y. P. Gao, T. J. Wang, and C. Wang, “Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system,” Opt. Express 28(15), 22334–22344 (2020).
[Crossref]

X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
[Crossref]

Wang, X. G.

Wang, X. M.

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

Wang, Y. D.

R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019).
[Crossref]

Wang, Y. P.

G. Q. Zhang, Y. P. Wang, and J. Q. You, “Theory of the magnon Kerr effect in cavity magnonics,” Sci. China: Phys., Mech. Astron. 62(8), 987511 (2019).
[Crossref]

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

Wang, Y. Y.

R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019).
[Crossref]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Wilson-Rae, I.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99(9), 093901 (2007).
[Crossref]

Wong, C. W.

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref]

Woolley, M. J.

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

Wu, W. D.

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

Wu, Y.

C. Kong, H. Xiong, and Y. Wu, “Magnon-Induced Nonreciprocity Based on the Magnon Kerr Effect,” Phys. Rev. Appl. 12(3), 034001 (2019).
[Crossref]

Xia, K.

H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
[Crossref]

Xiao, Y. F.

Y. C. Liu, Y. F. Shen, Q. Gong, and Y. F. Xiao, “Optimal limits of cavity optomechanical cooling in the strong-coupling regime,” Phys. Rev. A 89(5), 053821 (2014).
[Crossref]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref]

Xiong, H.

C. Kong, H. Xiong, and Y. Wu, “Magnon-Induced Nonreciprocity Based on the Magnon Kerr Effect,” Phys. Rev. Appl. 12(3), 034001 (2019).
[Crossref]

Xiong, W.

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

Xiong, X. R.

X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
[Crossref]

Xu, W. L.

Xu, X.

X. Xu, T. Purdy, and J. M. Taylor, “Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath,” Phys. Rev. Lett. 118(22), 223602 (2017).
[Crossref]

Yamazaki, R.

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
[Crossref]

Yan, P.

H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
[Crossref]

Yang, L.

S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019).
[Crossref]

Yang, R. C.

Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020).
[Crossref]

Yang, Z. B.

Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020).
[Crossref]

Yang, Z. X.

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

Yi, X. X.

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Simultaneous cooling of two mechanical oscillators in dissipatively coupled optomechanical systems,” Phys. Rev. A 100(2), 023807 (2019).
[Crossref]

You, J. Q.

G. Q. Zhang, Y. P. Wang, and J. Q. You, “Theory of the magnon Kerr effect in cavity magnonics,” Sci. China: Phys., Mech. Astron. 62(8), 987511 (2019).
[Crossref]

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

Yuan, H. Y.

H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020).
[Crossref]

H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
[Crossref]

Yung, M. H.

H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
[Crossref]

H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020).
[Crossref]

Zhang, D. K.

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

Zhang, G. Q.

G. Q. Zhang, Y. P. Wang, and J. Q. You, “Theory of the magnon Kerr effect in cavity magnonics,” Sci. China: Phys., Mech. Astron. 62(8), 987511 (2019).
[Crossref]

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

Zhang, J.

S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019).
[Crossref]

Zhang, J. S.

Zhang, R.

R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019).
[Crossref]

Zhang, S.

D. Y. Wang, C. H. Bai, X. Han, S. T. Liu, S. Zhang, and H. F. Wang, “Enhanced photon blockade in an optomechanical system with parametric amplification,” Opt. Lett. 45(9), 2604–2607 (2020).
[Crossref]

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019).
[Crossref]

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018).
[Crossref]

Zhang, X. F.

X. F. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, “Optomagnonic Whispering Gallery Microresonators,” Phys. Rev. Lett. 117(12), 123605 (2016).
[Crossref]

X. F. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2(3), e1501286 (2016).
[Crossref]

Zhang, X. Y.

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Simultaneous cooling of two mechanical oscillators in dissipatively coupled optomechanical systems,” Phys. Rev. A 100(2), 023807 (2019).
[Crossref]

Zhang, Z. C.

Zheng, M. H.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Zheng, S. S.

H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020).
[Crossref]

H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
[Crossref]

Zhou, Y. H.

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Simultaneous cooling of two mechanical oscillators in dissipatively coupled optomechanical systems,” Phys. Rev. A 100(2), 023807 (2019).
[Crossref]

Zhu, A. D.

Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020).
[Crossref]

Zhu, N.

X. F. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, “Optomagnonic Whispering Gallery Microresonators,” Phys. Rev. Lett. 117(12), 123605 (2016).
[Crossref]

Zhu, S. Y.

