Abstract

We study existence, bifurcation and stability of two-dimensional optical solitons in the framework of fractional nonlinear Schrödinger equation, characterized by its Lévy index, with self-focusing and self-defocusing saturable nonlinearities. We demonstrate that the fractional diffraction system with different Lévy indexes, combined with saturable nonlinearity, supports two-dimensional symmetric, antisymmetric and asymmetric solitons, where the asymmetric solitons emerge by way of symmetry breaking bifurcation. Different scenarios of bifurcations emerge with the change of stability: the branches of asymmetric solitons split off the branches of unstable symmetric solitons with the increase of soliton power and form a supercritical type bifurcation for self-focusing saturable nonlinearity; the branches of asymmetric solitons bifurcates from the branches of unstable antisymmetric solitons for self-defocusing saturable nonlinearity, featuring a convex shape of the bifurcation loops: an antisymmetric soliton loses its stability via a supercritical bifurcation, which is followed by a reverse bifurcation that restores the stability of the symmetric soliton. Furthermore, we found a scheme of restoration or destruction the symmetry of the antisymmetric solitons by controlling the fractional diffraction in the case of self-defocusing saturable nonlinearity.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A well-known phenomenon is that a collimated light beam usually spreads during propagation in a linear optical medium due to diffraction. While in nonlinear optical media, the tendency for the optical beam to expand can be dynamically balanced by the opposing effect, which leads to the formation of spatial solitons [1,2]. These phenomena can be modeled by the linear and nonlinear Schrödinger equations (NLSEs), respectively, in the scalar and paraxial approximations (the slowly varying electric field amplitude), where the second-order derivative represents the diffraction effect for optical beams.

In recent years, much interest has been drawn to the propagation of optical beams governed by the fractional Schrödinger equation (FSE), where the fractional-order derivative implies the existence of unconventional diffraction effects. FSE was originally proposed by Hu and Kallianpur in a rigorous mathematical form [3], and by Laskin in quantum mechanics [4,5]. In the quantum theory, FSE was derived as a model in which Feynman path integrals over Brownian trajectories lead to the standard (non-fractional) Schrödinger equation, while path integrals over “skipping” Lévy trajectories leads to the space-fractional quantum mechanics [6,7].

The experimental realization of space-fractional quantum mechanics has been proposed by introducing a one-dimensional infinite-range tight-binding chain in a condensed-matter environment by Stickler [8], but it is challenging to a perform a direct identification. The analogy of formalisms between quantum mechanics and classical optics makes it possible to use optical waveguides as platform to investigate quantum concepts, which have been proposed in quantum mechanics but difficult to achieve in quantum mechanics, as in Ref. [9]. In fact, in the past ten years, research by direct analogy method, linear and nonlinear photonics have made important progress in at least two aspects: one is a PT-symmetric optical system and the other is topological photonics, see reviews [1012].

In order to explore the propagation dynamics and eigenmodes of spatial optical beams, a more concrete idea was proposed based on optical cavities. Such a system can be governed by linear and nonlinear FSEs [13]. According to this approach, many striking properties have been revealed in the framework of FSE [1427] . When the nonlinear effects have been added in the FSE [28,29] , recent theoretical works have predicted a variety of fractional solitons [3059] . Two-dimensional symmetric and asymmetric solitons, as an important branch of soliton research, have been intensively investigated in conventional NLSEs [6062], dissipative media modeled by complex Ginzburg-Landau equation [63], and parity-time-symmetric systems [6466]. So far, such endeavors have focused mainly on conventional diffraction optics system. Moreover, although such a two-dimensional asymmetric soliton exists in a variety of systems, the restoration or destruction of the symmetry were controlled by nonlinearity [67]. Does the diffraction effect have an effect on the symmetry breaking of soliton? Thus, further explorations of physically relevant settings that allow maintaining such two-dimensional solitons and new regime of symmetry breaking bifurcations remains a relevant objective for further work.

In this work, we aim to explore the existence, bifurcation, stability and dynamics of the two-dimensional solitons in fractional NLSE with saturable nonlinearities. This system supports two-dimensional symmetric, antisymmetric and asymmetric solitons. And, different scenarios of symmetry breaking bifurcations emerge with the change of stability. Furthermore, we find a new scheme of restoration or destruction the symmetry of two-dimensional optical solitons by controlling the fractional diffraction. The paper is organized as follows. The model and the methods of numerically found the two-dimensional symmetric, antisymmetric and asymmetric solitons, and stability analysis are introduced in Sec. 2., which is followed by the numerical results and discussions about the existence, bifurcation and stability, dynamics of two-dimensional solitons, as well as identification of stable and unstable solitons in Sec. 3. The paper is concluded by Sec. 4.

2. Model and methods

2.1 Model and reduction

We consider the beam propagation along the $z$-axis in a nonlinear isotropic medium with the saturable nonlinear correction to the refractive index, which can be described by the fractional NLSE

$$i\frac{\partial A}{\partial z}=\left[ \frac{\left( -\nabla _{\perp }^{2}\right) ^{\alpha /2}}{2k_{0}n_{0}}-k_{0}\left( n-n_{0}\right) -k_{0}n_{NL}\right] A,$$
where $A(x,y,z)$ is the local amplitude of the optical field, the intensity being $I\equiv \left \vert A\right \vert ^{2}$, $k_{0}=2\pi /\lambda$ is the wave number with $\lambda$ being wavelength of the optical source, $n_{0}$ is the linear refractive index. The fractional-diffraction operator in Eq. (1), with the corresponding Lévy index $\alpha$, belonging to interval $1<\alpha \leq 2$, is defined as
$$\left( -\nabla _{\perp }^{2}\right) ^{\frac{\alpha }{2}}A\left( x,y\right) = \mathcal{F}^{-1}\left[ \left( k_{x}^{2}+k_{y}^{2}\right) ^{\frac{\alpha }{2}} \mathcal{F}A(x,y)\right] ,$$
[6870], where $\mathcal{F}$ and $\mathcal{F} ^{-1}$ are operators of the direct and inverse Fourier transform, $k_{x,y}$ being wavenumbers conjugate to transverse coordinates $\left ( x,y\right )$. An effective potential is introduced by local modulation, $n(x,y)$, of the linear refractive index, while $n_{NL}=n_{2}\left \vert A\right \vert ^{2}/(1+s\left \vert A\right \vert ^{2})$ is the saturable nonlinear correction to the refractive index with $n_{2}$ and $s$ being nonlinear coefficient of the material and strength of saturable nonlinearity, respectively. The saturable nonlinearity can be realized, for instance, in semiconductor doped glasses and in photorefractive media [7173].

Eq. (1) can be cast in a normalized form by means of additional rescaling, $\Psi \left ( \xi ,\eta ,\zeta \right ) =\left ( k_{0}\left \vert n_{2}\right \vert L_{d}\right ) ^{1/2}A\left ( x,y,z\right )$, where $L_{d}=2k_{0}n_{0}w_{0}^{\alpha }$ is the diffraction length, $\xi =x/w_{0}$, $\eta =y/w_{0}$, $\zeta =z/L_{d}$ are the normalized coordinates scaled to characteristic width $w_{0}$ of the input beam and the diffraction length $L_d$, respectively. The effective potential is $V\left ( \xi ,\eta \right ) =2k_{0}^{2}w_{0}^{\alpha }n_{0}\left [ n\left ( x,y\right ) -n_{0}\right ]$.

The normalized fractional NLSE is

$$i\frac{\partial \Psi }{\partial \zeta }-\left( -\nabla _{\perp }^{2}\right) ^{\alpha /2}\Psi +V\left( \xi ,\eta \right) \Psi +\sigma \frac{\left\vert \Psi \right\vert ^{2}\Psi }{1+S\left\vert \Psi \right\vert ^{2}}=0,$$
where $\sigma =n_{2}/\left \vert n_{2}\right \vert =\pm 1$ corresponds to the self-focusing ($+$) and defocusing ($-$) saturable nonlinearity, respectively. $S=s\left ( k_{0}\left \vert n_{2}\right \vert L_{d}\right ) ^{-1}$ is the saturable parameter, defined as the normalized strength of saturable nonlinearity. One-dimensional counterpart of Eq. (3) with parity-time-symmetric optical lattices has been analysed in Ref. [57], where the fundamental gap solitons were mainly studied.

Experimental setups which realize the beam propagation with fractional diffraction effect were proposed in Refs. [13] and [15]. The setting is designed as a Fabry-Perot resonator, with two convex lenses and two phase masks inserted into it. The first lens converts the input beam into the Fourier space, then a central phase mask, whose position defines the position of the system’s Fourier plane, performs the transformation of the beam in the dual space, as per Eq. (2), and, eventually, the second lens converts the output beam back from the dual domain into the real (coordinate) one. Thus, the fractional diffraction is effectively executed in the Fourier representation of the field amplitude. The saturable nonlinearity can be incorporated in the setup by inserting a piece of a saturable nonlinearity material in the cavity. To maintain the effectively local form of the nonlinearity, the material should be inserted between an edge mirror and the lens closest to it, where the beam’s propagation takes place in the spatial domain (rather than in the Fourier space). The saturable nonlinearity terms can be induced in a low pressure rubidium vapor contained within a glass cell, which was used for the creation of stable bright spatial solitons [72].

