Abstract

Herein, we fabricated and investigated the carbon nanotube (CNT) integrated metamaterial for orthogonal polarization control in the THz regime, which is composed of a sandwiched CNT layer with the adjacent metal gratings in the sub-wavelength integration. Under the mechanism of multilayer polarization selection and multiple reflections in CNT constructed micro-cavity, the perfect orthogonal polarization conversion is achieved and the transmittance spectrum presents multi-band peaks and valleys, which coincide with the theoretical Fabry-Perot resonance. Besides, by controlling the layer number and orientations of the middle CNT, the active modulation of the amplitude and phase in compound metamaterials are realized. Based on the simulation of CNT in the grating model, it obtains a good agreement with the experimental results, and the simulated electric field distribution also confirmed the inner polarization conversion mechanism. This work combines nanomaterials with optical microstructures and successfully applies them to the THz polarization control, which will bring new ideas for design novel THz devices.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

With the promotion of terahertz (THz) source and detection technology, THz science has made unprecedented progress in the past two decades [1], which shows great application prospects in security check [2], spectral detection [3], and the next-generation wireless communication (6G) [4]. However, the key functional devices required in THz applications need to be further developed, especially the THz polarization devices [5,6], which play an important role in polarization analysis, imaging, and polarization communication system [79]. However, the existing THz polarization control devices are mainly relying on the natural crystal material with small birefringence, and it is severely limited by the large volume, great loss, and unable to regulate [10,11]. Therefore, it is necessary to develop new materials and structures for THz polarization control.

Nowadays, artificial metamaterials have brought new vitality to electromagnetic wave manipulation owing to their powerful capabilities in amplitude, phase, and polarization control, just by the flexible design of the structural parameters or the layout in the sub-wavelength scale [1220]. Compare with the dielectric material, metal metamaterials with strong local resonance effects are mostly adopted to realize the polarization transformation, such as the asymmetric metal unit like “C-shaped”, “V-shaped”, “L-shaped”, “H-shaped” and wire-grating structures [2125]. In particular, as the mature THz polarizer, the sub-wavelength metal grating (MG) plays an irreplaceable role in linear polarization generation and detection. Currently, a variety of MG-based multilayer metamaterials have been demonstrated to achieve the THz polarization conversion [2628]. For example, N. K. Grady et al. realized an efficient linear polarization conversion based on tri-layer MG with >80% transmission and 1.2THz bandwidth [29], but the polarization efficiency or transmittance cannot be modulated due to the uncontrollable nature of metal materials. Zhang et al. presented a dynamically tunable THz polarization rotator based on graphene-MG metamaterial by adjusting the Fermi energy of graphene [30]. Although such functional materials integrated metamaterials can realize the active control, they are limited by the need of outfield driving, complex processing, and difficult to implement experimentally.

Carbon nanotube (CNT), made by rolled-up graphene sheet, has drawn broad interests due to the great potential in energy [31], electronic transistors [32], and THz science (i.e., THz radiation, detection, and polarization control) [3336]. In the field of THz polarization control, CNT can be employed as a THz polarizer, which can realize the transmission or absorption of the linear polarized THz waves with different polarization orientations. More importantly, the extinction ratio and the polarization degree of CNT can be actively tuned simply by changing the layer number. For example, Kyoung et al. proposed a freestanding THz polarizer based on highly-oriented multiwalled CNT and realized the increased extinction ratios by changing the CNT layer from 10 to 75 [37]. However, the independent CNT cannot realize the polarization rotation (for example, cross-polarization conversion) and it is also limited by the low polarization degree. In this case, the integration of MG with CNT may bring new opportunities for developing the high-performance THz polarization conversion device.

In this study, we obtain the THz orthogonal polarization control based on the compound metamaterial composed of the CNT layer sandwiched by two MG layers (CSMG). In the integration of CSMG, the Fabry-Perot resonance cavity is constructed by the CNT and MG layers. The experimental results show that the transmission spectrum possesses multiple peaks and valleys with a constant frequency interval. Moreover, the influence of CNT layer number and CNT orientation on polarization conversion of CSMG was studied. By the simulation of CNT in the grating model, the simulation results have a good agreement with the experiments. This work provides a good way towards practical applications for THz polarization manipulation by employ the nanomaterial with optical microstructures.

2. Experimental methods

There are three components in this CNT integrated metamaterial, of which the middle is a CNT layer, the upper and lower is the metal grating layer on a quartz substrate, as shown in Fig. 1(a). Here, the orientations of two MG layers are orthogonal arranged with each other and they are oriented with an angle of 45° or -45° to the middle CNT layer. The MG layers are made of 200 nm-thick gold with the dimensions of p=20 um and w=14 um on a 500-nm-thick quartz substrate, and it has been fabricated through the micro-nano process of masking, lithography, evaporation, stripping, and lastly, the samples with the size of 1 cm × 1 cm are obtained by the laser scribing [38]. CNT here is drawn from long-ranged and highly aligned multiwalled CNT forests (≈6 walls, ≈9 nm of outer diameter), which is grown by chemical vapor deposition (CVD) [39]. Figure 1(b) and Fig. 1(c) show the SEM images of the CNT layer with different magnifications of 2um and 200 nm, and we can find that the CNTs are generally arranged in order, except for very small branches. The thickness of the CNT layer (tc) depends on the CNT layer number, which in the range of a few to tens of nanometers. The integration process of CNT with MG is as follows: firstly, the CNT was transferred from the CNT forests to the quartz side of the MG layer by using glass rods and rectangular frames, and make sure it has a 45° orientation to the grating; secondly, to make the CNT well attach to the quartz surface, the ethanol was spray-coated onto the sample, and the multi-layer CNT can adhere on the back of MG layer after repeat the above steps; lastly, align the grating orientations of the second MG perpendicular with the CNT-attached MG, and complete the packaging with UV glue.

 figure: Fig. 1.

