Abstract

In this paper, we investigated the geometric parametric instability (GPI) in graded-index multimode fibers through the multimode generalized nonlinear Schrödinger equation. Our results clearly and intuitively indicate that the generations of GPI sidebands are nearly synchronous in the spectrums of all modes, and the shapes of these spectrums are nearly the same. The numerical results show that the energies of the GPI sidebands come from the pump sideband, and these sidebands are carried by similar spatial beam profiles due to the similar modal components. We also found that the large modal dispersion has an influence for the symmetry of these GPI sidebands.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, the potential applications of multimode fibers (MMFs) have attracted renewed interest due to the need for space division multiplexing (SDM) systems and imaging systems [1,2]. Compared with the single mode fibers (SMFs), MMFs have a larger mode field area and support more spatial modes, which can be used to improve the capacity of the communication system and provide the ultra-wideband tunable high spatial beam quality light source [3]. The complex coupling between multiple spatial modes means that nonlinear effects have spatiotemporal characteristics [4]. So, multimode fibers are also used as the platform to study complex nonlinear spatiotemporal dynamics such as spatial beam self-cleaning [510], intermodal four-wave mixing (IMFWM) [11,12], rogue waves [13], spatiotemporal mode-locking [1416], multimode solitons [1,17], supercontinuum generation [1820], and geometric parametric instability (GPI) [2123].

Due to the interactions of nonlinearity and dispersion in the medium, parametric instability (PI) occurs in the wave propagation when a parameter of the medium is periodically modulated along the longitudinal direction [21]. PI is commonly known as the Faraday instability, which is a candidate mechanism to induce mode-locking in lasers [24] when the periodic modulation of the parameter of the medium is caused by an external forcing [22]. In some physical systems that naturally exhibit collective oscillations, PI is called geometric-type of parametric instability (GPI) [21]. Because of the periodic self-imaging [25,26] of the multimode beam in MMFs, the periodic oscillating field provides a periodic modulation for the refractive index along the longitudinal direction of the fiber, which leads to the GPI in the multimode fibers [21]. GPI in multimode fibers has attracted many researchers’ attention. In 2003, Longhi first theoretically predicted the existence of GPI in MMFs [27]. Krupa et al. then observed the GPI sidebands in MMFs for the first time and studied these sidebands’ spatial beam profiles [21]. They also carried out numerical simulations and obtained the GPI sidebands that agree well with the analytical predictions and experimental results. Eznaveh et al. proved in the experiment that the frequency positions of GPI sidebands could be adjusted by changing the core size. The sidebands could be redshifted by increasing the core sizes of the MMFs [28]. Matteo Conforti et al. proposed a 1 + 1D generalized nonlinear Schrodinger equation with a periodic nonlinear coefficient to describe the nonlinear pulse propagation in MMFs, which can rapidly reproduce GPI effectively [29]. C. Mas Arabi et al. proved that GPI sidebands with moiré-like patterns could be obtained by modulating the core diameter with a period close to the distance of self-imaging in MMFs [22]. H. E. Lopez Aviles et al. provided a rigorous analysis of GPI in GRIN MMFs. They presented the parametric problem in the Hill equation and solved it systematically with a Floquet approach [23].

Krupa et al. pointed out that the GPI sidebands are induced by the mechanism of QPM-FWM and observed the pump, and the GPI sidebands are all carried by bell-shaped spatial beam profiles [21]. Their results presented a solid impetus to the further researches of the GPI in MMFs. Other researchers also did some interesting work (such as Eznaveh et al. ‘s studies) to enrich the GPI research studies. However, their reports are all basically from the perspective of the beam. In this paper, unlike previous studies, we explore the GPI sidebands in graded-index multimode fibers from the viewpoint of spatial modes for the first time to the best of our knowledge. In this work, we selected the first five radially-symmetric modes for the numerical simulations and employed the multimode generalized nonlinear Schrödinger equation (MM-GNLSE) model [3032] to describe the propagation of picosecond pulse in GRIN MMFs. We also observed the spectrum of each mode and found that the generations of all GPI sidebands are nearly synchronous, and the shapes of these spectrums are almost the same. Then, we further studied the energy source and the spatial distributions of the GPI sidebands. Finally, we implemented the numerical simulations that involve the modal dispersion term and found that the large modal dispersion influences the symmetry of these GPI sidebands.

2. Theoretical model

In GRIN MMFs, due to the equal spacing of the modal propagation constants [33], the multimode beam produces a periodic self-imaging effect during the propagation process [21]. Because of the Kerr effect, the field conducts a longitudinal periodic modulation on the refractive index [5,34] in a way that is similar to an equivalent long-period fiber Bragg grating. So that, the quasi-phase-matching (QPM) condition for generating GPI sidebands can be satisfied [21], $\textrm{2}{\textrm{k}_P} - {k_S} - {k_A} ={-} 2\pi h/\xi$, where ${\textrm{k}_P},{k_S},{k_A}$ represent the pump wave vector, GPI Stokes wave vector, and GPI anti-Stokes wave vector respectively, and $h = 1,2,3\ldots .$ It’s possible to calculate the frequency offsets of GPI sidebands by the formula ${f_h} ={\pm} \sqrt h {f_m}$, where $2\pi {f_m} = \sqrt {2\pi /(\xi {K^{^{\prime\prime}}})}$, ${f_m}$ is the first-order frequency offset of GPI sidebands, $\xi = \pi \rho /\sqrt {2\Delta }$ is the self-imaging period, ${K^{^{\prime\prime}}}$ is the group velocity dispersion, $\rho$ is the fiber core radius, and $\Delta $ is the relative index difference [21].