Next, we address stationary solutions to Eq. (3) with propagation constant $\beta$

$$\Psi \left( \zeta ,\xi ,\eta \right) =\psi \left( \xi ,\eta \right) e^{i\beta \zeta },$$
where the function $\psi (\xi ,\eta )$ obeys the equation
$$-\left( -\nabla _{\perp }^{2}\right) ^{\alpha /2}\psi +V\psi +\sigma \frac{ \left\vert \psi \right\vert ^{2}\psi }{1+S\left\vert \psi \right\vert ^{2}} -\beta \psi =0.$$

The two-dimensional potential is assumed as the following form

$$V\left( \xi ,\eta \right) =V_{0}\left[ \exp \left( -\frac{\left( \xi +\xi _{0}\right) ^{2}}{\chi _{_{0}}}-\eta ^{2}\right) +\exp \left( -\frac{\left( \xi -\xi _{0}\right) ^{2}}{\chi _{_{0}}}-\eta ^{2}\right) \right] ,$$
where $V_{0}$ denotes the modulation strength of the potential in Eq. (6), $\xi _{0}$ and $\chi _{_{0}}$ are related to separation and width of two humps of potential, respectively. This is a symmetric potential with respect to the $\eta$-axis, which is illustrated in Figure 1(a). It is worth noting that there exist the pairs of soliton solutions with the same propagation constant in the symmetric potential in Eq. (6), which are related to each other by a spatial reflection
$$\psi \left( \xi ,\eta \right) =\psi \left( -\xi ,\eta \right) .$$

 figure: Fig. 1.

Fig. 1. (a) Two-dimensional symmetric potential (6) with $V_{0}=4$, $\xi _{0}=1.5$, and $\chi _{_{0}}=1$. (b) Power curves for the stable and unstable symmetric solitons (solid and dashed blue, respectively), stable antisymmetric solitons (solid black), and stable asymmetric solitons (solid red) under the self-focusing nonlinearity $\sigma =1$. (c) Power curves for the stable symmetric solitons (solid black), stable and unstable antisymmetric solitons (solid and dotted blue, respectively), and stable asymmetric solitons (solid red) under the self-defocusing saturable nonlinearity ($\sigma =-1$. The inset shows the enlarged area. (d)-(f) depict the antisymmetric, symmetric, and asymmetric solitons with self-focusing nonlinearity at $\beta =1.6$, marked by “d, e, f” in (b). (g)-(i) depict the symmetric, antisymmetric, and asymmetric solitons with self-defocusing saturable nonlinearity at $\beta =0.543$, marked by “g, h, i” in (c).

Download Full Size | PPT Slide | PDF

Soliton solutions of Eq. (5) are characterized by the integral power (norm), which is a dynamical invariant of Eq. (3), defined as

$$P\left( \beta \right) =\int\nolimits_{-\infty }^{+\infty }\int\nolimits_{-\infty }^{+\infty }\left\vert \psi \left( \xi ,\eta \right) \right\vert ^{2}d\xi d\eta .$$

The Hamiltonian of Eq. (3) is

$$H=\iint \left[ \Psi ^{\ast }\left( -\nabla _{\perp }^{2}\right) ^{\alpha /2}\Psi -V\left\vert \Psi \right\vert ^{2}-\frac{\sigma }{S}\left\vert \Psi \right\vert ^{2}+\frac{\sigma }{ S^{2}}\ln \left( 1+S\left\vert \Psi \right\vert ^{2}\right) \right] d\xi d\eta .$$

2.2 Method of solving solitary wave solutions

To obtain numerical soliton solutions of Eq. (5), we employed the Newton-conjugate-gradient method to the fractional NLSE. Accordingly, Eq. (5) is rewritten as

$$L_{0}\psi =0,$$
where
$$L_{0}=-\left( -\nabla _{\perp }^{2}\right) ^{\alpha /2}+V+\sigma \left\vert \psi \right\vert ^{2}-\beta .$$

Here, the propagation constant $\beta$ is considered as a parameter with a fixed value, while solution $\psi (\xi ,\eta )$ is generated by means of Newton’s iterations

$$\psi _{n+1}=\psi _{n}+\Delta \psi _{n},$$
where $\psi _{n}$ is an approximate solution, and correction $\Delta \psi _{n}$ is computed from the linear Newton’s equation
$$L_{1n}\Delta \psi _{n}=-L_{0}\left( \psi _{n}\right) ,$$
where $L_{1n}$ is the linearization operator $L_{1}$ corresponding to Eq. (10), evaluated with $\psi$ replaced by approximate solution $\psi _{n}$:
$$L_{1}=-\left( -\nabla _{\perp }^{2}\right) ^{\alpha /2}+V+\sigma \left[ \frac{\left\vert \psi \right\vert ^{2}}{1+S\left\vert \psi \right\vert ^{2}}+ \frac{2\psi \textrm{Re}\left( \psi ^{\ast } \right) }{1+S\left\vert \psi \right\vert ^{2}}-\frac{2S\left\vert \psi \right\vert ^{2}\psi \textrm{Re} \left( \psi ^{\ast } \right) }{\left( 1+S\left\vert \psi \right\vert ^{2}\right) ^{2}}\right] -\beta .$$

In the framework of this scheme, Eq. (13) can be solved directly by dint of conjugate gradient iterations [74,75], which yields symmetric, antisymmetric, and asymmetric soliton solutions. A noteworthy fact is that the above numerical scheme is applicable to both of real function and complex function for the soliton solution $\psi (\xi ,\eta )$.

2.3 Linear stability analysis

To investigate the stability behaviors of these solitons, it is necessary to explore the perturbed solutions for a solitary wave solution $\psi \left ( \xi ,\eta \right )$ with the form

$$\Psi \left( \zeta ,\xi ,\eta \right) =e^{i\beta \zeta }\left[ \psi \left( \xi ,\eta \right) +u\left( \xi ,\eta \right) e^{\delta \zeta }+v^{\ast }\left( \xi ,\eta \right) e^{\delta ^{\ast }\zeta }\right] ,$$
$u\left ( \xi ,\eta \right )$ and $v\left ( \xi ,\eta \right )$ are small perturbations and $\left \vert u\right \vert$, $\left \vert v\right \vert \ll \left \vert \psi \right \vert$. The substitution of expression Eq. (15 ) into Eq. (3) and subsequent linearization leads to the following eigenvalue problem
$$i\left( \begin{array}{cc} \mathcal{L}_{11} & \mathcal{L}_{12} \\ \mathcal{L}_{21} & \mathcal{L}_{22} \end{array} \right) \left( \begin{array}{c} u \\ v \end{array} \right) =\delta \left( \begin{array}{c} u \\ v \end{array} \right) ,$$
where matrix elements $\mathcal{L}_{11}$, $\mathcal{L}_{12}$, $\mathcal{L} _{21}$ and $\mathcal{L}_{22}$ are the following form
$$\mathcal{L}_{11}=-\left( -\nabla _{\perp }^{2}\right) ^{^{\alpha /2}}+V-\beta +\frac{2\sigma \left\vert \psi \right\vert ^{2}}{1+S\left\vert \psi \right\vert ^{2}}-\frac{\sigma S\left\vert \psi \right\vert ^{4}}{ \left( 1+S\left\vert \psi \right\vert ^{2}\right) ^{2}},$$
$$\mathcal{L}_{12}=+\frac{\sigma \psi ^{2}}{1+S\left\vert \psi \right\vert ^{2} }-\frac{\sigma S\left\vert \psi \right\vert ^{2}\psi ^{2}}{\left( 1+S\left\vert \psi \right\vert ^{2}\right) ^{2}},$$
$$\mathcal{L}_{21}=-\frac{\sigma \psi ^{2}}{1+S\left\vert \psi \right\vert ^{2} }+\frac{\sigma S\left\vert \psi \right\vert ^{2}\psi ^{2}}{\left( 1+S\left\vert \psi \right\vert ^{2}\right) ^{2}},$$
$$\mathcal{L}_{22}=+\left( -\nabla _{\perp }^{2}\right) ^{\alpha /2}-V+\beta - \frac{2\sigma \left\vert \psi \right\vert ^{2}}{1+S\left\vert \psi \right\vert ^{2}}+\frac{S\sigma \left\vert \psi \right\vert ^{4}}{\left( 1+S\left\vert \psi \right\vert ^{2}\right) ^{2}}.$$
$\delta =\delta _{R}+i\delta _{I}$ is a complex eigenvalue of Eq. (16 ), $\delta _{R}$ being the linear-instability growth rate, i.e., $\delta _{R}=0$, which indicates the soliton $\psi \left ( \xi ,\eta \right )$ is linearly stable. The linear problem based on Eq. (16) with fractional derivative was solved by the Fourier collocation method [75].

3. Results and discussion

3.1 Two-dimensional symmetric, antisymmetric and asymmetric soliton solutions

We first consider the generic examples of soliton families. The two-dimensional symmetric, antisymmetric and asymmetric soliton solutions were produced using the Newton-conjugate-gradient method, applied to Eq. (5) with Lévy index $\alpha =1.5$, the self-focusing ($\sigma =+1$) and self-defocusing ($\sigma =-1$) saturable nonlinearities, and the strength of saturable nonlinearity $S=1$, while the potential $V(\xi ,\eta )$ is taken as per Eq. (6) with $V_{0}=4$, $\xi _{0}=1.5$, and $\chi _{_{0}}=1$.