J. Li and S. Y. Zhu, “Entangling two magnon modes via magnetostrictive interaction,” New J. Phys. 21(8), 085001 (2019).
[Crossref]

J. Li, S. Y. Zhu, and G. S. Agarwal, “Squeezed states of magnons and phonons in cavity magnomechanics,” Phys. Rev. A 99(2), 021801 (2019).
[Crossref]

Zimmermann, M.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980).
[Crossref]

Zoller, P.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010).
[Crossref]

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles,” Phys. Rev. Lett. 102(2), 020501 (2009).
[Crossref]

Zou, C. L.

X. F. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2(3), e1501286 (2016).
[Crossref]

X. F. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, “Optomagnonic Whispering Gallery Microresonators,” Phys. Rev. Lett. 117(12), 123605 (2016).
[Crossref]

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

Zurek, W. H.

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44(10), 36–44 (1991).
[Crossref]

Zwerger, W.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99(9), 093901 (2007).
[Crossref]

Ann. Phys. (2)

L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, “Magnon Blockade in a PT-Symmetric-Like Cavity Magnomechanical System,” Ann. Phys. 532(7), 2000028 (2020).
[Crossref]

Z. B. Yang, J. S. Liu, A. D. Zhu, H. Y. Liu, and R. C. Yang, “Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System,” Ann. Phys. 532(9), 2000196 (2020).
[Crossref]

Front. Phys. (1)

Z. X. Yang, L. Wang, Y. M. Liu, D. Y. Wang, C. H. Bai, S. Zhang, and H. F. Wang, “Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature,” Front. Phys. 15(5), 52504 (2020).
[Crossref]

Nature (2)

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. K. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556(7702), 473–477 (2018).
[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556(7702), 478–482 (2018).
[Crossref]

New J. Phys. (1)

J. Li and S. Y. Zhu, “Entangling two magnon modes via magnetostrictive interaction,” New J. Phys. 21(8), 085001 (2019).
[Crossref]

npj Quantum Inf. (1)

D. K. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. D. Wu, F. Nori, and J. Q. You, “Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere,” npj Quantum Inf. 1(1), 15014 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photonics Res. (1)

C. H. Bai, D. Y. Wang, S. Zhang, S. T. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” Photonics Res. 7(11), 1229 (2019).
[Crossref]

Phys. Rev. A (12)

M. Benito, C. SanchezMunoz, and C. Navarrete-Benlloch, “Degenerate parametric oscillation in quantum membrane optomechanics,” Phys. Rev. A 93(2), 023846 (2016).
[Crossref]

J. Li, S. Y. Zhu, and G. S. Agarwal, “Squeezed states of magnons and phonons in cavity magnomechanics,” Phys. Rev. A 99(2), 021801 (2019).
[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83(3), 033820 (2011).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88(6), 063833 (2013).
[Crossref]

R. Zhang, Y. N. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99(4), 043805 (2019).
[Crossref]

S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. A 99(4), 043803 (2019).
[Crossref]

L. Mazzola and M. Paternostro, “Distributing fully optomechanical quantum correlations,” Phys. Rev. A 83(6), 062335 (2011).
[Crossref]

X. Han, D. Y. Wang, C. H. Bai, W. X. Cui, S. Zhang, and H. F. Wang, “Mechanical squeezing beyond resolved sideband and weak-coupling limits with frequency modulation,” Phys. Rev. A 100(3), 033812 (2019).
[Crossref]

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Simultaneous cooling of two mechanical oscillators in dissipatively coupled optomechanical systems,” Phys. Rev. A 100(2), 023807 (2019).
[Crossref]

Y. C. Liu, Y. F. Shen, Q. Gong, and Y. F. Xiao, “Optimal limits of cavity optomechanical cooling in the strong-coupling regime,” Phys. Rev. A 89(5), 053821 (2014).
[Crossref]

D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98(2), 023816 (2018).
[Crossref]

G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93(4), 043844 (2016).
[Crossref]

Phys. Rev. Appl. (2)

M. Goryachev, W. G. Farr, D. L. Creedon, Y. H. Fan, M. Kostylev, and M. E. Tobar, “High-Cooperativity Cavity QED with Magnons at Microwave Frequencies,” Phys. Rev. Appl. 2(5), 054002 (2014).
[Crossref]

C. Kong, H. Xiong, and Y. Wu, “Magnon-Induced Nonreciprocity Based on the Magnon Kerr Effect,” Phys. Rev. Appl. 12(3), 034001 (2019).
[Crossref]

Phys. Rev. B (3)

J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, “Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere,” Phys. Rev. B 93(14), 144420 (2016).
[Crossref]

Y. P. Wang, G. Q. Zhang, D. k. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, “Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system,” Phys. Rev. B 94(22), 224410 (2016).
[Crossref]

H. Y. Yuan, S. S. Zheng, Z. Ficek, Q. Y. He, and M. H. Yung, “Enhancement of magnon-magnon entanglement inside a cavity,” Phys. Rev. B 101(1), 014419 (2020).
[Crossref]

Phys. Rev. Lett. (12)