Fig. 1. (a) Schematic diagram and geometric dimensions of the CNT-integrated metamaterial: p=20 um, w=14 um, tg=200 nm, and tQ=500 um. SEM images of the CNT layer with different magnifications of (b) 2 um and (c) 200 nm. (d) Schematic diagram of THz-TDS system. BS: beam splitter, PCA: photoconductive antenna; P1-P4: parabolic mirror; λ/4: quarter-wave plate; WP: Wollaston prisms.

Download Full Size | PPT Slide | PDF

The experiments were performed by using the self-built THz time-domain spectroscopy system (THz-TDS) [40], as schematically illustrated in Fig. 1(d). Here, the THz pulse was generated by a low-temperature-grown GaAs photoconductive antenna (PCA), and a (110) ZnTe crystal was used for detection. The excitation source was a Ti: sapphire laser with 75 fs duration of 80 MHz repetition rate with a central wavelength of 800 nm. The incident laser is divided into two paths after the BS, to generate and detect the THz waves. The emitted THz wave from PCA is focused on the sample through the gilded parabolic mirror P1 and P2, and then the modulated THz wave that passed through the sample was focused on the ZnTe crystal by the parabolic mirror P3 and P4. Meanwhile, the probe fs-light incident at the same position of the ZnTe crystal through a certain delay optical path. When there is a THz signal, the intensity of the separated fs-light that passes through λ/4, WP, and balance detector will change, and it is proportional to the THz electric field. Based on this, we can extract the THz temporal signal by using this electro-optic sampling approach [41]. The measuring time step was 0.04 ps in this experiment. All the experiments were carried out at room temperature with humidity of less than 5%.

3. Results and discussions

3.1 Polarization characteristics of CSMG with different CNT layers

In our previous work [25,39], we have studied the polarization characteristics of the discrete sub-wavelength MG and CNT in the THz band and concluded that MG can be employed as a perfect THz polarizer, and only the polarization components that perpendicular to the grating directions can be output from the metal gratings. The polarization performance of CNT can be actively tuned by changing the layer number and orientations. In the following, we will mainly discuss the 90° linear polarization conversion of the composite device. As illustrated in Fig. 1(a), the lower metal grating (MG2) is oriented along the x-axis, therefore, the final polarization that output from CSMG must be perpendicular to the direction of MG2. Here the THz wave incident into the CSMG is x-linear polarized, and then the y-linear polarized signal that transmitted from the device is detected. Figure 2(a) shows the experimental results of the measured THz-TDS signals of CSMG with different CNT layers. The whole spectrum can be divided into three parts, the main pulse from 2.5∼10 ps, the small fluctuations from 10∼17.5 ps, and the deputy pulse from 17.5∼25 ps. It should be pointed out that the deputy pulse here is not common to see in the transmitted THz signal, and it may be originated from the internal interaction in CSMG. Besides, by contrast with the different CNT layers, we can find the peak amplitude drops linearly with the decreases of the CNT layers from 50 to 0 layers, and the amplitude is approximately zero when no CNT exists (i.e. 0 layers). By the Fourier transform of time-domain signals, the amplitude transmission was obtained as shown in Fig. 2(b). Here, the CSMG with 50-layer CNT has the highest transmission and it presents multi-band peaks and valleys, and the frequency bandwidths are nearly the same to ∼75 GHz. With the decrease of the CNT layers, the peak transmittance linearly decreased, which is consistent with the variation trend of the time-domain signals in Fig. 2(a). Also, we can find the position of the peak frequency has a slight red-shift with the decrease of the CNT layer, and this is due to the phase lag of the deputy pulse in the time domain signal. If the number of CNT layers is further increased (>50), the corresponding polarization degree of CNT will also be higher, but it will bring more loss to the composite device. Therefore, the high polarization conversion rate and low loss cannot be achieved simultaneously for composite devices, and the CNT achieves a good balance in the case of 50 layers.

 figure: Fig. 2.

Fig. 2. (a) Experimental THz-TDS signals of CSMG with different CNT layers from 0 to 50; (b) The corresponding transmission spectrum by the Fourier transform of the time-domain signals. (c) The peak transmittance (at 0.468 THz) and CNT-DOP as the function of the CNT layer number. (d) The simulated transmission spectrum of CSMG with different CNT layers by setting CNT conductivity from 0 to 2000 S/m in the grating model.

Download Full Size | PPT Slide | PDF

To analyze the effect of CNT layers on polarization conversion of CSMG, we present the transmittance of CSMG and the degree of polarization (DOP) of CNT with the increased CNT layers, as shown in Fig. 2(c). The red lines represent the peak transmittance of CSMG at 0.468 THz, and it increased from 0.02 of 0-layer CNT to 0.60 of 50-layer CNT. The CNT-DOP is shown in blue lines, and it has high values of 87.2%, 93.5%, and 98.7% when the CNT layers in 20, 35, and 50. Most importantly, the variation trend of the two curves keeps the same pace, the front rises faster (0-20) and the back slowly tends to be flat (20-50). Therefore, we can conclude that the transmittance has a positive correlation with the CNT-DOP, and in turn, the high CNT-DOP brings in the good polarization conversion efficiency of the compound device.