We considered the first five-orders radially-symmetric spatial modes and used a parabolic GRIN MMF with $\rho = 25um,\Delta = 8.78 \times {10^{ - 3}}$. The value of group velocity dispersion for the fundamental mode is $16.35 \times {10^{ - 27}}{s^2}/m$ at the pump wavelength of 1064 nm. Because of different group velocity dispersion, there are some differences among the locations of GPI sidebands for the five modes. Therefore, we calculated the frequency offsets of the first four-orders sidebands for each mode, respectively. As shown in Table 1, the sideband frequency shifts of the higher-order modes are larger. With the increase of the sideband order, the frequency shift differences between the higher-order modes and the fundamental mode become larger. It means that the positions of GPI sidebands can be adjusted by selecting different spatial modes.

Tables Icon

Table 1. First Four Frequency Offsets

The description of pulse propagation in multimode fibers often involves complex spatiotemporal dynamics. There are two models for the numerical description of pulse propagation in multimode fibers [29]: the (3 + 1) D generalized nonlinear Schrödinger equation (GNLSE) [1,25,33,35], and the MM-GNLSE. In the experiment, beam propagation usually involves abundant guided modes. However, it is almost impossible to consider so many modes in the numerical simulation because of an expensive computation. The (3 + 1) D GNLSE was used more to study the GPI in previous studies. To study the generation process and the spatial distribution characters of the GPI sidebands more clearly, we employed the MM-GNLSE to describe the propagation of pulse in GRIN MMFs. This model decomposes the electromagnetic field into a series of spatial modes, which is helpful to study the GPI from a more intuitive angle. The evolution of the electric field temporal envelope for the spatial mode p can be described as:

$$\begin{array}{l} {\partial _z}{A_p}(z,t) = \\ i\delta \mathop \beta \nolimits_0^{(p)} {A_p} - \delta \mathop \beta \nolimits_1^{(p)} {\partial _t}{A_P} + \sum\limits_{m = 2}^{{N_d}} {{i^{m + 1}}\frac{{\beta _m^{(p)}}}{{m!}}\partial _t^m} {A_P} + i\frac{{{n_2}{\omega _0}}}{c}(1 + \frac{i}{{{\omega _0}}}{\partial _t})\sum\limits_{l,m,n}^N {[(1 - {f_R})} S_{plmn}^K{A_l}{A_m}A_n^\ast \\ + {f_R}S_{plmn}^R{A_l}\int\limits_{ - \infty }^t {d\tau {h_R}(\tau )} {A_m}(z,t - \tau )A_n^\ast (z,t - \tau )] \end{array}$$
where the first term indicates the propagation constant mismatch and is responsible for multimode interference or mode beating, the second term represents modal dispersion or modal walk-off, the third term is higher-order dispersion, ${n_2}$ is the nonlinear index coefficient, ${f_R}$ is the fractional contribution of the Raman effect, $S_{plmn}^K$ and $S_{plmn}^R$ represent the nonlinear coupling coefficients for the Raman and Kerr effect respectively, and ${h_R}$ is the delayed Raman response function [32].

3. Simulation results and discussions

In the simulation, we neglected the Raman scattering effect, material absorption, and higher-order dispersion. The second term in the Eq. (1) represents the modal dispersion. To simplify the analysis, we also ignored this term here. We employed a pulse with a pulse width of 100 Ps and adjusted the peak power to 270 kW. Initial pulse energy is distributed to the first five radially-symmetric modes (40% in $L{P_{01}}$, 20% in $L{P_{02}}$, 17% in $L{P_{03}}$, 15% in $L{P_{04}}$, and 8% in $L{P_{05}}$).

Figure 1 shows the first fourth-orders GPI sidebands where the propagation distance z = 0.3 m. The red and black dotted lines respectively represent the positions of the pump sideband and the first four-orders GPI sidebands. The fundamental mode occupies the most energy, and the intensity of the pump sideband is the largest. Therefore, we used the group velocity dispersion value of the fundamental mode to calculate the sideband frequency shifts. This figure indicates that these sidebands’ peaks basically appear on the dotted lines correspond to the theoretical values. Note that numerical simulation's sideband peaks move slightly towards the pump peak compared with theoretical predictions, which is caused by the high initial peak power [23].

 figure: Fig. 1.

Fig. 1. Numerical simulation results of the first four-orders GPI sidebands. The propagation distance z of the pulse is 0.3 m in the parabolic GRIN MMF. The red dotted line corresponds to the pump sideband position, and the black dotted lines indicate the positions of Stokes and anti-Stokes sidebands.