H. Y. Yuan, P. Yan, S. S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, “Steady Bell State Generation via Magnon-Photon Coupling,” Phys. Rev. Lett. 124(5), 053602 (2020).
[Crossref]

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical Transducers for Long-Distance Quantum Communication,” Phys. Rev. Lett. 105(22), 220501 (2010).
[Crossref]

K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, “Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles,” Phys. Rev. Lett. 102(2), 020501 (2009).
[Crossref]

Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, “Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limits,” Phys. Rev. Lett. 113(8), 083603 (2014).
[Crossref]

X. F. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, “Optomagnonic Whispering Gallery Microresonators,” Phys. Rev. Lett. 117(12), 123605 (2016).
[Crossref]

G. S. Agarwal and S. A. Kumar, “Exact quantum-statistical dynamics of an oscillator with time-dependent frequency and generation of nonclassical states,” Phys. Rev. Lett. 67(26), 3665–3668 (1991).
[Crossref]

W. J. Gu and G. X. Li, “Feedback-Enhanced Parametric Squeezing of Mechanical Motion,” Phys. Rev. Lett. 111(20), 207203 (2013).
[Crossref]

A. Kamra and W. Belzig, “Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport,” Phys. Rev. Lett. 116(14), 146601 (2016).
[Crossref]

S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback,” Phys. Rev. Lett. 80(4), 688–691 (1998).
[Crossref]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99(9), 093901 (2007).
[Crossref]

X. Xu, T. Purdy, and J. M. Taylor, “Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath,” Phys. Rev. Lett. 118(22), 223602 (2017).
[Crossref]

Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref]

Phys. Today (1)

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44(10), 36–44 (1991).
[Crossref]

Rev. Mod. Phys. (3)

S. L. Braunstein and P. V. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52(2), 341–392 (1980).
[Crossref]

A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85(2), 471–527 (2013).
[Crossref]

Sci. Adv. (1)

X. F. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Sci. Adv. 2(3), e1501286 (2016).
[Crossref]

Sci. China: Phys., Mech. Astron. (3)

G. Q. Zhang, Y. P. Wang, and J. Q. You, “Theory of the magnon Kerr effect in cavity magnonics,” Sci. China: Phys., Mech. Astron. 62(8), 987511 (2019).
[Crossref]

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, “Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

X. R. Xiong, Y. P. Gao, X. F. Liu, C. Cao, T. J. Wang, and C. Wang, “The analysis of high-order sideband signals in optomechanical system,” Sci. China: Phys., Mech. Astron. 61(9), 90322 (2018).
[Crossref]

Science (3)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[Crossref]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

Other (1)

SharmaS.BittencourtV. A. S. V.KarenowskaA. D.KusmimskiyS. V., “Spin cat states in a ferromagnetic insulator,” arXiv:2009.00128.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Sketch of the system. One macroscopic YIG is placed inside the cavity near the maximum magnetic field of the cavity mode, and simultaneously in a uniform bias magnetic field which mediates the coupling between the cavity mode and the magnon mode. The bias magnetic field ($z$ direction), the drive magnetic field ($y$ direction), and the magnetic field ($x$ direction) of the cavity mode are mutually perpendicular at the site of the sphere.
Fig. 2.
Fig. 2. The evolution of mean square fluctuations for the phonon mode $\left \langle \delta X_{b}(t)^{2} \right \rangle$ (a), the magnon mode $\left \langle \delta X_{m}(t)^{2} \right \rangle$ (b), and the cavity mode $\left \langle \delta Y_{a}(t)^{2} \right \rangle$ (c) with the RWA (dashed lines) and without the RWA (solid lines). Other parameters are: $G_{-}=0.01\omega _{b}$, $G_{+}=0.009\omega _{b}$, $g=0.01\omega _{b}$, and $n_{th}=0$.
Fig. 3.
Fig. 3. The Wigner function for the phonon mode (a), the magnon mode (b), and the cavity mode (c) with the RWA. All the figures are drawn in the steady state, and the parameters are the same as in Fig. 2.
Fig. 4.
Fig. 4. The squeezing degree of the phonon mode as function of $G_{+}/G_{-}$ at (a) different $n_{th}$, the red dashed, blue dot, and pink dot-dashed curves correspond to $n_{th}=0, 10$, and $50$, respectively, (b) different magnon decay rate $\gamma _{m}$, the red dashed, blue dot, and pink dot-dashed lines correspond to $\gamma _{m}=0.1\omega _{b}, \omega _{b}, 10\omega _{b}$, and (c) different cavity decay rate $\gamma _{a}$, the red dashed, green solid, and black dot curves correspond to $\gamma _{a}=0.1\omega _{b}, 10\omega _{b}, 100\omega _{b}$. (d) The squeezing degree of the phonon mode versus $G_{+}$ and $G_{-}$. $\gamma _{m}=0.1\omega _{b}$ in (a) and (c), $n_{th}=0$ in (b) and (c), and $\gamma _{a}=0.1\omega _{b}$ in (a) and (b). $G_{-}=0.01\omega _{b}$ is used in (a), (b), and (c). In (d), $n_{th}=0$, $\gamma _{m}=0.1\omega _{b}$, and $\gamma _{a}=0.1\omega _{b}$. The other parameters are the same as in Fig. 2.
Fig. 5.
Fig. 5. The evolution of mean square fluctuations of the magnon mode (green solid line), and the cavity mode (black dot line) with strong magnomechanical couplings without the RWA. The parameters are: $G_{-}=\omega _{b}$, $G_{+}=0.9\omega _{b}$, and $g=0.32\omega _{b}$, and the other parameters are the same as in Fig. 2. The insert shows the evolution of mean square fluctuations for the two modes in the long time limit.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