To verify the experimental results, we performed the simulation of CSMG by using CST software. The excitation source and signal detection adopt the configuration of a planar wave with a probe, and two pairs of the periodic boundary condition are set at both x- and y-directions. In the simulation model, the quartz is set to be lossless with the permittivity of 3.61, and the gold is set as the loss metal with the electrical conductivity of 4.5e7 S/m. To reflect the structure of CNT, we simplified it into a conductive grating model with a period of 4um and a diameter of 0.1um, which is optimized by parameter scanning. The specific simulation model of CSMG can be seen in Fig. 4(b). The modulation of CNT-DOP is realized by varying the conductivity in the grating model. Based on this, the transmittance spectrum of CSMG with different CNT layers is achieved. Here, the simulation results are agreed with the experiments, especially in the amplitude variations and frequency intervals. As shown in Fig. 2(d), the transmittance spectrum exhibit a spectra envelope as a function of frequency (i.e., drop at a higher frequency), and it is similar to the frequency selection effect of non-monochromatic light incident into the Fabry-Perot cavity. Since we approximate the carbon nanotubes by using the grating with electrical conductivity, the simulation is only close to the experimental results, but not a perfect match.

3.2 Polarization characteristics of CSMG with different CNT orientations

In Fig. 3, we discuss the effect of the CNT orientations on the polarization conversion of the compound device. Here, the orientation of CNT is defined by the relative angle to the direction of grating ridges of the MG1 layer, for example, 0° means CNT is parallel to the grating ridges. Figure 3(b) shows the measured THz-TDS signals of CSMG with three CNT orientations. When the CNT is in the 0° orientation, no effective polarization component is produced and the CNT loses the ability to realize polarization conversion, therefore the signals almost the background noises, as shown in the yellow line of Fig. 3(c). Besides, we compared two symmetric configurations of 45° and -45° in the time-domain signals, of which possess the same amplitude but with the inversed phase, and one of these lines can be reversed by the other. By the Fourier transform of time-domain signals, the phase shift spectrum can be obtained as shown in Fig. 3(d). We can find δ (45°)-δ (45°) always the integer multiple of π at the given frequency, which confirms the reversed-phase in symmetric configurations. This is because the CNT with the orientation of 45° and -45° converts most of the polarization states into left-handed and right-handed polarized light, and the linear polarization generated by their components after passing through MG2 will naturally have the phase shift of π [42].

 figure: Fig. 3.

Fig. 3. (a) Schematic diagram of CSMG with CNT orientation of 0°, 45°, and -45°; (b) Experimental THz-TDS signals (50-layer CNT). (c) The corresponding transmission spectrum. (d) The phase shift of δ(45°), δ(-45°) and δ(45°)-δ(45°).

Download Full Size | PPT Slide | PDF

In addition, we present the simulation transmittance results of CSMG when CNT orientates at the angles from 0° to 90° with a 15° interval, as shown in Fig. 4. Here, the structure of CSMG is simulated in the CST software with different CNT orientations. The structure is composed of the front MG1, the middle CNT layer, and the back MG2. The middle CNT orientated into the three angles of 0°, 45°, and 90° is shown in Figs. 4(a)–4(c). The incident light is x-polarized and y-polarized light is detected, which is consistent with the configuration of the experiments. In this way, the simulative transmittance spectrum of CSMG when the angle change from 0° to 90° was obtained, as shown in Figs. 4(d) and 4(e). Since the CNT can realize the better polarization transformation at 45° orientations, therefore the average transmission of CSMG is higher than in other directions. Due to the polarization effect of any two angles that added to 90° is equivalent for the CNT, so their transmittance lines are nearly the same, such as the results in 15° and 75° orientations shown in Fig. 4(d) and Fig. 4(e). Therefore, the above experimental and simulation results manifest that the amplitude of CSMG also can be modulated by changing the orientations of the CNT layer.

 figure: Fig. 4.

Fig. 4. The simulated CSMG model with different CNT orientations of 0° (a), 45° (b), and 90° (c). The golden part: MG layer; The grey part: quartz substrate; The blue part: CNT layer. Simulative transmittance spectrum of CSMG when CNT orientate from 0° to 45° (d) and 45° to 90° (e).

Download Full Size | PPT Slide | PDF

3.3 Theoretical analysis and simulation verification

To clarify the inner polarization conversion mechanism, we show the diagram of the polarization evolution in CSMG, as shown in Fig. 5(a). Here, the x- and y-linear polarizations are represented in red or green arrows, separately. In our design, the MG layer from the front and back plays the role of the polarization selection, and the CNT layer is used to produce a 45° polarization component. When the x-polarized light incident into the CSMG, it can be freely transmitted from MG1 and enter the first microcavity formed by MG1 and CNT. The components that parallel to the CNT orientation will reflect back and forth in this microcavity and the components that perpendicular to the CNT orientation can further penetrate the second microcavity formed by CNT and MG2. Under the process of the multi-reflection, polarization selection, and polarization transformation, the y-polarized wave will be greatly accumulated and then output from MG2 eventually.

 figure: Fig. 5.