Figure 1 displays typical symmetric, antisymmetric and asymmetric solutions of two-dimensional solitons with different values of norm for the self-focusing and self-defocusing saturable nonlinearities, respectively. Fig. 1(b) shows power curves $P(\beta )$ for stable and unstable symmetric soliton solutions, stable antisymmetric and stable asymmetric soliton solutions with the self-focusing saturable nonlinearity, where the stable asymmetric soliton solutions occurs when the integral power of symmetric solitons exceeds a critical value (which corresponds to the symmetry breaking bifurcation point), $P_{cr}\approx 1.25$, the respective propagation constant being $\beta _{cr}\approx 1.47$. The power curves of the symmetric and asymmetric soliton solutions form a pitchfork bifurcation (a supercritical bifurcation). Let us now consider the self-defocusing saturable nonlinearity. Fig. 1(c) shows power curves $P(\beta )$ for stable and unstable antisymmetric soliton solutions, stable symmetric and stable asymmetric soliton solutions of the self-defocusing saturable nonlinearity. Notice that the bifurcation originates from the branch of antisymmetric soliton solutions, contrary to the self-focusing saturable nonlinearity case, where it originated from the branch of symmetric soliton solutions. With increase of the integral power, stable antisymmetric soliton turns into an unstable one at the first critical point $P_{cr1}\approx 2.28$ with the propagation constant $\beta _{cr1}\approx 0.90$, where the first bifurcation (a supercritical bifurcation) occurs and a new branch of the power curve bifurcates from the base branch of antisymmetric solitons and crosses it at the intersection point $P_{c}\approx 15.66$ ($\beta _{c}\approx 0.543$), then merges into the base branch at the second critical point $P_{cr2}\approx 33.6$ with the corresponding propagation constant $\beta _{cr2}\approx 0.41$, and the second bifurcation (a reverse supercritical bifurcation) is produced. Beyond the second critical point, the unstable antisymmetric soliton turns back to a stable one, as shown in Fig. 1(c). The power curves of the antisymmetric solitons together with the asymmetric solitons form a bifurcation loops. It is worthy to note that, at the intersection point $P_{c}$, the antisymmetric and asymmetric solitons share the same propagation constant and the power. As examples, two-dimensional antisymmetric, symmetric, and asymmetric solitons with self-focusing saturable nonlinearity at $\beta =1.6$ are displayed in Fig. 1(d), (e), and (f), respectively. Fig. 1(g), (h), and (i) show the two-dimensional symmetric, antisymmetric, and asymmetric solitons with self-defocusing saturable nonlinearity at $\beta =0.543$, respectively.

3.2 Symmetry breaking bifurcations at different values of Lévy index and strength of saturable nonlinearity

To further explore how the values of Lévy index and strength of saturable nonlinearity effect the symmetry breaking bifurcations, we have numerically solved Eq. (5) with different values of Lévy index and strength of saturable nonlinearity and produced the power curves of soliton families.

The numerical results of the symmetry breaking bifurcations for the self-focusing saturable nonlinearity are summarized in Fig. 2, and the values of the critical power and the respective propagation constant at the symmetry breaking bifurcation points are collected in Table 1. First, the bifurcations built of the power curves of the symmetric and asymmetric soliton solutions are always the pitchfork bifurcations for the self-focusing saturable nonlinearity. It is independent of the values of the Lévy index and the strength of saturable nonlinearity (see Fig. 2 and Table 1). Secondly, the critical power of symmetric soliton at the bifurcation point decreases with the decrease of the values of the Lévy index. It is easy to explain, the shapes of two humps of the symmetric solitons become narrower and taller as the Lévy index decreases (see Visualization 1), hence the resultant symmetric solitons would be more easily broken. It is also found that the critical power of symmetric soliton at the bifurcation point increases with the increase of the strength of the self-focusing saturable nonlinearity. It resembles the standard NLSE ($\alpha =2$), where the increase of the strength of saturable nonlinearity is conducive to the stabilization of solitons.

 figure: Fig. 2.

Fig. 2. Symmetry breaking bifurcations represented by dependence of the integral power of unstable and stable symmetric (dashed and blue thick solid curves, respectively) and stable asymmetric (thin solid red curves) soliton solutions on propagation constant $\beta$ in the case of the self-focusing saturable nonlinearity ($\sigma =+1$) for different values of the Lévy index $\alpha$ and the strength of saturable nonlinearity, as indicated in the panels. Other parameters of the potential are the same as in Fig. 1.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. The values of the critical power and the respective propagation constant, $P_{cr}$($\beta _{cr}$), at the symmetry breaking bifurcation points of self-focusing saturable nonlinearity.

We extend now to the case of the self-defocusing saturable nonlinearity. The symmetry breaking bifurcations are summarized in Fig. 3, and the values of the critical power and the respective propagation constants at the symmetry breaking bifurcation points are collected in Table 2. There are two cases for the strong saturable nonlinearity ($S=1$): the symmetry breaking bifurcation is completely suppressed for the Lévy index $\alpha =1.9$ (see Fig. 3(a)), and the pitchfork bifurcations turn into the bifurcation loops for the Lévy index $\alpha =1.5$ and $\alpha =1.1$ (see Figs. 3(b) and 3(c)), where an antisymmetric soliton loses its stability via a pitchfork bifurcation, which is followed by a reverse pitchfork bifurcation that restores the stability of the symmetric soliton with the increase of the power due to the saturable nonlinearity effect. The bifurcations built of the power curves of the antisymmetric and asymmetric soliton solutions are the reverse pitchfork bifurcations for the medium and low strength of saturable nonlinearities (see Figs. 3(d)–3(i)). It is also found that the critical power of antisymmetric soliton at the first bifurcation points decreases with the decrease of the values of the Lévy index (see Figs. 3(b)–3(i) and Table 2), where the shapes of two humps of the antisymmetric solitons become narrower and taller as the Lévy index decreases (see Visualization 2). Conversely, the critical power at the second bifurcation point increases with the decrease of the values of the Lévy index(see Figs. 3(b) and 3(c)). Similar to the self-focusing cases, the critical power always decreases with the decrease of the values of the Lévy index for the reverse pitchfork bifurcations in Figs. 3(d)–3(i). The increase of the strength of the self-defocusing saturable nonlinearity can also stabilize the antisymmetric solitons, so that the critical power of antisymmetric soliton at the bifurcation point increases, when the strength of saturable nonlinearity increases.

 figure: Fig. 3.

Fig. 3. Symmetry breaking bifurcations represented by dependence of the integral power of unstable and stable antisymmetric (dashed and blue thick solid curves, respectively) and stable asymmetric (thin solid red curves) soliton solutions on propagation constant $\beta$ in the case of the self-defocusing saturable nonlinearity ($\sigma =-1$) for different values of the Lévy index $\alpha$ and the strength of saturable nonlinearity, as indicated in the panels. Other parameters of the potential are the same as in Fig. 1.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. The values of the critical power and the respective propagation constant, $P_{cr1}$($\beta _{cr1}$) and $P_{cr2}$($\beta _{cr2}$), at the symmetry breaking bifurcation points of self-defocusing saturable nonlinearity.

Getting back to the consideration of types of the symmetry breaking bifurcations, it can be cast in a more definite form by means of plots of asymmetry coefficient for the numerically found soliton solutions as a function of the propagation constant. The asymmetry coefficient is defined as

$$\Theta =\frac{P_{L}-P_{R}}{P_{L}+P_{R}},$$
where the integral power of soliton solution in Eq. (8) is naturally split in contributions from the left and right regions along the $\xi$-axis
$$P\left( \beta \right) \equiv P_{L}\left( \beta \right) +P_{R}\left( \beta \right) ,$$
with
$$P_{L}\left( \beta \right) =\int\nolimits_{-\infty }^{+\infty }d\eta \int\nolimits_{-\infty }^{0}\left\vert \psi \left( \xi ,\eta \right) \right\vert ^{2}d\xi ,$$
and
$$P_{R}\left( \beta \right) =\int\nolimits_{-\infty }^{+\infty }d\eta \int\nolimits_{0}^{+\infty }\left\vert \psi \left( \xi ,\eta \right) \right\vert ^{2}d\xi .$$

The symmetry breaking bifurcation diagrams are displayed in Fig. 4 and Fig. 5 for the self-focusing and self-defocusing saturable nonlinearities, respectively. In Fig. 4, the symmetry breaking bifurcations are always supercritical. Fig. 5(a) shows that the symmetry of antisymmetric solitons haven’t been broken. Rather, the symmetry breaking bifurcations for the strong saturable nonlinearity with the Lévy index $\alpha =1.5$ and $\alpha =1.1$ are observed to be convex shapes of the bifurcation loops in Figs. 5(b) and 5(c), these closed loops are opened by a supercritical bifurcation (the first bifurcations) and closed by a reverse supercritical bifurcation (the second bifurcations). Fig. 5(a)–5(c) clearly show that the symmetry of the antisymmetric solitons can be restored or destructed by increasing or decreasing Lévy index. It indicates that the symmetry breaking can be controlled using the fractional diffraction. Note that, in NLSE with the conventional diffraction, the restoration or destruction of the soliton’s symmetry can only be realized by changing the strength of nonlinearity, see Ref. [67]. Furthermore, the reverse pitchfork bifurcations in Figs. 5(d)–5(i) are all the reverse supercritical bifurcation for the low and moderate strength of saturable nonlinearities. All the symmetry breaking bifurcation diagrams by the present system are of the supercritical bifurcations, featuring no bistability.

 figure: Fig. 4.

Fig. 4. Symmetry breaking bifurcation diagrams shown in terms of asymmetry coefficient in Eq. (21), corresponding to the situation displayed in Fig. 2, for different values of the Lé vy index $\alpha$ and the strength of saturable nonlinearity, as indicated in the panels. Solid thick blue curves represent stable symmetric soliton solutions, dashed blue curves represent unstable symmetric soliton solutions, solid red curves with circle symbol represent stable asymmetric soliton solutions.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. Symmetry breaking bifurcation diagrams shown in terms of asymmetry coefficient in Eq. (21), corresponding to the situation displayed in Fig. 3, for different values of the Lé vy index $\alpha$ and the strength of saturable nonlinearity, as indicated in the panels. Solid thick blue curves represent stable antisymmetric soliton solutions, dashed blue curves represent unstable antisymmetric soliton solutions, solid red curves with circle symbol represent stable asymmetric soliton solutions.