Download Full Size | PPT Slide | PDF

To explore the generations of the GPI sidebands more clearly and intuitively, we further investigated the spectra of the first five radially-symmetric modes and the total spectrum, respectively, shown in Fig. 2. The red dotted line in each spectrum diagram represents the pump sideband location, and the black dotted lines indicate the locations of GPI sidebands by the analytical predictions. It is interesting that the spectrum shapes of these modes are nearly the same as the total spectrum, and the generations of GPI sidebands are almost synchronous during the evolution (see Visualization 1). Note that we uniformly selected the intensity of the fundamental mode's pump peak as the reference for the intuitive presentation of the sideband intensity.

 figure: Fig. 2.

Fig. 2. Spectra of the first five radially-symmetric modes and the five spatial modes’ total spectrum, where z = 0.282 m. The black dotted lines indicate the theoretical prediction locations of the first four-orders GPI sidebands. And the red dotted lines represent the positions of the pump sidebands.

Download Full Size | PPT Slide | PDF

To further studied the energy which flows into the GPI sidebands, we selected the fundamental mode as an example (choosing any of these spatial modes is right) and calculated the mean increased pump energy ${E_{MIPE}}$ and the mean increased mode energy ${E_{MIME}}$ of the fundamental mode, which are written as:

$$\Delta {E_{Pump}} = {E_{Pump}} - {E_{InitialPump}}\textrm{, }\quad \Delta {E_{Mode}} = {E_{Mode}} - {E_{InitialMode}}$$
$${E_{MIPE}} = \Delta {E_{Pump}}/\Delta {f_{Pump}}\textrm{, }\quad{E_{MIME}} = \Delta {E_{Mode}}/\Delta {f_{Mode}}$$
where ${E_{Pump}}$ and ${E_{InitialPump}}$ represent the energy and the initial energy of the pump sideband of the fundamental mode, ${E_{Mode}}$ and ${E_{InitialMode}}$ indicate the total energy and the initial total energy of the fundamental mode, $\Delta {f_{Pump}}$ and $\Delta {f_{Mode}}$ show the spectrum width of the pump sideband of the fundamental mode and the fundamental mode, respectively. Figure 3 shows the evolutions of the mean increased pump energy ${E_{MIPE}}$ and the mean increased mode energy ${E_{MIME}}$ upon the propagation distance z. When the GPI sidebands do not appear in the spectrum of the fundamental mode, the curves of the ${E_{MIPE}}$ and the ${E_{MIME}}$ are overlapped which indicates the energy exchanges between the fundamental mode and other modes are induced by the FWM interactions that involve pairs of beating modes at the same wavelength [5]. That is to say, the energy exchanges between the fundamental mode and other modes are equivalent for each frequency of the fundamental mode. They are not the real reason for the generation of GPI sidebands that appear in the fundamental mode spectrum. With the further increase of the propagation distance, the spectral broadening of GPI sidebands is occurring, and the value of ${E_{MIPE}}$ is significantly small than the value of ${E_{MIME}}$ that represents the energy of the pump sideband flows into the GPI sidebands. This result also suggests that the four-wave mixing (FWM), which induces the generation of the GPI sidebands, is an intra-mode FWM (different from the inter-mode FWM sidebands).

 figure: Fig. 3.

Fig. 3. The evolutions of the mean increased pump energy ${E_{MIPE}}$ and the mean increased mode energy ${E_{MIME}}$ upon the propagation distance z.

Download Full Size | PPT Slide | PDF

Next, we selected the spectrum with a bandwidth of 2-4 THz (adjusted according to the spectrum width of the sideband) near each sideband's peak value and study the spatial beam distributions of these spectral components. As shown in Fig. 4, the first four GPI anti-Stokes, Stokes sidebands, and the pump peak sideband are all carried by a similar spatial beam profile, where the propagation distance z = 0.282 m. The reason for this result is that the modal components of all sidebands are nearly the same.

 figure: Fig. 4.

Fig. 4. The spatial beam profiles of all sidebands at z = 0.282 m. (a, g), (b, h), (c, i), (d, f) correspond to the spatial profiles of the fourth, third, second, first pairs of anti-Stokes and Stokes sidebands, respectively, (e) represents the spatial beam profile of the pump peak sideband.

Download Full Size | PPT Slide | PDF

Finally, we implemented the numerical simulations which involve the modal dispersion term. The first five subgraphs in Fig. 5 represent the spectra of the first five radially- symmetric modes and the total spectrum of the five spatial modes, where the propagation distance z = 0.252 m. Different from Fig. 2, Fig. 5 shows a slight asymmetry in each subgraph caused by the modal dispersion. However, the spectrum shapes of these spatial modes are still very similar, which indicates that it’s reasonable to ignore the modal dispersion term for a more intuitive and simpler analysis when we studied the generation of GPI in GRIN MMFs.

 figure: Fig. 5.