Fig. 5. (a) Schematic diagram of the linear polarization conversion of CSMG in the x-z cutting plane. (b) The simulated transmission spectrum of CSMG when the quartz thickness tQ is 200 um, 300 um, and 400 um with the CNT conductivity of 2000 S/m.

Download Full Size | PPT Slide | PDF

In addition, the above analysis can be explained by the classical Fabry-Perot interference theory [43]. The frequencies of the positive interference are equally spaced, and the frequency intervals $\Delta v$ can be expressed by:

$$\Delta \nu \textrm{ = }\frac{c}{{2nd}},$$
where c is the speed of light in a vacuum, n, and d is the refractive index and length of the transmission medium in the Fabry-Perot cavity, respectively. In CSMG, the transmission medium is quartz and n = 1.9, d = 1 mm, then we can figure out that $\Delta v$ equals to 78.9 GHz, which match the experimental results in theory, and the small discrepancies may come from the uncertainty in the thickness of the quartz substrates. Moreover, we study the relation between cavity length d and frequency interval $\Delta v$. As shown in Fig. 5(b), we can find that the smaller d is, the larger $\Delta v$ is. Therefore, the frequency position and the intervals in the transmission spectrum can be theoretically regulated by changing the cavity length.

Furthermore, we demonstrate the electric field distributions of CSMG to confirm the inner mechanism of multiple resonances and polarization conversion in the x-z cutting view. In Fig. 6(a) and Fig. 6(b), we compare the electric field distributions of CSMG at 0.43 THz and 0.468 THz, in which the frequency is located to the transmission valley and peak in Fig. 3(c). For the transmission valley, we can find it has a strong resonance between MG1and MG2, and the incident energy is reflected by MG2, which cannot output from CSMG, as shown in Fig. 6(a). As to the transmission peak shown in Fig. 6(b), there also has multiple resonances in the cavity but the resonance intensity has some reduced, and most of them transformed into the transmitted wave. Therefore, CSMG has high transmission at the position of the transmission peak. Moreover, to reveal the conversion in polarization state, we present the electric vector distribution of CSMG at 0.468THz with different planes in the x-y cutting view, as shown in Figs. 6(c)–6(e). As mentioned above, the THz wave incident into CSMG is x-linear polarized, and its electric vector distribution is shown in Fig. 6(c). Under the polarization selection and local resonance mechanism, the polarization state inside CSMG is transformed into several parts including elliptic polarization, circular polarization, and rotational linear polarization. So the electric vectors adjacent to the CNT layer present many kinds of forms at the x-y projection plane, as shown in Fig. 6(d). After passing through MG2, the electric vectors at the output plane become vertical to the input plane, which indicated the polarization state is perfectly orthogonally transformed, as shown in Fig. 6(e).

 figure: Fig. 6.

Fig. 6. The electric field distributions of CSMG in the x-z cutting plane with the frequency of 0.43THz (a) and 0.468THz (b); the electric vector distribution of CSMG in the x-y cutting plane with the (c) input plane, (d) middle plane, and (e) output plane at 0.468THz, the arrows indicate the direction of the electric field vectors.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we propose a strategy that integrates CNT with artificial microstructures to realize the perfect orthogonal polarization manipulation in the THz regime. By the measurement of the experimental THz-TDS, the transmission spectrum of the integrated structure shows multi-band peaks and valleys with the same frequency space, which good satisfies the law of the theoretical Fabry-Perot interference. Besides, we achieve the active modulation of the amplitude and phase in CSMG by controlling the CNT layer numbers and orientations. To confirm the authenticity of the experiments, we performed the simulation by simplifying the CNT into a conductive grating model. The simulated electric field distributions good reflect the inner mechanism of multiple resonances and polarization conversion. Based on the interference theory, the working band can be extended to other frequencies by adjusting the media thickness and refractive index of the Fabry-Perot cavity. This work will bring new ideas for the research in developing and broaden novel THz polarization devices with nanomaterials and artificial microstructures.

Funding

National Natural Science Foundation of China (62005143, 61971242, 61831012); Natural Science Foundation of Tianjin City (19JCYBJC16600); Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2017-12).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017). [CrossRef]  

2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005). [CrossRef]  

3. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008). [CrossRef]  

4. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016). [CrossRef]  

5. J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018). [CrossRef]  

6. Z. Cheng and Y. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019). [CrossRef]  

7. T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its application to anisotropy sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013). [CrossRef]  

8. N. C. J. Valk, W. A. M. Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005). [CrossRef]  

9. M. S. Islam, J. Sultana, A. Dinovitser, F. Mohammad, R. I. Mohammad, W.-H. N. Brian, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018). [CrossRef]  

10. K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013). [CrossRef]  

11. A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev, S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov, R. Z. Deyanov, and B. Redlich, “Terahertz polarization conversion with quartz waveplate sets,” Appl. Opt. 52(4), B60–B69 (2013). [CrossRef]  

12. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). [CrossRef]  

13. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014). [CrossRef]  

14. S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012). [CrossRef]  

15. W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017). [CrossRef]  

16. L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016). [CrossRef]  

17. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014). [CrossRef]  

18. J. Fan and Y. Cheng, “Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave,” J. Phys. D: Appl. Phys. 53(2), 025109 (2020). [CrossRef]  

19. Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, and R. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019). [CrossRef]  

20. Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020). [CrossRef]  

21. H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017). [CrossRef]  

22. X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015). [CrossRef]  

23. S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014). [CrossRef]  

24. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015). [CrossRef]  