Download Full Size | PPT Slide | PDF

3.3 Stability and dynamics

Conclusions concerning the stability and instability of the symmetric, antisymmetric and asymmetric soliton solutions for the self-focusing and self-defocusing saturable nonlinearities, respectively, were obtained by dint of the computation of eigenvalues of Eq. (16). As mentioned above, the linear problem of Eq. (16) includes a term of the fractional derivative, so it is convenient to solve it by the Fourier collocation method.

Antisymmetric soliton solutions, which are the fundamental states, are all stable within the range of the calculated propagation constants for the self-focusing saturable nonlinearity. The instability development of unstable symmetric soliton solutions were catalyzed by adding small initial perturbations to them. And, the largest linear instability growth rates of symmetric and asymmetric soliton solutions are displayed in Fig. 6. Obviously, the turning point of symmetric soliton solutions from stable state to unstable state is exactly the symmetry breaking bifurcation point. Furthermore, the range of symmetry breaking can be reduced by increasing the values both of the Lévy index and the strength of the saturable nonlinearity.

 figure: Fig. 6.

Fig. 6. The largest linear instability growth rates of symmetric (solid blue curves with circle symbol) and asymmetric (solid thick red curves) soliton solutions in Fig. 2.

Download Full Size | PPT Slide | PDF

Typical examples of evolutions for the stable antisymmetric soliton solution, the unstable symmetric and the stable asymmetric soliton solutions are displayed in Fig. 7, Fig. 8 and Fig. 9, respectively. To corroborate predictions of the linear stability analysis, evolution of the stable antisymmetric soliton solution at $\beta =1.45$, near the bifurcation point ($\beta _{cr}=1.47$), has been examined in direct simulation of Eq. (3) under the action of random-noise initial perturbations with a relative amplitude of $5\%$. Eigenvalue spectrum of linear stability analysis is shown in Fig. 7(a), the initial ($\zeta =0$) and evolved ($\zeta =2000$) field intensities are displayed in Fig. 7(b) and 7(c), respectively. The evolution of the stable antisymmetric soliton solution is displayed by iso-intensity surface in 7(d). It is seen that, at least upto $\zeta =2000$, the antisymmetric soliton solution remains stable. Next, we address the unstable symmetric soliton solution at $\beta =1.45>$ $\beta _{cr}=1.47$. The corresponding eigenvalue spectrum of linear stability analysis is shown in Fig. 8(a). Field field intensities of different propagation lengths are displayed in Fig. 8(b)-Fig. 8(f), respectively. The evolution of the unstable symmetric soliton solution is displayed by iso-intensity surface in 8(g). The results show that evolution does not tend to convert the unstable symmetric soliton solution into an asymmetric one that would be spontaneously pinned to one hump of potential, instead, it develops periodic oscillations between the two humps of potential. The eigenvalue spectra of linear stability analysis and evolution of the stable asymmetric soliton solutions with the same propagation constant $\beta =1.45$ have been shown in Fig. 9. It is seen that the stable asymmetric soliton solution can robustly propagate at least upto $\zeta =2000$ under the action of random-noise initial perturbations with a relative amplitude of $5\%$.

 figure: Fig. 7.

Fig. 7. The eigenvalue spectrum of linear stability analysis for the stable antisymmetric soliton of the self-focusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$, and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the antisymmetric soliton with $\beta =1.45$. Panels (b) and (c) display the initial and evolved field intensities, respectively. (d) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$, is equal to 0.62.

Download Full Size | PPT Slide | PDF

 figure: Fig. 8.

Fig. 8. The eigenvalue spectrum of linear stability analysis for the unstable symmetric soliton of the self-focusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$, and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the symmetric soliton at $\beta =1.6$. Panels (b)-(f) display the initial and evolved field intensities at different propagation lengths, respectively. (g) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$, is equal to 0.74.

Download Full Size | PPT Slide | PDF

 figure: Fig. 9.

Fig. 9. The eigenvalue spectrum of linear stability analysis for the stable asymmetric soliton of the self-focusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$, and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the asymmetric soliton at $\beta =1.6$. Panels (b) and (c) display the initial and evolved field intensities, respectively. (d) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$, is equal to 0.64.

Download Full Size | PPT Slide | PDF

Finally, we consider the case of the self-defocusing saturable nonlinearity for the stability and dynamics of the soliton solutions. Symmetric soliton solutions (the fundamental states for the self-defocusing saturable nonlinearity) are all stable within the range of the calculated propagation constants. The details of the largest linear instability growth rates of antisymmetric and asymmetric soliton solutions are displayed in Fig. 10. Apparently, the symmetry breaking can be suppressed by increasing the values both of the Lévy index and the strength of the saturable nonlinearity. Especially, both the antisymmetric and asymmetric soliton solutions are all stable in Fig. 10(a) for Lévy index $\alpha =1.9$ and the strength of the saturable nonlinearity $S=1$.

 figure: Fig. 10.

Fig. 10. The largest linear instability growth rates of antisymmetric (solid blue curves with circle symbol) and asymmetric (solid thick red curves) soliton solutions in Fig. 3.

Download Full Size | PPT Slide | PDF

Similarly, typical examples of evolutions for the stable symmetric soliton solution, the unstable antisymmetric and the stable asymmetric soliton solutions are displayed in Fig. 11, Fig. 12 and Fig. 13, respectively. In Fig. 11, the stable symmetric soliton solution with $\beta =0.92$, near the first bifurcation point ($\beta _{cr1}=0.90$), has been examined in direct simulation of Eq. (3) under the action of random-noise initial perturbations with a relative amplitude of $5\%$. The results of both the eigenvalue spectrum of linear stability analysis and the numerical evolution confirm that this symmetric soliton solution can robustly propagation. We have also considered the unstable antisymmetric and stable asymmetric soliton solutions with the same propagation constant $\beta =0.55$, ($\beta _{cr1}=0.90>\beta =0.55>$ $\beta _{cr2}=0.41$), the results are summarized in Fig. 12 and Fig. 13. Without the addition of initial perturbations, the unstable antisymmetric soliton solution develops oscillations in Fig. 12. The stable asymmetric soliton solution can robustly propagate at least upto $\zeta =2000$ under the action of random-noise initial perturbations with a relative amplitude of $5\%$ in Fig. 13.

 figure: Fig. 11.

Fig. 11. The eigenvalue spectrum of linear stability analysis for the stable symmetric soliton of the self-defocusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$, and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the symmetric soliton with $\beta =0.92$. Panels (b) and (c) display the initial and evolved field intensities, respectively. (d) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$, is equal to 0.76.

Download Full Size | PPT Slide | PDF

 figure: Fig. 12.

Fig. 12. The eigenvalue spectrum of linear stability analysis for the unstable antisymmetric soliton of the self-defocusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$, and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the antisymmetric soliton at $\beta =0.55$. Panels (b)-(f) display the initial and evolved field intensities at different propagation lengths, respectively., respectively. (g) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$, is equal to 1.33.

Download Full Size | PPT Slide | PDF

 figure: Fig. 13.

Fig. 13. The eigenvalue spectrum of linear stability analysis for the stable asymmetric soliton of the self-defocusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$, and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the asymmetric soliton at $\beta =0.55$. Panels (b) and (c) display the initial and evolved field intensities, respectively. (d) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$, is equal to 1.34.

Download Full Size | PPT Slide | PDF

4. Conclusion

We have numerically investigated the existence, bifurcation and stability of two-dimensional optical solitons in the framework of fractional nonlinear Schrödinger equation, which includes the fractional diffraction, characterized by Lévy index, and the self-focusing and self-defocusing saturable nonlinearities. The two-dimensional symmetric, antisymmetric and asymmetric solitons have been numerically found, where the branches of the asymmetric solitons were bifurcated from the base branch by way of symmetry breaking, featuring no bistability. The supercritical type bifurcations have been found for the self-focusing saturable nonlinearity. For the case of self-defocusing saturable nonlinearity, the bifurcation forms a convex shape of loop with $S=1$ at $\alpha =1.5$ and $\alpha =1.1$, respectively. At the high strength of self-defocusing saturable nonlinearities, the symmetry of the antisymmetric solitons can be restored or destructed by controlling the fractional diffraction. At the low and medium strength of self-defocusing saturable nonlinearities, the supercritical bifurcations have the shape of the reverse pitchforks. Their stability and instability regions, for different values of the Lévy index $\alpha$ and the strength of saturable nonlinearity, have been exactly predicted by linear stability analysis and confirmed by direct simulation. The results indicate that the increase of the values of Lévy index and the strength of saturable nonlinearity contribute to increase at different levels the stabilization of soliton in such a system.

These findings suggest other interesting scenarios for the existence, bifurcation and stability of the optical solitons generalizing the present one in fractional dimensions. In particular, it is relevant to extend the analysis for the symmetry breaking of two-dimensional solitons in a PT-symmetric system. Bridging the two areas could uncover the reciprocity between fractional diffraction effect and non-Hermiticity in complex systems.

Funding

National Natural Science Foundation of China (11805141, 12075210); Applied Basic Research Program of Shanxi Province (201901D211424); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (2019L0782); “1331 Project” Key Innovative Research Team of Taiyuan Normal University (I0190364); Natural Science Foundation of Zhejiang Province (LR20A050001).

Disclosures

The authors declare no conflicts of interest.