Fig. 5. Spectra of first five-orders radially-symmetric modes and the five spatial modes’ sum spectrum, where z = 0.252 m. The red dotted lines and the black dotted lines show the positions of pump sideband and GPI sidebands by theoretical calculation, respectively. In the simulation, the modal dispersion term in Eq. (1) is included.

Download Full Size | PPT Slide | PDF

In the studies by Krupa et al., the GPI sidebands and the pump sideband are carried by the same spatial beam profile during the generation of the GPI sidebands [21]. We speculated the reason is that there are a significant number of spatial modes in their studies [21], and the pump underwent the process of Kerr self-cleaning before a substantial spectral broadening [18]. So, the main energy is distributed among the low-order modes (most of the energy flows into the fundamental mode). These spatial modes come from the same or adjacent modal groups, which means the small modal dispersions. Therefore, the modal components and the spatial beam distributions of the pump sideband and the GPI sidebands are the same.

4. Conclusion

In conclusion, we explored the generation and the spatial distributions of GPI sidebands in GRIN MMFs from the viewpoint of spatial modes. In this paper, we selected the first five radially-symmetric modes and employed the MM-GNLSE model to reproduce the GPI sidebands numerically. As expected, the numerical simulations agree well with the analytical predictions. Our studies indicate that the energy of the pump sideband flows into the GPI sidebands and all modes have a similar spectrum. Our results also show that the pump sideband and the GPI sidebands have a similar spatial distribution due to the nearly same modal components, and the large modal dispersion influences the symmetry of the spectrum of each mode. Our work shows the generation of the GPI sidebands from a clear and visualized view and provides a supplement for Krupa et al. ‘s studies on GPI.

It is well known that the GPI in GRIN MMFs can be used to induce the generation of supercontinuum from the visible light to the mid-infrared region [18,21], which offers an application in generating new applied light sources, especially in the biomedical imaging domain. Our studies provide some theoretical references for the further applications of the GPI in GRIN MMFs.

Funding

National Natural Science Foundation of China (11874019, 61875058, 92050101); Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University.

Disclosures

The authors declare no conflicts of interest.

Data availability

No data were generated or analyzed in the presented research.

References

1. W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013). [CrossRef]  

2. K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019). [CrossRef]  

3. K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

4. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015). [CrossRef]  

5. K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017). [CrossRef]  

6. Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. InfoBase Conf. Pap. 41(16), 3675–3678 (2014).

7. O. S. Sidelnikov, E. V. Podivilov, M. P. Fedoruk, and S. Wabnitz, “Random mode coupling assists Kerr beam self-cleaning in a graded-index multimode optical fiber,” Opt. Fiber Technol. 53, 101994 (2019). [CrossRef]  

8. A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

9. E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019). [CrossRef]  

10. E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019). [CrossRef]  

11. E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33(2), 144 (2016). [CrossRef]  

12. R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017). [CrossRef]  

13. J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8(10), 755–764 (2014). [CrossRef]  

14. H. Qin, X. Xiao, P. Wang, and C. Yang, “Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,” Opt. Lett. 43(9), 1982 (2018). [CrossRef]  

15. Y. Ding, X. Xiao, P. Wang, and C. Yang, “Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers,” Opt. Express 27(8), 11435 (2019). [CrossRef]  

16. L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020). [CrossRef]  

17. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015-Augus(3), 145–157 (2015).

18. K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016). [CrossRef]  

19. S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019). [CrossRef]  

20. M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

21. K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016). [CrossRef]  

22. C. Mas Arabí, A. Kudlinski, A. Mussot, and M. Conforti, “Geometric parametric instability in periodically modulated graded-index multimode fibers,” Phys. Rev. A 97(2), 023803 (2018). [CrossRef]  

23. H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019). [CrossRef]  

24. A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018). [CrossRef]  

25. S. Longhi and D. Janner, “Self-focusing and nonlinear periodic beams in parabolic index optical fibres,” J. Opt. B: Quantum Semiclassical Opt. 6(5), S303–S308 (2004). [CrossRef]  

26. X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in largecore multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632 (2008). [CrossRef]  

27. S. Longhi, “Modulational instability and space time dynamics in nonlinear parabolic-index optical fibers,” Opt. Lett. 28(23), 2363 (2003). [CrossRef]  

28. M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

29. M. Conforti, C. M. Arabi, A. Mussot, and A. Kudlinski, “Fast and accurate modelling of nonlinear pulse propagation in graded-index multimode fibers,” Opt. Lett. 42(19), 4004–4007 (2017). [CrossRef]  

30. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645 (2008). [CrossRef]  

31. P. Horak and F. Poletti, “Multimode Nonlinear Fibre Optics: Theory and Applications,” Recent Prog. Opt. Fiber Res. (2012).