25. S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017). [CrossRef]  

26. R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015). [CrossRef]  

27. B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017). [CrossRef]  

28. R.-H. Fan, D. Liu, R.-W. Peng, W.-B. Shi, H. Jing, X.-R. Huang, and M. Wang, “Broadband integrated polarization rotator using three-layer metal grating structures,” Opt. Express 26(1), 516–524 (2018). [CrossRef]  

29. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013). [CrossRef]  

30. Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018). [CrossRef]  

31. L. Sun, X. Wang, Y. Wang, and Q. Zhang, “Roles of carbon nanotubes in novel energy storage devices,” Carbon 122, 462–474 (2017). [CrossRef]  

32. G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019). [CrossRef]  

33. S. Kar and A. K. Sood, “Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: Optical pump-terahertz probe spectroscopy,” Carbon 144, 731–736 (2019). [CrossRef]  

34. O. V. Kibis, R. M. Costa, and M. E. Portnoi, “Generation of terahertz radiation by hot electrons in carbon nanotubes,” Nano Lett. 7(11), 3414–3417 (2007). [CrossRef]  

35. R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018). [CrossRef]  

36. B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020). [CrossRef]  

37. J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011). [CrossRef]  

38. S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017). [CrossRef]  

39. S.-T. Xu, L.-L. Mou, F. Fan, S. Chen, Z. Zhao, D. Xiang, M. J. Andrade, Z. Liu, and S.-J. Chang, “Mechanical modulation of terahertz wave via buckled carbon nanotube sheets,” Opt. Express 26(22), 28738–28750 (2018). [CrossRef]  

40. Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019). [CrossRef]  

41. Y. S. Lee, Principles of terahertz science and technology, (Springer Science & Business Media, 2009).

42. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014). [CrossRef]  

43. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, (Elsevier, 2013).

References

  • View by:
  • |
  • |
  • |

  1. X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
    [Crossref]
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  3. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
    [Crossref]
  4. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  5. J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  6. Z. Cheng and Y. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
    [Crossref]
  7. T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its application to anisotropy sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
    [Crossref]
  8. N. C. J. Valk, W. A. M. Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
    [Crossref]
  9. M. S. Islam, J. Sultana, A. Dinovitser, F. Mohammad, R. I. Mohammad, W.-H. N. Brian, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
    [Crossref]
  10. K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
    [Crossref]
  11. A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev, S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov, R. Z. Deyanov, and B. Redlich, “Terahertz polarization conversion with quartz waveplate sets,” Appl. Opt. 52(4), B60–B69 (2013).
    [Crossref]
  12. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  13. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  14. S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref]
  15. W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
    [Crossref]
  16. L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
    [Crossref]
  17. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref]
  18. J. Fan and Y. Cheng, “Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave,” J. Phys. D: Appl. Phys. 53(2), 025109 (2020).
    [Crossref]
  19. Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, and R. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
    [Crossref]
  20. Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
    [Crossref]
  21. H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
    [Crossref]
  22. X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
    [Crossref]
  23. S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
    [Crossref]
  24. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
    [Crossref]
  25. S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017).
    [Crossref]
  26. R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
    [Crossref]
  27. B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
    [Crossref]
  28. R.-H. Fan, D. Liu, R.-W. Peng, W.-B. Shi, H. Jing, X.-R. Huang, and M. Wang, “Broadband integrated polarization rotator using three-layer metal grating structures,” Opt. Express 26(1), 516–524 (2018).
    [Crossref]
  29. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref]
  30. Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
    [Crossref]
  31. L. Sun, X. Wang, Y. Wang, and Q. Zhang, “Roles of carbon nanotubes in novel energy storage devices,” Carbon 122, 462–474 (2017).
    [Crossref]
  32. G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
    [Crossref]
  33. S. Kar and A. K. Sood, “Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: Optical pump-terahertz probe spectroscopy,” Carbon 144, 731–736 (2019).
    [Crossref]
  34. O. V. Kibis, R. M. Costa, and M. E. Portnoi, “Generation of terahertz radiation by hot electrons in carbon nanotubes,” Nano Lett. 7(11), 3414–3417 (2007).
    [Crossref]
  35. R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
    [Crossref]
  36. B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
    [Crossref]
  37. J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
    [Crossref]
  38. S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
    [Crossref]
  39. S.-T. Xu, L.-L. Mou, F. Fan, S. Chen, Z. Zhao, D. Xiang, M. J. Andrade, Z. Liu, and S.-J. Chang, “Mechanical modulation of terahertz wave via buckled carbon nanotube sheets,” Opt. Express 26(22), 28738–28750 (2018).
    [Crossref]
  40. Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
    [Crossref]
  41. Y. S. Lee, Principles of terahertz science and technology, (Springer Science & Business Media, 2009).
  42. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
    [Crossref]
  43. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, (Elsevier, 2013).