References

1. S. Trillo and W. Torruella, eds., Spatial solitons, (Springer, 2001).

2. Y. S. Kivshar and G. P. Agrawal, Optical solitons: From fibers to photonic crystal, (Academic Press, 2003).

3. Y. Hu and G. Kallianpur, “Schrödinger equations with fractional Laplacians,” Appl. Math. Optim. 42(3), 281–290 (2000). [CrossRef]  

4. N. Laskin, “Fractional quantum mechanics,” Phys. Rev. E 62(3), 3135–3145 (2000). [CrossRef]  

5. N. Laskin, “Fractional quantum mechanics and Lévy path integrals,” Phys. Lett. A 268(4-6), 298–305 (2000). [CrossRef]  

6. N. Laskin, “Fractional Schrödinger equation,” Phys. Rev. E 66(5), 056108 (2002). [CrossRef]  

7. N. Laskin, Fractional quantum mechanics, (World Scientific, Singapore, 2018).

8. B. A. Stickler, “Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal,” Phys. Rev. E 88(1), 012120 (2013). [CrossRef]  

9. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009). [CrossRef]  

10. V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$-symmetric systems,” Rev. Mod. Phys. 88(3), 035002 (2016). [CrossRef]  

11. L. Lu, J. D. Joannopoulos, and M. Soljaćič, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014). [CrossRef]  

12. D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7(2), 021306 (2020). [CrossRef]  

13. S. Longhi, “Fractional Schrödinger equation in optics,” Opt. Lett. 40(6), 1117–1120 (2015). [CrossRef]  

14. Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015). [CrossRef]  

15. Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016). [CrossRef]  

16. X. Huang, Z. Deng, and X. Fu, “Diffraction-free beams in fractional Schrödinger equation with a linear potential,” J. Opt. Soc. Am. B 34(5), 976–982 (2017). [CrossRef]  

17. X. Huang, Z. Deng, X. Shi, and X. Fu, “Propagation characteristics of ring Airy beams modeled by the fractional Schr ödinger equation,” J. Opt. Soc. Am. B 34(10), 2190–2197 (2017). [CrossRef]  

18. X. Huang, Z. Deng, Y. Bai, and X. Fu, “Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrödinger equation,” Opt. Express 25(26), 32560–32569 (2017). [CrossRef]  

19. D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017). [CrossRef]  

20. L. Zhang, C. Li, H. Zhong, C. Xu, D. Lei, Y. Li, and D. Fan, “Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes,” Opt. Express 24(13), 14406–14418 (2016). [CrossRef]  

21. L. Zhang, X. Zhang, H. Wu, C. Li, D. Pierangeli, Y. Gao, and D. Fan, “Anomalous interaction of Airy beams in the fractional nonlinear Schrödinger equation,” Opt. Express 27(20), 27936–27945 (2019). [CrossRef]  

22. F. Zang, Y. Wang, and L. Li, “Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient,” Opt. Express 26(18), 23740–23750 (2018). [CrossRef]  

23. C. Huang and L. Dong, “Beam propagation management in a fractional Schrödinger equation,” Sci. Rep. 7(1), 5442 (2017). [CrossRef]  

24. Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017). [CrossRef]  

25. Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017). [CrossRef]  

26. C. Huang, C. Shang, J. Li, L. Dong, and F. Ye, “Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice,” Opt. Express 27(5), 6259–6267 (2019). [CrossRef]  

27. P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).

28. J. Fujioka, A. Espinosa, and R. F. Rodríguez, “Fractional optical solitons,” Phys. Lett. A 374(9), 1126–1134 (2010). [CrossRef]  

29. C. Klein, C. Sparber, and P. Markowich, “Numerical study of fractional nonlinear Schrödinger equations,” Proc. R. Soc. A 470(2172), 20140364 (2014). [CrossRef]  

30. W. Zhong, M. R. Belić, and Y. Zhang, “Accessible solitons of fractional dimension,” Ann. Phys. 368, 110–116 (2016). [CrossRef]  

31. C. Huang and L. Dong, “Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice,” Opt. Lett. 41(24), 5636–5639 (2016). [CrossRef]  

32. M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018). [CrossRef]  

33. W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016). [CrossRef]  

34. W. Zhong, M. R. Belić, and Y. Zhang, “Fractional dimensional accessible solitons in a parity-time symmetric potential,” Ann. Phys. 530(2), 1700311 (2018). [CrossRef]  

35. L. Dong and C. Huang, “Double-hump solitons in fractional dimensions with a $\mathcal{PT}$-symmetric potential,” Opt. Express 26(8), 10509 (2018). [CrossRef]  

36. C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018). [CrossRef]  

37. J. Xiao, Z. Tian, C. Huang, and L. Dong, “Surface gap solitons in a nonlinear fractional Schrödinger equation,” Opt. Express 26(3), 2650–2658 (2018). [CrossRef]  

38. X. Yao and X. Liu, “Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential,” Photonics Res. 6(9), 875–879 (2018). [CrossRef]  

39. M. Chen, Q. Guo, D. Lu, and W. Hu, “Variational approach for breathers in a nonlinear fractional Schrödinger equation,” Commun. Nonlinear. Sci. Numer. Simulat. 71, 73–81 (2019). [CrossRef]  

40. L. Dong and C. Huang, “Composition relation between nonlinear Bloch waves and gap solitons in periodic fractional systems,” Materials 11(7), 1134 (2018). [CrossRef]  

41. L. Zeng and J. Zeng, “One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential,” Nonlinear Dyn. 98(2), 985–995 (2019). [CrossRef]  

42. X. Yao and X. Liu, “Off-site and on-site vortex solitons in space-fractional photonic lattices,” Opt. Lett. 43(23), 5749–5752 (2018). [CrossRef]  

43. L. Zeng and J. Zeng, “One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice,” Opt. Lett. 44(11), 2661–2664 (2019). [CrossRef]  

44. C. Huang and L. Dong, “Dissipative surface solitons in a nonlinear fractional Schrödinger equation,” Opt. Lett. 44(22), 5438–5441 (2019). [CrossRef]  

45. L. Dong and C. Huang, “Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials,” Nonlinear Dyn. 98(2), 1019–1028 (2019). [CrossRef]  

46. X. Zhu, F. Yang, S. Cao, J. Xie, and Y. He, “Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices,” Opt. Express 28(2), 1631–1639 (2020). [CrossRef]  

47. M. I. Molina, “The fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(8), 126180 (2020). [CrossRef]  

48. M. I. Molina, “The two-dimensional fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(33), 126835 (2020). [CrossRef]  

49. Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020). [CrossRef]  

50. P. Li, B. A. Malomed, and D. Mihalache, “Symmetry breaking of spatial Kerr solitons in fractional dimension,” Chaos, Solitons Fractals 132, 109602 (2020). [CrossRef]  

51. B. Wang, P. Lu, C. Dai, and Y. Chen, “Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation,” Results Phys. 17, 103036 (2020). [CrossRef]  

52. J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020). [CrossRef]  

53. P. Li, B. A. Malomed, and D. Mihalache, “Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity,” Chaos, Solitons Fractals 137, 109783 (2020). [CrossRef]  

54. Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019). [CrossRef]  

55. L. Li, H. Li, W. Ruan, F. Leng, and X. Luo, “Gap solitons in parity-time-symmetric lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(2), 488–494 (2020). [CrossRef]  

56. J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020). [CrossRef]  

57. Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020). [CrossRef]  

58. X. Zhu, S. Cao, J. Xie, Y. Qiu, and Y. He, “Vector surface solitons in optical lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(10), 3041–3047 (2020). [CrossRef]  

59. P. Li, B. A. Malomed, and D. Mihalache, “Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities,” Opt. Express 28(23), 34472–34488 (2020). [CrossRef]  

60. M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Spontaneous symmetry breaking of solitons in a double-channel potential,” Phys. Rev. A 75(6), 063621 (2007). [CrossRef]  

61. M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008). [CrossRef]  

62. G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007). [CrossRef]  

63. V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014). [CrossRef]  

64. J. Yang, “Symmetry breaking of solitons in two-dimensional complex potentials,” Phys. Rev. E 91(2), 023201 (2015). [CrossRef]  

65. H. Chen and S. Hu, “The asymmetric solitons in two-dimensional parity-time-symmetric potentials,” Phys. Lett. A 380(1-2), 162–165 (2016). [CrossRef]  

66. L. Dong, C. Huang, and W. Qi, “Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials,” Nonlinear Dyn. 98(3), 1701–1708 (2019). [CrossRef]  

67. A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Novel bifurcation phenomena for solitons in nonlinear saturable couplers,” Opt. Commun. 116(4-6), 411–415 (1995). [CrossRef]  

68. M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys. 51(6), 062102 (2010). [CrossRef]  

69. Y. Luchko, “Fractional Schrö dinger equation for a particle moving in a potential well,” J. Math. Phys. 54(1), 012111 (2013). [CrossRef]  

70. S. W. Duo and Y. Z. Zhang, “Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation,” Comput. Math. Appl. 71(11), 2257–2271 (2016). [CrossRef]  

71. J. L. Coutaz and M. Kull, “Saturation of the nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8(1), 95–98 (1991). [CrossRef]  

72. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996). [CrossRef]  

73. Y. S. Kivshar and G. P. Agrawal, Optical Solitons, From Fibers to Photonic Crystals, (Academic, 2003).

74. J. Yang, “Newton-conjugate-gradient methods for solitary wave computations,” J. Comput. Phys. 228(18), 7007–7024 (2009). [CrossRef]  

75. J. Yang, Nonlinear waves in integrable and nonintegrable systems, (Society for Industrial and Applied Mathematics, 2010).