H = ω a a a + ω b b b + ω m m m + g ( a + a ) ( m + m ) + η m m ( b + b ) + [ ( E + e i ω + t + E e i ω t ) m + H . c . ] ,
a ˙ = ( i ω a + γ a 2 ) a i g m + γ a a i n , b ˙ = ( i ω b + γ b 2 ) b i η m m + γ b b i n , m ˙ = ( i ω m + γ m 2 ) m i g a i η m ( b + b ) i ( E + e i ω + t + E e i ω t ) + γ m m i n ,
a ˙ s = ( i ω a + γ a 2 ) a s i g m s , b ˙ s = ( i ω b + γ b 2 ) b s i η | m s | 2 , m ˙ s = ( i ω m + γ m 2 ) m s i g a s i η m s ( b s + b s ) i ( E + e i ω + t + E e i ω t ) , δ a ˙ = ( i ω a + γ a 2 ) δ a i g δ m + γ a a i n , δ b ˙ = ( i ω b + γ b 2 ) δ b i η ( m s δ m + m s δ m ) + γ b b i n , δ m ˙ = i [ ω m + η ( b s + b s ) ] δ m γ m 2 δ m i g δ a i η m s ( δ b + δ b ) + γ m m i n .
m s ( t ) m + e i ω + t + m e i ω t , m ± = E ± ± ω b + i γ m 2 g 2 ω ± ω a + i γ a 2 .
H = ω a δ a δ a + ω b δ b δ b + ω m δ m δ m + g ( δ a δ m + δ a δ m ) + η ( m s δ m + m s δ m ) ( δ b + δ b ) .
H e f f = Δ a m δ a δ a + g ( δ a δ m + δ a δ m ) + [ δ m ( G + δ b + G δ b ) + δ m ( e 2 i ω b t G + δ b + e 2 i ω b t G δ b ) + H . c . ] ,
δ a ˙ = i Δ a m δ a i g δ m γ a 2 δ a + γ a a i n , δ b ˙ = γ b 2 δ b i f 1 ( t ) δ m i f 2 ( t ) δ m + γ b b i n , δ m ˙ = i g δ a γ m 2 δ m i f 3 ( t ) δ b i f 2 ( t ) δ b + γ m m i n ,
u ˙ ( t ) = A ( t ) u ( t ) + n ( t ) ,
A ( t ) = ( γ a 2 Δ a m 0 0 0 g Δ a m γ a 2 0 0 g 0 0 0 γ b 2 0 I ( f 12 + ) R ( f 12 ) 0 0 0 γ b 2 R ( f 12 + ) I ( f 12 ) 0 g I ( f 23 + ) R ( f 23 ) γ m 2 0 g 0 R ( f 23 + ) I ( f 23 ) 0 γ m 2 ) ,
u ( t ) = R ( t ) u ( 0 ) + R ( t ) 0 t d τ R 1 ( τ ) n ( τ ) ,
V j k ( t ) = u j ( t ) u k ( t ) + u k ( t ) u j ( t ) 2 .
V = R ( t ) V ( 0 ) R T ( t ) + R ( t ) M ( t ) R T ( t ) ,
M ( t ) = 1 2 [ W ( t ) + W T ( t ) ] , W ( t ) = 0 t d τ 0 t d τ R 1 ( τ ) C ( τ , τ ) [ R 1 ( τ ) ] T ,
n j ( τ ) n k ( τ ) + n k ( τ ) n j ( τ ) 2 = D j k δ ( τ τ ) ,
M ( t ) = 0 t d τ R 1 ( τ ) D ( τ ) [ R 1 ( τ ) ] T .
V ˙ ( t ) = A ( t ) V ( t ) + V ( t ) A T ( t ) + D .
S = 10 log 10 [ δ Q ( t ) 2 / δ Q ( t ) 2 v a c ] ,

Metrics