2020 (3)

J. Fan and Y. Cheng, “Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave,” J. Phys. D: Appl. Phys. 53(2), 025109 (2020).
[Crossref]

Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
[Crossref]

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

2019 (5)

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

S. Kar and A. K. Sood, “Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: Optical pump-terahertz probe spectroscopy,” Carbon 144, 731–736 (2019).
[Crossref]

Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, and R. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
[Crossref]

Z. Cheng and Y. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

2018 (6)

M. S. Islam, J. Sultana, A. Dinovitser, F. Mohammad, R. I. Mohammad, W.-H. N. Brian, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

R.-H. Fan, D. Liu, R.-W. Peng, W.-B. Shi, H. Jing, X.-R. Huang, and M. Wang, “Broadband integrated polarization rotator using three-layer metal grating structures,” Opt. Express 26(1), 516–524 (2018).
[Crossref]

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

S.-T. Xu, L.-L. Mou, F. Fan, S. Chen, Z. Zhao, D. Xiang, M. J. Andrade, Z. Liu, and S.-J. Chang, “Mechanical modulation of terahertz wave via buckled carbon nanotube sheets,” Opt. Express 26(22), 28738–28750 (2018).
[Crossref]

2017 (7)

S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017).
[Crossref]

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

L. Sun, X. Wang, Y. Wang, and Q. Zhang, “Roles of carbon nanotubes in novel energy storage devices,” Carbon 122, 462–474 (2017).
[Crossref]

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

2016 (2)

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

2015 (3)

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref]

2014 (4)

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

2013 (4)

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its application to anisotropy sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[Crossref]

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev, S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov, R. Z. Deyanov, and B. Redlich, “Terahertz polarization conversion with quartz waveplate sets,” Appl. Opt. 52(4), B60–B69 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

2012 (1)

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

2008 (1)

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

2007 (1)

O. V. Kibis, R. M. Costa, and M. E. Portnoi, “Generation of terahertz radiation by hot electrons in carbon nanotubes,” Nano Lett. 7(11), 3414–3417 (2007).
[Crossref]

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

N. C. J. Valk, W. A. M. Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
[Crossref]

Abbott, D.

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Amer, A.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Andrade, M. J.

Arvind,

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Baughman, R. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Beccherelli, R.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Bishop, M. D.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, (Elsevier, 2013).

Brian, W.-H. N.

Bu, Y.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Cao, J.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Cao, W.-P.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Chandrakasan, A.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Chang, S.-J.

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

S.-T. Xu, L.-L. Mou, F. Fan, S. Chen, Z. Zhao, D. Xiang, M. J. Andrade, Z. Liu, and S.-J. Chang, “Mechanical modulation of terahertz wave via buckled carbon nanotube sheets,” Opt. Express 26(22), 28738–28750 (2018).
[Crossref]

S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017).
[Crossref]

Chen, B.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Chen, F.

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Chen, M.

S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017).
[Crossref]

Chen, S.

Chen, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Chen, X.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Cheng, H.

Cheng, Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cheng, Y.

Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
[Crossref]

J. Fan and Y. Cheng, “Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave,” J. Phys. D: Appl. Phys. 53(2), 025109 (2020).
[Crossref]

Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, and R. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
[Crossref]

Z. Cheng and Y. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Cheng, Z.

Z. Cheng and Y. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Cong, L.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Costa, R. M.

O. V. Kibis, R. M. Costa, and M. E. Portnoi, “Generation of terahertz radiation by hot electrons in carbon nanotubes,” Nano Lett. 7(11), 3414–3417 (2007).
[Crossref]

Cui, T. J.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Dai, X.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Danilov, S. N.

Deyanov, R. Z.

Dinovitser, A.

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Fan, F.

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

S.-T. Xu, L.-L. Mou, F. Fan, S. Chen, Z. Zhao, D. Xiang, M. J. Andrade, Z. Liu, and S.-J. Chang, “Mechanical modulation of terahertz wave via buckled carbon nanotube sheets,” Opt. Express 26(22), 28738–28750 (2018).
[Crossref]

S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017).
[Crossref]

Fan, J.

Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
[Crossref]

J. Fan and Y. Cheng, “Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave,” J. Phys. D: Appl. Phys. 53(2), 025109 (2020).
[Crossref]

Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, and R. Gong, “Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region,” Opt. Mater. Express 9(3), 1365–1376 (2019).
[Crossref]

Fan, R.-H.

R.-H. Fan, D. Liu, R.-W. Peng, W.-B. Shi, H. Jing, X.-R. Huang, and M. Wang, “Broadband integrated polarization rotator using three-layer metal grating structures,” Opt. Express 26(1), 516–524 (2018).
[Crossref]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Feng, N.

Feng, Y.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Fuller, S.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gajic, R.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Ganichev, S. D.

Gao, X.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gong, R.

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Gu, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Guo, G.-Y.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Guo, J.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

Hameed, S.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Han, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Han, X.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Hangyo, M.

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its application to anisotropy sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[Crossref]

Hao, J.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

He, J.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

He, Q.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Hills, G.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Ho, L.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

Ho, R.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Hu, F.-T.

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017).
[Crossref]

Hu, X.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Hu, Y.-H.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Hu, Y.-S.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, K.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Huang, X.-R.

R.-H. Fan, D. Liu, R.-W. Peng, W.-B. Shi, H. Jing, X.-R. Huang, and M. Wang, “Broadband integrated polarization rotator using three-layer metal grating structures,” Opt. Express 26(1), 516–524 (2018).
[Crossref]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

Isic, G.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Islam, M. S.

Ivanov, A. A.

Jagadish, C.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Jang, E. Y.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Ji, Y.-Y.

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Ji, Z.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Jiang, S.-C.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Jiang, T.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Jin, B.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Jing, H.

Jördens, C.

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

Juan, T.-K.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Kan, Q.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

Kanhaiya, P.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Kar, S.

S. Kar and A. K. Sood, “Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: Optical pump-terahertz probe spectroscopy,” Carbon 144, 731–736 (2019).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Kaveev, A. K.