32. L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018). [CrossRef]  

33. A. Mafi, “Pulse Propagation in a Short Nonlinear Graded-Index Multimode Optical Fiber,” J. Lightwave Technol. 30(17), 2803–2811 (2012). [CrossRef]  

34. L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband Dispersive Radiation by Spatiotemporal Oscillation of Multimode Waves,” Phys. Rev. Lett. 115(22), 223902 (2015). [CrossRef]  

35. S. S. Yu, C. H. Chien, Y. Lai, and J. Wang, “Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity,” Opt. Commun. 119(1-2), 167–170 (1995). [CrossRef]  

References

  • View by:

  1. W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
    [Crossref]
  2. K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
    [Crossref]
  3. K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).
  4. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
    [Crossref]
  5. K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
    [Crossref]
  6. Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. InfoBase Conf. Pap. 41(16), 3675–3678 (2014).
  7. O. S. Sidelnikov, E. V. Podivilov, M. P. Fedoruk, and S. Wabnitz, “Random mode coupling assists Kerr beam self-cleaning in a graded-index multimode optical fiber,” Opt. Fiber Technol. 53, 101994 (2019).
    [Crossref]
  8. A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).
  9. E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
    [Crossref]
  10. E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
    [Crossref]
  11. E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33(2), 144 (2016).
    [Crossref]
  12. R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
    [Crossref]
  13. J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8(10), 755–764 (2014).
    [Crossref]
  14. H. Qin, X. Xiao, P. Wang, and C. Yang, “Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,” Opt. Lett. 43(9), 1982 (2018).
    [Crossref]
  15. Y. Ding, X. Xiao, P. Wang, and C. Yang, “Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers,” Opt. Express 27(8), 11435 (2019).
    [Crossref]
  16. L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
    [Crossref]
  17. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015-Augus(3), 145–157 (2015).
  18. K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
    [Crossref]
  19. S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
    [Crossref]
  20. M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).
  21. K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
    [Crossref]
  22. C. Mas Arabí, A. Kudlinski, A. Mussot, and M. Conforti, “Geometric parametric instability in periodically modulated graded-index multimode fibers,” Phys. Rev. A 97(2), 023803 (2018).
    [Crossref]
  23. H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
    [Crossref]
  24. A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018).
    [Crossref]
  25. S. Longhi and D. Janner, “Self-focusing and nonlinear periodic beams in parabolic index optical fibres,” J. Opt. B: Quantum Semiclassical Opt. 6(5), S303–S308 (2004).
    [Crossref]
  26. X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in largecore multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632 (2008).
    [Crossref]
  27. S. Longhi, “Modulational instability and space time dynamics in nonlinear parabolic-index optical fibers,” Opt. Lett. 28(23), 2363 (2003).
    [Crossref]
  28. M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).
  29. M. Conforti, C. M. Arabi, A. Mussot, and A. Kudlinski, “Fast and accurate modelling of nonlinear pulse propagation in graded-index multimode fibers,” Opt. Lett. 42(19), 4004–4007 (2017).
    [Crossref]
  30. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645 (2008).
    [Crossref]
  31. P. Horak and F. Poletti, “Multimode Nonlinear Fibre Optics: Theory and Applications,” Recent Prog. Opt. Fiber Res. (2012).
  32. L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
    [Crossref]
  33. A. Mafi, “Pulse Propagation in a Short Nonlinear Graded-Index Multimode Optical Fiber,” J. Lightwave Technol. 30(17), 2803–2811 (2012).
    [Crossref]
  34. L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband Dispersive Radiation by Spatiotemporal Oscillation of Multimode Waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
    [Crossref]
  35. S. S. Yu, C. H. Chien, Y. Lai, and J. Wang, “Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity,” Opt. Commun. 119(1-2), 167–170 (1995).
    [Crossref]

2020 (1)

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

2019 (7)

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Y. Ding, X. Xiao, P. Wang, and C. Yang, “Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers,” Opt. Express 27(8), 11435 (2019).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

O. S. Sidelnikov, E. V. Podivilov, M. P. Fedoruk, and S. Wabnitz, “Random mode coupling assists Kerr beam self-cleaning in a graded-index multimode optical fiber,” Opt. Fiber Technol. 53, 101994 (2019).
[Crossref]

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
[Crossref]

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

2018 (4)

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018).
[Crossref]

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

C. Mas Arabí, A. Kudlinski, A. Mussot, and M. Conforti, “Geometric parametric instability in periodically modulated graded-index multimode fibers,” Phys. Rev. A 97(2), 023803 (2018).
[Crossref]

H. Qin, X. Xiao, P. Wang, and C. Yang, “Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,” Opt. Lett. 43(9), 1982 (2018).
[Crossref]

2017 (3)

2016 (3)

2015 (2)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband Dispersive Radiation by Spatiotemporal Oscillation of Multimode Waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

2014 (1)

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

2013 (1)

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref]

2012 (1)

2008 (2)

2004 (1)

S. Longhi and D. Janner, “Self-focusing and nonlinear periodic beams in parabolic index optical fibres,” J. Opt. B: Quantum Semiclassical Opt. 6(5), S303–S308 (2004).
[Crossref]

2003 (1)

1995 (1)

S. S. Yu, C. H. Chien, Y. Lai, and J. Wang, “Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity,” Opt. Commun. 119(1-2), 167–170 (1995).
[Crossref]

Addisu, M.

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Amezcua Correa, R.

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

Antonio Lope, J. E.

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

Arabi, C. M.