References

  • View by:

  1. S. Trillo and W. Torruella, eds., Spatial solitons, (Springer, 2001).
  2. Y. S. Kivshar and G. P. Agrawal, Optical solitons: From fibers to photonic crystal, (Academic Press, 2003).
  3. Y. Hu and G. Kallianpur, “Schrödinger equations with fractional Laplacians,” Appl. Math. Optim. 42(3), 281–290 (2000).
    [Crossref]
  4. N. Laskin, “Fractional quantum mechanics,” Phys. Rev. E 62(3), 3135–3145 (2000).
    [Crossref]
  5. N. Laskin, “Fractional quantum mechanics and Lévy path integrals,” Phys. Lett. A 268(4-6), 298–305 (2000).
    [Crossref]
  6. N. Laskin, “Fractional Schrödinger equation,” Phys. Rev. E 66(5), 056108 (2002).
    [Crossref]
  7. N. Laskin, Fractional quantum mechanics, (World Scientific, Singapore, 2018).
  8. B. A. Stickler, “Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal,” Phys. Rev. E 88(1), 012120 (2013).
    [Crossref]
  9. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
    [Crossref]
  10. V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$PT-symmetric systems,” Rev. Mod. Phys. 88(3), 035002 (2016).
    [Crossref]
  11. L. Lu, J. D. Joannopoulos, and M. Soljaćič, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
    [Crossref]
  12. D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7(2), 021306 (2020).
    [Crossref]
  13. S. Longhi, “Fractional Schrödinger equation in optics,” Opt. Lett. 40(6), 1117–1120 (2015).
    [Crossref]
  14. Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
    [Crossref]
  15. Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
    [Crossref]
  16. X. Huang, Z. Deng, and X. Fu, “Diffraction-free beams in fractional Schrödinger equation with a linear potential,” J. Opt. Soc. Am. B 34(5), 976–982 (2017).
    [Crossref]
  17. X. Huang, Z. Deng, X. Shi, and X. Fu, “Propagation characteristics of ring Airy beams modeled by the fractional Schr ödinger equation,” J. Opt. Soc. Am. B 34(10), 2190–2197 (2017).
    [Crossref]
  18. X. Huang, Z. Deng, Y. Bai, and X. Fu, “Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrödinger equation,” Opt. Express 25(26), 32560–32569 (2017).
    [Crossref]
  19. D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
    [Crossref]
  20. L. Zhang, C. Li, H. Zhong, C. Xu, D. Lei, Y. Li, and D. Fan, “Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes,” Opt. Express 24(13), 14406–14418 (2016).
    [Crossref]
  21. L. Zhang, X. Zhang, H. Wu, C. Li, D. Pierangeli, Y. Gao, and D. Fan, “Anomalous interaction of Airy beams in the fractional nonlinear Schrödinger equation,” Opt. Express 27(20), 27936–27945 (2019).
    [Crossref]
  22. F. Zang, Y. Wang, and L. Li, “Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient,” Opt. Express 26(18), 23740–23750 (2018).
    [Crossref]
  23. C. Huang and L. Dong, “Beam propagation management in a fractional Schrödinger equation,” Sci. Rep. 7(1), 5442 (2017).
    [Crossref]
  24. Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
    [Crossref]
  25. Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
    [Crossref]
  26. C. Huang, C. Shang, J. Li, L. Dong, and F. Ye, “Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice,” Opt. Express 27(5), 6259–6267 (2019).
    [Crossref]
  27. P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$PT-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).
  28. J. Fujioka, A. Espinosa, and R. F. Rodríguez, “Fractional optical solitons,” Phys. Lett. A 374(9), 1126–1134 (2010).
    [Crossref]
  29. C. Klein, C. Sparber, and P. Markowich, “Numerical study of fractional nonlinear Schrödinger equations,” Proc. R. Soc. A 470(2172), 20140364 (2014).
    [Crossref]
  30. W. Zhong, M. R. Belić, and Y. Zhang, “Accessible solitons of fractional dimension,” Ann. Phys. 368, 110–116 (2016).
    [Crossref]
  31. C. Huang and L. Dong, “Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice,” Opt. Lett. 41(24), 5636–5639 (2016).
    [Crossref]
  32. M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018).
    [Crossref]
  33. W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016).
    [Crossref]
  34. W. Zhong, M. R. Belić, and Y. Zhang, “Fractional dimensional accessible solitons in a parity-time symmetric potential,” Ann. Phys. 530(2), 1700311 (2018).
    [Crossref]
  35. L. Dong and C. Huang, “Double-hump solitons in fractional dimensions with a $\mathcal{PT}$PT-symmetric potential,” Opt. Express 26(8), 10509 (2018).
    [Crossref]
  36. C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$PT-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018).
    [Crossref]
  37. J. Xiao, Z. Tian, C. Huang, and L. Dong, “Surface gap solitons in a nonlinear fractional Schrödinger equation,” Opt. Express 26(3), 2650–2658 (2018).
    [Crossref]
  38. X. Yao and X. Liu, “Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential,” Photonics Res. 6(9), 875–879 (2018).
    [Crossref]
  39. M. Chen, Q. Guo, D. Lu, and W. Hu, “Variational approach for breathers in a nonlinear fractional Schrödinger equation,” Commun. Nonlinear. Sci. Numer. Simulat. 71, 73–81 (2019).
    [Crossref]
  40. L. Dong and C. Huang, “Composition relation between nonlinear Bloch waves and gap solitons in periodic fractional systems,” Materials 11(7), 1134 (2018).
    [Crossref]
  41. L. Zeng and J. Zeng, “One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential,” Nonlinear Dyn. 98(2), 985–995 (2019).
    [Crossref]
  42. X. Yao and X. Liu, “Off-site and on-site vortex solitons in space-fractional photonic lattices,” Opt. Lett. 43(23), 5749–5752 (2018).
    [Crossref]
  43. L. Zeng and J. Zeng, “One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice,” Opt. Lett. 44(11), 2661–2664 (2019).
    [Crossref]
  44. C. Huang and L. Dong, “Dissipative surface solitons in a nonlinear fractional Schrödinger equation,” Opt. Lett. 44(22), 5438–5441 (2019).
    [Crossref]
  45. L. Dong and C. Huang, “Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials,” Nonlinear Dyn. 98(2), 1019–1028 (2019).
    [Crossref]
  46. X. Zhu, F. Yang, S. Cao, J. Xie, and Y. He, “Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices,” Opt. Express 28(2), 1631–1639 (2020).
    [Crossref]
  47. M. I. Molina, “The fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(8), 126180 (2020).
    [Crossref]
  48. M. I. Molina, “The two-dimensional fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(33), 126835 (2020).
    [Crossref]
  49. Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020).
    [Crossref]
  50. P. Li, B. A. Malomed, and D. Mihalache, “Symmetry breaking of spatial Kerr solitons in fractional dimension,” Chaos, Solitons Fractals 132, 109602 (2020).
    [Crossref]
  51. B. Wang, P. Lu, C. Dai, and Y. Chen, “Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation,” Results Phys. 17, 103036 (2020).
    [Crossref]
  52. J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
    [Crossref]
  53. P. Li, B. A. Malomed, and D. Mihalache, “Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity,” Chaos, Solitons Fractals 137, 109783 (2020).
    [Crossref]
  54. Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019).
    [Crossref]
  55. L. Li, H. Li, W. Ruan, F. Leng, and X. Luo, “Gap solitons in parity-time-symmetric lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(2), 488–494 (2020).
    [Crossref]
  56. J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
    [Crossref]
  57. Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020).
    [Crossref]
  58. X. Zhu, S. Cao, J. Xie, Y. Qiu, and Y. He, “Vector surface solitons in optical lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(10), 3041–3047 (2020).
    [Crossref]
  59. P. Li, B. A. Malomed, and D. Mihalache, “Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities,” Opt. Express 28(23), 34472–34488 (2020).
    [Crossref]
  60. M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Spontaneous symmetry breaking of solitons in a double-channel potential,” Phys. Rev. A 75(6), 063621 (2007).
    [Crossref]
  61. M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
    [Crossref]
  62. G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007).
    [Crossref]
  63. V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
    [Crossref]
  64. J. Yang, “Symmetry breaking of solitons in two-dimensional complex potentials,” Phys. Rev. E 91(2), 023201 (2015).
    [Crossref]
  65. H. Chen and S. Hu, “The asymmetric solitons in two-dimensional parity-time-symmetric potentials,” Phys. Lett. A 380(1-2), 162–165 (2016).
    [Crossref]
  66. L. Dong, C. Huang, and W. Qi, “Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials,” Nonlinear Dyn. 98(3), 1701–1708 (2019).
    [Crossref]
  67. A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Novel bifurcation phenomena for solitons in nonlinear saturable couplers,” Opt. Commun. 116(4-6), 411–415 (1995).
    [Crossref]
  68. M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys. 51(6), 062102 (2010).
    [Crossref]
  69. Y. Luchko, “Fractional Schrö dinger equation for a particle moving in a potential well,” J. Math. Phys. 54(1), 012111 (2013).
    [Crossref]
  70. S. W. Duo and Y. Z. Zhang, “Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation,” Comput. Math. Appl. 71(11), 2257–2271 (2016).
    [Crossref]
  71. J. L. Coutaz and M. Kull, “Saturation of the nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8(1), 95–98 (1991).
    [Crossref]
  72. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996).
    [Crossref]
  73. Y. S. Kivshar and G. P. Agrawal, Optical Solitons, From Fibers to Photonic Crystals, (Academic, 2003).
  74. J. Yang, “Newton-conjugate-gradient methods for solitary wave computations,” J. Comput. Phys. 228(18), 7007–7024 (2009).
    [Crossref]
  75. J. Yang, Nonlinear waves in integrable and nonintegrable systems, (Society for Industrial and Applied Mathematics, 2010).