Kaveeva, E. G.

Kenney, M.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Kibis, O. V.

O. V. Kibis, R. M. Costa, and M. E. Portnoi, “Generation of terahertz radiation by hot electrons in carbon nanotubes,” Nano Lett. 7(11), 3414–3417 (2007).
[Crossref]

Kim, D.-S.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Kim, Y. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Kropotov, G. I.

Kung, W.-T.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Kyoung, J.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Lan, M.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Lau, C.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Lee, Y. S.

Y. S. Lee, Principles of terahertz science and technology, (Springer Science & Business Media, 2009).

Lepró, X.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Li, H. O.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Li, J.

Li, Z.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref]

Liang, L.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Liao, C. Y.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Lima, M. D.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Liu, D.

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Liu, W.

Liu, Y.

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

Liu, Z.

Lu, H.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Luo, H.

Ma, G.-B.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Ma, H. F.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

Mao, X.

Marel, W. A. M.

Mei, S.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Mohammad, F.

Mohammad, R. I.

Mou, L.-L.

Murphy, D.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Nagashima, T.

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its application to anisotropy sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Olbrich, P.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Park, H.-R.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Peng, R.-W.

R.-H. Fan, D. Liu, R.-W. Peng, W.-B. Shi, H. Jing, X.-R. Huang, and M. Wang, “Broadband integrated polarization rotator using three-layer metal grating structures,” Opt. Express 26(1), 516–524 (2018).
[Crossref]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Pepper, M.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

Planken, P. C. M.

Portnoi, M. E.

O. V. Kibis, R. M. Costa, and M. E. Portnoi, “Generation of terahertz radiation by hot electrons in carbon nanotubes,” Nano Lett. 7(11), 3414–3417 (2007).
[Crossref]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qiu, C.-W.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Redlich, B.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Ren, F.-F.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Ren, X.-P.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Robles, R. O.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Shadrivov, I. V.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Shi, W.-B.

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Shi, Y. T.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Shkurinov, A.

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

Shulaker, M. M.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Singh, R.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Sood, A. K.

S. Kar and A. K. Sood, “Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: Optical pump-terahertz probe spectroscopy,” Carbon 144, 731–736 (2019).
[Crossref]

Srimani, T.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Stein, Y.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Sultana, J.

Sun, C.

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Sun, L.

L. Sun, X. Wang, Y. Wang, and Q. Zhang, “Roles of carbon nanotubes in novel energy storage devices,” Carbon 122, 462–474 (2017).
[Crossref]

Sun, S.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Taday, P.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

Tan, H. H.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Tani, M.

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its application to anisotropy sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tian, J.

Tsai, D.-P.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Tsygankova, E. V.

Tzibizov, I. A.

Valk, N. C. J.

Vasic, B.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, C.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Wang, C. M.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Wang, M.

R.-H. Fan, D. Liu, R.-W. Peng, W.-B. Shi, H. Jing, X.-R. Huang, and M. Wang, “Broadband integrated polarization rotator using three-layer metal grating structures,” Opt. Express 26(1), 516–524 (2018).
[Crossref]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Wang, R.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Wang, X.

L. Sun, X. Wang, Y. Wang, and Q. Zhang, “Roles of carbon nanotubes in novel energy storage devices,” Carbon 122, 462–474 (2017).
[Crossref]

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

Wang, X.-H.

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

Wang, Y.

L. Sun, X. Wang, Y. Wang, and Q. Zhang, “Roles of carbon nanotubes in novel energy storage devices,” Carbon 122, 462–474 (2017).
[Crossref]

Wiesauer, K.

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, (Elsevier, 2013).

Wright, A.

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Xiang, D.

Xiao, S.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Xie, L.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Xiong, X.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Xu, D.-H.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

Xu, N.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Xu, S.-T.

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

S.-T. Xu, L.-L. Mou, F. Fan, S. Chen, Z. Zhao, D. Xiang, M. J. Andrade, Z. Liu, and S.-J. Chang, “Mechanical modulation of terahertz wave via buckled carbon nanotube sheets,” Opt. Express 26(22), 28738–28750 (2018).
[Crossref]

S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017).
[Crossref]

Xu, W. Z.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Yang, K. Y.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Ye, J.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Ying, Y.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Yu, J.-P.

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yu, P.

Yu, Y.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Zhang, L.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Zhang, Q.

L. Sun, X. Wang, Y. Wang, and Q. Zhang, “Roles of carbon nanotubes in novel energy storage devices,” Carbon 122, 462–474 (2017).
[Crossref]

Zhang, R.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Zhang, S.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Zhang, W.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Zhang, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

Zhang, X. C.

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

Zhao, H.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

Zhao, J.

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, Z.

Zhdanov, A. I.

Zheng, Y.

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

Zhou, J.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Zhou, L.

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Zhou, Y.

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

Zhu, B.

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

Zhu, T.

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Zografopoulos, D. C.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Zoth, C.