Babin, S. A.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

Barthelemy, A.

Barthélémy, A.

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

Bendahmane, A.

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

Bigot, L.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Chien, C. H.

S. S. Yu, C. H. Chien, Y. Lai, and J. Wang, “Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity,” Opt. Commun. 119(1-2), 167–170 (1995).
[Crossref]

Christodoulides, D. N.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband Dispersive Radiation by Spatiotemporal Oscillation of Multimode Waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. InfoBase Conf. Pap. 41(16), 3675–3678 (2014).

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015-Augus(3), 145–157 (2015).

M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

Churkin, D. V.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018).
[Crossref]

Conforti, M.

C. Mas Arabí, A. Kudlinski, A. Mussot, and M. Conforti, “Geometric parametric instability in periodically modulated graded-index multimode fibers,” Phys. Rev. A 97(2), 023803 (2018).
[Crossref]

M. Conforti, C. M. Arabi, A. Mussot, and A. Kudlinski, “Fast and accurate modelling of nonlinear pulse propagation in graded-index multimode fibers,” Opt. Lett. 42(19), 4004–4007 (2017).
[Crossref]

Correa, R. A.

M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

Couderc, V.

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Deliancourt, E.

Desfarges-Berthelemot, A.

Dias, F.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

Ding, Y.

Dudley, J. M.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

Dupiol, R.

Eftekhar, M. A.

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

Erkintalo, M.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

Fabert, M.

E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
[Crossref]

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

Fanjoux, G.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Fatome, J.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Fedoruk, M. P.

O. S. Sidelnikov, E. V. Podivilov, M. P. Fedoruk, and S. Wabnitz, “Random mode coupling assists Kerr beam self-cleaning in a graded-index multimode optical fiber,” Opt. Fiber Technol. 53, 101994 (2019).
[Crossref]

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Genty, G.

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

Gonta, V. A.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Grelu, P.

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

Guenard, R.

Han, L.

Horak, P.

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645 (2008).
[Crossref]

P. Horak and F. Poletti, “Multimode Nonlinear Fibre Optics: Theory and Applications,” Recent Prog. Opt. Fiber Res. (2012).

Isichenko, A.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

Janner, D.

S. Longhi and D. Janner, “Self-focusing and nonlinear periodic beams in parabolic index optical fibres,” J. Opt. B: Quantum Semiclassical Opt. 6(5), S303–S308 (2004).
[Crossref]

Jauberteau, R.

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Kermene, V.

Kharenko, D. S.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Kibler, B.

Kolesik, M.

M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

Krupa, K.

E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
[Crossref]

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Kudlinski, A.

C. Mas Arabí, A. Kudlinski, A. Mussot, and M. Conforti, “Geometric parametric instability in periodically modulated graded-index multimode fibers,” Phys. Rev. A 97(2), 023803 (2018).
[Crossref]

M. Conforti, C. M. Arabi, A. Mussot, and A. Kudlinski, “Fast and accurate modelling of nonlinear pulse propagation in graded-index multimode fibers,” Opt. Lett. 42(19), 4004–4007 (2017).
[Crossref]

Lai, Y.

S. S. Yu, C. H. Chien, Y. Lai, and J. Wang, “Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity,” Opt. Commun. 119(1-2), 167–170 (1995).
[Crossref]

Leproux, P.

Li, H.

Li, L.

Liu, Z.

Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. InfoBase Conf. Pap. 41(16), 3675–3678 (2014).

Longhi, S.

S. Longhi and D. Janner, “Self-focusing and nonlinear periodic beams in parabolic index optical fibres,” J. Opt. B: Quantum Semiclassical Opt. 6(5), S303–S308 (2004).
[Crossref]

S. Longhi, “Modulational instability and space time dynamics in nonlinear parabolic-index optical fibers,” Opt. Lett. 28(23), 2363 (2003).
[Crossref]

Lopez-Aviles, H. E.

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

Louot, C.

Lushnikov, P. M.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

Mafi, A.

Malomed, B. A.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

Mansuryan, T.

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

Mas Arabí, C.

C. Mas Arabí, A. Kudlinski, A. Mussot, and M. Conforti, “Geometric parametric instability in periodically modulated graded-index multimode fibers,” Phys. Rev. A 97(2), 023803 (2018).
[Crossref]

Menyuk, C. R.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

Millot, G.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

Mills, M. S.

M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

Modotto, D.

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Moloney, J. V.

Mussot, A.

C. Mas Arabí, A. Kudlinski, A. Mussot, and M. Conforti, “Geometric parametric instability in periodically modulated graded-index multimode fibers,” Phys. Rev. A 97(2), 023803 (2018).
[Crossref]

M. Conforti, C. M. Arabi, A. Mussot, and A. Kudlinski, “Fast and accurate modelling of nonlinear pulse propagation in graded-index multimode fibers,” Opt. Lett. 42(19), 4004–4007 (2017).
[Crossref]

Nazemosadat, E.

Niang, A.

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Pagnoux, D.

Perego, A. M.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018).
[Crossref]

Perret, S.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

Peyghambarian, N.