2020 (14)

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7(2), 021306 (2020).
[Crossref]

X. Zhu, F. Yang, S. Cao, J. Xie, and Y. He, “Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices,” Opt. Express 28(2), 1631–1639 (2020).
[Crossref]

M. I. Molina, “The fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(8), 126180 (2020).
[Crossref]

M. I. Molina, “The two-dimensional fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(33), 126835 (2020).
[Crossref]

Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Symmetry breaking of spatial Kerr solitons in fractional dimension,” Chaos, Solitons Fractals 132, 109602 (2020).
[Crossref]

B. Wang, P. Lu, C. Dai, and Y. Chen, “Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation,” Results Phys. 17, 103036 (2020).
[Crossref]

J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity,” Chaos, Solitons Fractals 137, 109783 (2020).
[Crossref]

L. Li, H. Li, W. Ruan, F. Leng, and X. Luo, “Gap solitons in parity-time-symmetric lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(2), 488–494 (2020).
[Crossref]

J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
[Crossref]

Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020).
[Crossref]

X. Zhu, S. Cao, J. Xie, Y. Qiu, and Y. He, “Vector surface solitons in optical lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(10), 3041–3047 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities,” Opt. Express 28(23), 34472–34488 (2020).
[Crossref]

2019 (10)

L. Zeng and J. Zeng, “One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice,” Opt. Lett. 44(11), 2661–2664 (2019).
[Crossref]

C. Huang and L. Dong, “Dissipative surface solitons in a nonlinear fractional Schrödinger equation,” Opt. Lett. 44(22), 5438–5441 (2019).
[Crossref]

L. Dong and C. Huang, “Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials,” Nonlinear Dyn. 98(2), 1019–1028 (2019).
[Crossref]

Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019).
[Crossref]

L. Dong, C. Huang, and W. Qi, “Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials,” Nonlinear Dyn. 98(3), 1701–1708 (2019).
[Crossref]

L. Zhang, X. Zhang, H. Wu, C. Li, D. Pierangeli, Y. Gao, and D. Fan, “Anomalous interaction of Airy beams in the fractional nonlinear Schrödinger equation,” Opt. Express 27(20), 27936–27945 (2019).
[Crossref]

C. Huang, C. Shang, J. Li, L. Dong, and F. Ye, “Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice,” Opt. Express 27(5), 6259–6267 (2019).
[Crossref]

P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$PT-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).

M. Chen, Q. Guo, D. Lu, and W. Hu, “Variational approach for breathers in a nonlinear fractional Schrödinger equation,” Commun. Nonlinear. Sci. Numer. Simulat. 71, 73–81 (2019).
[Crossref]

L. Zeng and J. Zeng, “One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential,” Nonlinear Dyn. 98(2), 985–995 (2019).
[Crossref]

2018 (9)

X. Yao and X. Liu, “Off-site and on-site vortex solitons in space-fractional photonic lattices,” Opt. Lett. 43(23), 5749–5752 (2018).
[Crossref]

L. Dong and C. Huang, “Composition relation between nonlinear Bloch waves and gap solitons in periodic fractional systems,” Materials 11(7), 1134 (2018).
[Crossref]

W. Zhong, M. R. Belić, and Y. Zhang, “Fractional dimensional accessible solitons in a parity-time symmetric potential,” Ann. Phys. 530(2), 1700311 (2018).
[Crossref]

L. Dong and C. Huang, “Double-hump solitons in fractional dimensions with a $\mathcal{PT}$PT-symmetric potential,” Opt. Express 26(8), 10509 (2018).
[Crossref]

C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$PT-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018).
[Crossref]

J. Xiao, Z. Tian, C. Huang, and L. Dong, “Surface gap solitons in a nonlinear fractional Schrödinger equation,” Opt. Express 26(3), 2650–2658 (2018).
[Crossref]

X. Yao and X. Liu, “Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential,” Photonics Res. 6(9), 875–879 (2018).
[Crossref]

M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018).
[Crossref]

F. Zang, Y. Wang, and L. Li, “Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient,” Opt. Express 26(18), 23740–23750 (2018).
[Crossref]

2017 (7)

C. Huang and L. Dong, “Beam propagation management in a fractional Schrödinger equation,” Sci. Rep. 7(1), 5442 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
[Crossref]

X. Huang, Z. Deng, and X. Fu, “Diffraction-free beams in fractional Schrödinger equation with a linear potential,” J. Opt. Soc. Am. B 34(5), 976–982 (2017).
[Crossref]

X. Huang, Z. Deng, X. Shi, and X. Fu, “Propagation characteristics of ring Airy beams modeled by the fractional Schr ödinger equation,” J. Opt. Soc. Am. B 34(10), 2190–2197 (2017).
[Crossref]

X. Huang, Z. Deng, Y. Bai, and X. Fu, “Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrödinger equation,” Opt. Express 25(26), 32560–32569 (2017).
[Crossref]

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

2016 (8)

L. Zhang, C. Li, H. Zhong, C. Xu, D. Lei, Y. Li, and D. Fan, “Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes,” Opt. Express 24(13), 14406–14418 (2016).
[Crossref]

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$PT-symmetric systems,” Rev. Mod. Phys. 88(3), 035002 (2016).
[Crossref]

W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016).
[Crossref]

W. Zhong, M. R. Belić, and Y. Zhang, “Accessible solitons of fractional dimension,” Ann. Phys. 368, 110–116 (2016).
[Crossref]

C. Huang and L. Dong, “Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice,” Opt. Lett. 41(24), 5636–5639 (2016).
[Crossref]

Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
[Crossref]

H. Chen and S. Hu, “The asymmetric solitons in two-dimensional parity-time-symmetric potentials,” Phys. Lett. A 380(1-2), 162–165 (2016).
[Crossref]

S. W. Duo and Y. Z. Zhang, “Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation,” Comput. Math. Appl. 71(11), 2257–2271 (2016).
[Crossref]

2015 (3)

J. Yang, “Symmetry breaking of solitons in two-dimensional complex potentials,” Phys. Rev. E 91(2), 023201 (2015).
[Crossref]

S. Longhi, “Fractional Schrödinger equation in optics,” Opt. Lett. 40(6), 1117–1120 (2015).
[Crossref]

Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
[Crossref]

2014 (3)

L. Lu, J. D. Joannopoulos, and M. Soljaćič, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

C. Klein, C. Sparber, and P. Markowich, “Numerical study of fractional nonlinear Schrödinger equations,” Proc. R. Soc. A 470(2172), 20140364 (2014).
[Crossref]

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

2013 (2)

Y. Luchko, “Fractional Schrö dinger equation for a particle moving in a potential well,” J. Math. Phys. 54(1), 012111 (2013).
[Crossref]

B. A. Stickler, “Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal,” Phys. Rev. E 88(1), 012120 (2013).
[Crossref]

2010 (2)

J. Fujioka, A. Espinosa, and R. F. Rodríguez, “Fractional optical solitons,” Phys. Lett. A 374(9), 1126–1134 (2010).
[Crossref]

M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys. 51(6), 062102 (2010).
[Crossref]

2009 (2)

J. Yang, “Newton-conjugate-gradient methods for solitary wave computations,” J. Comput. Phys. 228(18), 7007–7024 (2009).
[Crossref]

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
[Crossref]

2008 (1)

M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
[Crossref]

2007 (2)

G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007).
[Crossref]

M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Spontaneous symmetry breaking of solitons in a double-channel potential,” Phys. Rev. A 75(6), 063621 (2007).
[Crossref]

2002 (1)

N. Laskin, “Fractional Schrödinger equation,” Phys. Rev. E 66(5), 056108 (2002).
[Crossref]

2000 (3)

Y. Hu and G. Kallianpur, “Schrödinger equations with fractional Laplacians,” Appl. Math. Optim. 42(3), 281–290 (2000).
[Crossref]

N. Laskin, “Fractional quantum mechanics,” Phys. Rev. E 62(3), 3135–3145 (2000).
[Crossref]

N. Laskin, “Fractional quantum mechanics and Lévy path integrals,” Phys. Lett. A 268(4-6), 298–305 (2000).
[Crossref]

1996 (1)

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996).
[Crossref]

1995 (1)

A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Novel bifurcation phenomena for solitons in nonlinear saturable couplers,” Opt. Commun. 116(4-6), 411–415 (1995).
[Crossref]

1991 (1)

Agrawal, G. P.

Y. S. Kivshar and G. P. Agrawal, Optical solitons: From fibers to photonic crystal, (Academic Press, 2003).

Y. S. Kivshar and G. P. Agrawal, Optical Solitons, From Fibers to Photonic Crystals, (Academic, 2003).

Ahmed, N.

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
[Crossref]

Akhmediev, N.

A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Novel bifurcation phenomena for solitons in nonlinear saturable couplers,” Opt. Commun. 116(4-6), 411–415 (1995).
[Crossref]

Aleksic, B. N.

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

Aleksic, N. B.

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

Ankiewicz, A.

A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Novel bifurcation phenomena for solitons in nonlinear saturable couplers,” Opt. Commun. 116(4-6), 411–415 (1995).
[Crossref]

Bai, Y.

Belic, M. R.

W. Zhong, M. R. Belić, and Y. Zhang, “Fractional dimensional accessible solitons in a parity-time symmetric potential,” Ann. Phys. 530(2), 1700311 (2018).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
[Crossref]

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
[Crossref]

W. Zhong, M. R. Belić, and Y. Zhang, “Accessible solitons of fractional dimension,” Ann. Phys. 368, 110–116 (2016).
[Crossref]

W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016).
[Crossref]

Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
[Crossref]

Cao, S.

Carretero-González, R.

G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007).
[Crossref]

Che, W.

Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020).
[Crossref]

Chen, H.

H. Chen and S. Hu, “The asymmetric solitons in two-dimensional parity-time-symmetric potentials,” Phys. Lett. A 380(1-2), 162–165 (2016).
[Crossref]

Chen, J.