Adv. Mater. (2)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref]

R.-H. Fan, Y. Zhou, X.-P. Ren, R.-W. Peng, S.-C. Jiang, D.-H. Xu, X. Xiong, X.-R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref]

Adv. Opt. Mater. (2)

W. Z. Xu, Y. T. Shi, J. Ye, F.-F. Ren, I. V. Shadrivov, H. Lu, L. Liang, X. Hu, B. Jin, R. Zhang, Y. Zheng, H. H. Tan, and C. Jagadish, “A Terahertz Controlled-NOT Gate Based on Asymmetric Rotation of Polarization in Chiral Metamaterials,” Adv. Opt. Mater. 5(18), 1700108 (2017).
[Crossref]

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4(6), 818–833 (2016).
[Crossref]

Annalen der Physik (1)

S.-T. Xu, F.-T. Hu, M. Chen, F. Fan, and S.-J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Annalen der Physik 529(10), 1700151 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S.-T. Xu, F. Fan, M. Chen, Y.-Y. Ji, and S.-J. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Carbon (5)

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Y.-Y. Ji, F. Fan, S.-T. Xu, J.-P. Yu, Y. Liu, X.-H. Wang, and S.-J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

Y. Zhang, Y. Feng, T. Jiang, J. Cao, J. Zhao, and B. Zhu, “Tunable broadband polarization rotator in terahertz frequency based on graphene metamaterial,” Carbon 133, 170–175 (2018).
[Crossref]

L. Sun, X. Wang, Y. Wang, and Q. Zhang, “Roles of carbon nanotubes in novel energy storage devices,” Carbon 122, 462–474 (2017).
[Crossref]

S. Kar and A. K. Sood, “Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: Optical pump-terahertz probe spectroscopy,” Carbon 144, 731–736 (2019).
[Crossref]

IEEE Access (1)

Y. Cheng, J. Fan, H. Luo, and F. Chen, “Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial,” IEEE Access 8, 7615–7621 (2020).
[Crossref]

IEEE Photonics J. (1)

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

IEEE Trans. Antennas Propag. (1)

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antennas Propag. 63(8), 3522–3530 (2015).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (2)

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its application to anisotropy sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[Crossref]

K. Wiesauer and C. Jördens, “Recent advances in birefringence studies at THz frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

J. Fan and Y. Cheng, “Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave,” J. Phys. D: Appl. Phys. 53(2), 025109 (2020).
[Crossref]

Laser Photonics Rev. (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Light: Sci. Appl. (1)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Nano Lett. (3)

S. Sun, K. Y. Yang, C. M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D.-P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

O. V. Kibis, R. M. Costa, and M. E. Portnoi, “Generation of terahertz radiation by hot electrons in carbon nanotubes,” Nano Lett. 7(11), 3414–3417 (2007).
[Crossref]

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref]

Nanoscale (1)

B. Chen, Z. Ji, J. Zhou, Y. Yu, X. Dai, M. Lan, Y. Bu, T. Zhu, Z. Li, J. Hao, and X. Chen, “Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film,” Nanoscale 12(22), 11808–11817 (2020).
[Crossref]

Nanotechnology (1)

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Nat. Photonics (3)

X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11(1), 16–18 (2017).
[Crossref]

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nature (1)

G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Arvind, A. Chandrakasan, and M. M. Shulaker, “Modern microprocessor built from complementary carbon nanotube transistors,” Nature 572(7771), 595–602 (2019).
[Crossref]

Opt. Commun. (1)

Z. Cheng and Y. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. X (1)

S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Sci. Rep. (1)

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

Science (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, (Elsevier, 2013).

Y. S. Lee, Principles of terahertz science and technology, (Springer Science & Business Media, 2009).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram and geometric dimensions of the CNT-integrated metamaterial: p=20 um, w=14 um, tg=200 nm, and tQ=500 um. SEM images of the CNT layer with different magnifications of (b) 2 um and (c) 200 nm. (d) Schematic diagram of THz-TDS system. BS: beam splitter, PCA: photoconductive antenna; P1-P4: parabolic mirror; λ/4: quarter-wave plate; WP: Wollaston prisms.
Fig. 2.
Fig. 2. (a) Experimental THz-TDS signals of CSMG with different CNT layers from 0 to 50; (b) The corresponding transmission spectrum by the Fourier transform of the time-domain signals. (c) The peak transmittance (at 0.468 THz) and CNT-DOP as the function of the CNT layer number. (d) The simulated transmission spectrum of CSMG with different CNT layers by setting CNT conductivity from 0 to 2000 S/m in the grating model.
Fig. 3.
Fig. 3. (a) Schematic diagram of CSMG with CNT orientation of 0°, 45°, and -45°; (b) Experimental THz-TDS signals (50-layer CNT). (c) The corresponding transmission spectrum. (d) The phase shift of δ(45°), δ(-45°) and δ(45°)-δ(45°).
Fig. 4.
Fig. 4. The simulated CSMG model with different CNT orientations of 0° (a), 45° (b), and 90° (c). The golden part: MG layer; The grey part: quartz substrate; The blue part: CNT layer. Simulative transmittance spectrum of CSMG when CNT orientate from 0° to 45° (d) and 45° to 90° (e).
Fig. 5.
Fig. 5. (a) Schematic diagram of the linear polarization conversion of CSMG in the x-z cutting plane. (b) The simulated transmission spectrum of CSMG when the quartz thickness tQ is 200 um, 300 um, and 400 um with the CNT conductivity of 2000 S/m.
Fig. 6.
Fig. 6. The electric field distributions of CSMG in the x-z cutting plane with the frequency of 0.43THz (a) and 0.468THz (b); the electric vector distribution of CSMG in the x-y cutting plane with the (c) input plane, (d) middle plane, and (e) output plane at 0.468THz, the arrows indicate the direction of the electric field vectors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ν  =  c 2 n d ,

Metrics