Podivilov, E. V.

O. S. Sidelnikov, E. V. Podivilov, M. P. Fedoruk, and S. Wabnitz, “Random mode coupling assists Kerr beam self-cleaning in a graded-index multimode optical fiber,” Opt. Fiber Technol. 53, 101994 (2019).
[Crossref]

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Poletti, F.

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645 (2008).
[Crossref]

P. Horak and F. Poletti, “Multimode Nonlinear Fibre Optics: Theory and Applications,” Recent Prog. Opt. Fiber Res. (2012).

Pourbeyram, H.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Am. B 33(2), 144 (2016).
[Crossref]

Qin, H.

Renninger, W. H.

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015-Augus(3), 145–157 (2015).

Sanjabi Eznaveh, Z.

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

Schülzgen, A.

X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in largecore multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632 (2008).
[Crossref]

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

Shalaby, B. M.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

Sidelnikov, O. S.

O. S. Sidelnikov, E. V. Podivilov, M. P. Fedoruk, and S. Wabnitz, “Random mode coupling assists Kerr beam self-cleaning in a graded-index multimode optical fiber,” Opt. Fiber Technol. 53, 101994 (2019).
[Crossref]

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Sidorenko, P.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

Smirnov, S. V.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018).
[Crossref]

Staliunas, K.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018).
[Crossref]

Sylvestre, T.

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
[Crossref]

Tonello, A.

E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Turitsyn, S.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Wabnitz, S.

O. S. Sidelnikov, E. V. Podivilov, M. P. Fedoruk, and S. Wabnitz, “Random mode coupling assists Kerr beam self-cleaning in a graded-index multimode optical fiber,” Opt. Fiber Technol. 53, 101994 (2019).
[Crossref]

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, G. Millot, A. Barthélémy, S. Wabnitz, and V. Couderc, “Kerr beam self-cleaning on the LP 11 mode in graded-index multimode fibers,” OSA Continuum 2(4), 1089 (2019).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthelemy, V. Couderc, S. Wabnitz, and G. Millot, “Far-detuned cascaded intermodal four-wave mixing in a multimode fiber,” Opt. Lett. 42(7), 1293 (2017).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

K. Krupa, C. Louot, V. Couderc, M. Fabert, R. Guenard, B. M. Shalaby, A. Tonello, D. Pagnoux, P. Leproux, A. Bendahmane, R. Dupiol, G. Millot, and S. Wabnitz, “Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber,” Opt. Lett. 41(24), 5785 (2016).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband Dispersive Radiation by Spatiotemporal Oscillation of Multimode Waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Wang, J.

S. S. Yu, C. H. Chien, Y. Lai, and J. Wang, “Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity,” Opt. Commun. 119(1-2), 167–170 (1995).
[Crossref]

Wang, P.

Wise, F.

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

Wise, F. W.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband Dispersive Radiation by Spatiotemporal Oscillation of Multimode Waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref]

Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. InfoBase Conf. Pap. 41(16), 3675–3678 (2014).

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015-Augus(3), 145–157 (2015).

M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

Wright, L. G.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband Dispersive Radiation by Spatiotemporal Oscillation of Multimode Waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. InfoBase Conf. Pap. 41(16), 3675–3678 (2014).

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015-Augus(3), 145–157 (2015).

M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

Wu, F. O.

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

Xiao, X.

Yang, C.

Yu, S. S.

S. S. Yu, C. H. Chien, Y. Lai, and J. Wang, “Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity,” Opt. Commun. 119(1-2), 167–170 (1995).
[Crossref]

Zhu, X.

Zhu, Z.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

Ziegler, Z. M.

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

APL Photonics (3)

K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu, D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spatiotemporal avenue,” APL Photonics 4(11), 110901 (2019).
[Crossref]

S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, and T. Sylvestre, “Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre,” APL Photonics 4(2), 022905 (2019).
[Crossref]

H. E. Lopez-Aviles, F. O. Wu, Z. Sanjabi Eznaveh, M. A. Eftekhar, F. Wise, R. Amezcua Correa, and D. N. Christodoulides, “A systematic analysis of parametric instabilities in nonlinear parabolic multimode fibers,” APL Photonics 4(2), 022803 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–16 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. B: Quantum Semiclassical Opt. (1)

S. Longhi and D. Janner, “Self-focusing and nonlinear periodic beams in parabolic index optical fibres,” J. Opt. B: Quantum Semiclassical Opt. 6(5), S303–S308 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

W. H. Renninger and F. W. Wise, “Optical solitons in graded-index multimode fibres,” Nat. Commun. 4(1), 1719 (2013).
[Crossref]

Nat. Photonics (3)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nat. Photonics 9(5), 306–310 (2015).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8(10), 755–764 (2014).
[Crossref]

Nat. Phys. (1)

L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” Nat. Phys. 16(5), 565–570 (2020).
[Crossref]

Opt. Commun. (1)

S. S. Yu, C. H. Chien, Y. Lai, and J. Wang, “Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity,” Opt. Commun. 119(1-2), 167–170 (1995).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

O. S. Sidelnikov, E. V. Podivilov, M. P. Fedoruk, and S. Wabnitz, “Random mode coupling assists Kerr beam self-cleaning in a graded-index multimode optical fiber,” Opt. Fiber Technol. 53, 101994 (2019).
[Crossref]

Opt. Lett. (5)

OSA Continuum (1)

Phys. Rev. A (1)

C. Mas Arabí, A. Kudlinski, A. Mussot, and M. Conforti, “Geometric parametric instability in periodically modulated graded-index multimode fibers,” Phys. Rev. A 97(2), 023803 (2018).
[Crossref]

Phys. Rev. Lett. (4)

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-Induced Faraday Instability Laser,” Phys. Rev. Lett. 120(21), 213902 (2018).
[Crossref]

L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise, “Ultrabroadband Dispersive Radiation by Spatiotemporal Oscillation of Multimode Waves,” Phys. Rev. Lett. 115(22), 223902 (2015).
[Crossref]

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref]

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Other (7)

A. Niang, V. Couderc, A. Tonello, K. Krupa, M. Addisu, R. Jauberteau, M. Fabert, D. Modotto, and S. Wabnitz, “Self-Cleaning on a Higher Order Mode in Ytterbium-Doped Multimode Fiber with Parabolic Profile,” 2019 Conf. Lasers Electro-Optics, CLEO 2019 - Proc. (Ld), 4–5 (2019).

Z. Liu, L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber,” Opt. InfoBase Conf. Pap. 41(16), 3675–3678 (2014).

K. Krupa, A. Tonello, A. Bendahmane, R. Dupiol, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatiotemporal nonlinear interactions in multimode fibers,” Eur. Conf. Opt. Commun. ECOC (1), 247–249 (2016).

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Conf. Lasers Electro-Optics Eur. - Tech. Dig. 2015-Augus(3), 145–157 (2015).

M. A. Eftekhar, M. S. Mills, L. G. Wright, M. Kolesik, R. A. Correa, F. W. Wise, and D. N. Christodoulides, “Versatile supercontinuum generation in parabolic multimode optical fibers,” 2016 Conf. Lasers Electro-Optics, CLEO 2016 25(8), 9078–9087 (2016).

M. A. Eftekhar, Z. Sanjabi Eznaveh, J. E. Antonio Lope, M. Kolesik, A. Schülzgen, F. W. Wise, D. N. Christodoulides, and R. Amezcua Correa, “Tailoring nonlinear frequency generation in graded-index multimode fibers,” 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc. 42(5), (2017).

P. Horak and F. Poletti, “Multimode Nonlinear Fibre Optics: Theory and Applications,” Recent Prog. Opt. Fiber Res. (2012).

Supplementary Material (1)

NameDescription
Visualization 1       The envolution of the spectra of the first five radially-symmetric modes.

Data availability

No data were generated or analyzed in the presented research.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Numerical simulation results of the first four-orders GPI sidebands. The propagation distance z of the pulse is 0.3 m in the parabolic GRIN MMF. The red dotted line corresponds to the pump sideband position, and the black dotted lines indicate the positions of Stokes and anti-Stokes sidebands.
Fig. 2.
Fig. 2. Spectra of the first five radially-symmetric modes and the five spatial modes’ total spectrum, where z = 0.282 m. The black dotted lines indicate the theoretical prediction locations of the first four-orders GPI sidebands. And the red dotted lines represent the positions of the pump sidebands.
Fig. 3.
Fig. 3. The evolutions of the mean increased pump energy ${E_{MIPE}}$ and the mean increased mode energy ${E_{MIME}}$ upon the propagation distance z.
Fig. 4.
Fig. 4. The spatial beam profiles of all sidebands at z = 0.282 m. (a, g), (b, h), (c, i), (d, f) correspond to the spatial profiles of the fourth, third, second, first pairs of anti-Stokes and Stokes sidebands, respectively, (e) represents the spatial beam profile of the pump peak sideband.
Fig. 5.
Fig. 5. Spectra of first five-orders radially-symmetric modes and the five spatial modes’ sum spectrum, where z = 0.252 m. The red dotted lines and the black dotted lines show the positions of pump sideband and GPI sidebands by theoretical calculation, respectively. In the simulation, the modal dispersion term in Eq. (1) is included.

Tables (1)

Tables Icon

Table 1. First Four Frequency Offsets

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z A p ( z , t ) = i δ β 0 ( p ) A p δ β 1 ( p ) t A P + m = 2 N d i m + 1 β m ( p ) m ! t m A P + i n 2 ω 0 c ( 1 + i ω 0 t ) l , m , n N [ ( 1 f R ) S p l m n K A l A m A n + f R S p l m n R A l t d τ h R ( τ ) A m ( z , t τ ) A n ( z , t τ ) ]
Δ E P u m p = E P u m p E I n i t i a l P u m p Δ E M o d e = E M o d e E I n i t i a l M o d e
E M I P E = Δ E P u m p / Δ f P u m p E M I M E = Δ E M o d e / Δ f M o d e

Metrics