J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
[Crossref]

J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
[Crossref]

Chen, M.

M. Chen, Q. Guo, D. Lu, and W. Hu, “Variational approach for breathers in a nonlinear fractional Schrödinger equation,” Commun. Nonlinear. Sci. Numer. Simulat. 71, 73–81 (2019).
[Crossref]

M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018).
[Crossref]

Chen, Y.

B. Wang, P. Lu, C. Dai, and Y. Chen, “Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation,” Results Phys. 17, 103036 (2020).
[Crossref]

Chong, Y.

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7(2), 021306 (2020).
[Crossref]

Christou, J.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996).
[Crossref]

Coutaz, J. L.

Dai, C.

B. Wang, P. Lu, C. Dai, and Y. Chen, “Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation,” Results Phys. 17, 103036 (2020).
[Crossref]

Deng, H.

C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$PT-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018).
[Crossref]

Deng, Z.

Dong, L.

C. Huang, C. Shang, J. Li, L. Dong, and F. Ye, “Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice,” Opt. Express 27(5), 6259–6267 (2019).
[Crossref]

C. Huang and L. Dong, “Dissipative surface solitons in a nonlinear fractional Schrödinger equation,” Opt. Lett. 44(22), 5438–5441 (2019).
[Crossref]

L. Dong and C. Huang, “Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials,” Nonlinear Dyn. 98(2), 1019–1028 (2019).
[Crossref]

L. Dong, C. Huang, and W. Qi, “Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials,” Nonlinear Dyn. 98(3), 1701–1708 (2019).
[Crossref]

C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$PT-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018).
[Crossref]

L. Dong and C. Huang, “Double-hump solitons in fractional dimensions with a $\mathcal{PT}$PT-symmetric potential,” Opt. Express 26(8), 10509 (2018).
[Crossref]

J. Xiao, Z. Tian, C. Huang, and L. Dong, “Surface gap solitons in a nonlinear fractional Schrödinger equation,” Opt. Express 26(3), 2650–2658 (2018).
[Crossref]

L. Dong and C. Huang, “Composition relation between nonlinear Bloch waves and gap solitons in periodic fractional systems,” Materials 11(7), 1134 (2018).
[Crossref]

C. Huang and L. Dong, “Beam propagation management in a fractional Schrödinger equation,” Sci. Rep. 7(1), 5442 (2017).
[Crossref]

C. Huang and L. Dong, “Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice,” Opt. Lett. 41(24), 5636–5639 (2016).
[Crossref]

Duo, S. W.

S. W. Duo and Y. Z. Zhang, “Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation,” Comput. Math. Appl. 71(11), 2257–2271 (2016).
[Crossref]

Espinosa, A.

J. Fujioka, A. Espinosa, and R. F. Rodríguez, “Fractional optical solitons,” Phys. Lett. A 374(9), 1126–1134 (2010).
[Crossref]

Fan, D.

Frantzeskakis, D. J.

G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007).
[Crossref]

Fu, X.

Fujioka, J.

J. Fujioka, A. Espinosa, and R. F. Rodríguez, “Fractional optical solitons,” Phys. Lett. A 374(9), 1126–1134 (2010).
[Crossref]

Gao, Y.

Gocalek, J.

M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
[Crossref]

Gu, Y.

Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019).
[Crossref]

Guo, H.

Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019).
[Crossref]

Guo, Q.

M. Chen, Q. Guo, D. Lu, and W. Hu, “Variational approach for breathers in a nonlinear fractional Schrödinger equation,” Commun. Nonlinear. Sci. Numer. Simulat. 71, 73–81 (2019).
[Crossref]

M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018).
[Crossref]

Han, B.

P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$PT-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).

Hawkins, E.

M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys. 51(6), 062102 (2010).
[Crossref]

He, Y.

Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020).
[Crossref]

X. Zhu, S. Cao, J. Xie, Y. Qiu, and Y. He, “Vector surface solitons in optical lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(10), 3041–3047 (2020).
[Crossref]

X. Zhu, F. Yang, S. Cao, J. Xie, and Y. He, “Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices,” Opt. Express 28(2), 1631–1639 (2020).
[Crossref]

Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020).
[Crossref]

Herring, G.

G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007).
[Crossref]

Hu, S.

H. Chen and S. Hu, “The asymmetric solitons in two-dimensional parity-time-symmetric potentials,” Phys. Lett. A 380(1-2), 162–165 (2016).
[Crossref]

Hu, W.

M. Chen, Q. Guo, D. Lu, and W. Hu, “Variational approach for breathers in a nonlinear fractional Schrödinger equation,” Commun. Nonlinear. Sci. Numer. Simulat. 71, 73–81 (2019).
[Crossref]

M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018).
[Crossref]

Hu, Y.

Y. Hu and G. Kallianpur, “Schrödinger equations with fractional Laplacians,” Appl. Math. Optim. 42(3), 281–290 (2000).
[Crossref]

Huang, C.

C. Huang, C. Shang, J. Li, L. Dong, and F. Ye, “Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice,” Opt. Express 27(5), 6259–6267 (2019).
[Crossref]

L. Dong, C. Huang, and W. Qi, “Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials,” Nonlinear Dyn. 98(3), 1701–1708 (2019).
[Crossref]

L. Dong and C. Huang, “Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials,” Nonlinear Dyn. 98(2), 1019–1028 (2019).
[Crossref]

C. Huang and L. Dong, “Dissipative surface solitons in a nonlinear fractional Schrödinger equation,” Opt. Lett. 44(22), 5438–5441 (2019).
[Crossref]

L. Dong and C. Huang, “Double-hump solitons in fractional dimensions with a $\mathcal{PT}$PT-symmetric potential,” Opt. Express 26(8), 10509 (2018).
[Crossref]

C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$PT-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018).
[Crossref]

L. Dong and C. Huang, “Composition relation between nonlinear Bloch waves and gap solitons in periodic fractional systems,” Materials 11(7), 1134 (2018).
[Crossref]

J. Xiao, Z. Tian, C. Huang, and L. Dong, “Surface gap solitons in a nonlinear fractional Schrödinger equation,” Opt. Express 26(3), 2650–2658 (2018).
[Crossref]

C. Huang and L. Dong, “Beam propagation management in a fractional Schrödinger equation,” Sci. Rep. 7(1), 5442 (2017).
[Crossref]

C. Huang and L. Dong, “Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice,” Opt. Lett. 41(24), 5636–5639 (2016).
[Crossref]

Huang, T.

W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016).
[Crossref]

Huang, X.

Infeld, E.

M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
[Crossref]

Jeng, M.

M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys. 51(6), 062102 (2010).
[Crossref]

Joannopoulos, J. D.

L. Lu, J. D. Joannopoulos, and M. Soljaćič, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Kallianpur, G.

Y. Hu and G. Kallianpur, “Schrödinger equations with fractional Laplacians,” Appl. Math. Optim. 42(3), 281–290 (2000).
[Crossref]

Kevrekidis, P. G.

G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007).
[Crossref]

Kivshar, Y.

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7(2), 021306 (2020).
[Crossref]

Kivshar, Y. S.

Y. S. Kivshar and G. P. Agrawal, Optical solitons: From fibers to photonic crystal, (Academic Press, 2003).

Y. S. Kivshar and G. P. Agrawal, Optical Solitons, From Fibers to Photonic Crystals, (Academic, 2003).

Klein, C.

C. Klein, C. Sparber, and P. Markowich, “Numerical study of fractional nonlinear Schrödinger equations,” Proc. R. Soc. A 470(2172), 20140364 (2014).
[Crossref]

Konotop, V. V.

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$PT-symmetric systems,” Rev. Mod. Phys. 88(3), 035002 (2016).
[Crossref]

Kull, M.

Laskin, N.

N. Laskin, “Fractional Schrödinger equation,” Phys. Rev. E 66(5), 056108 (2002).
[Crossref]

N. Laskin, “Fractional quantum mechanics,” Phys. Rev. E 62(3), 3135–3145 (2000).
[Crossref]

N. Laskin, “Fractional quantum mechanics and Lévy path integrals,” Phys. Lett. A 268(4-6), 298–305 (2000).
[Crossref]

N. Laskin, Fractional quantum mechanics, (World Scientific, Singapore, 2018).

Leblond, H.

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

Lei, D.

Lekic, M.

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

Leng, F.

Leykam, D.

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7(2), 021306 (2020).
[Crossref]

Li, C.

Li, F.

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

Li, H.

Li, J.

P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$PT-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).

C. Huang, C. Shang, J. Li, L. Dong, and F. Ye, “Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice,” Opt. Express 27(5), 6259–6267 (2019).
[Crossref]

Li, L.

Li, P.

P. Li, B. A. Malomed, and D. Mihalache, “Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity,” Chaos, Solitons Fractals 137, 109783 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Symmetry breaking of spatial Kerr solitons in fractional dimension,” Chaos, Solitons Fractals 132, 109602 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities,” Opt. Express 28(23), 34472–34488 (2020).
[Crossref]

Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019).
[Crossref]

P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$PT-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).

Li, Y.

Liu, X.

X. Yao and X. Liu, “Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential,” Photonics Res. 6(9), 875–879 (2018).
[Crossref]

X. Yao and X. Liu, “Off-site and on-site vortex solitons in space-fractional photonic lattices,” Opt. Lett. 43(23), 5749–5752 (2018).
[Crossref]

Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
[Crossref]

Longhi, S.

S. Longhi, “Fractional Schrödinger equation in optics,” Opt. Lett. 40(6), 1117–1120 (2015).
[Crossref]

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
[Crossref]

Lu, D.

M. Chen, Q. Guo, D. Lu, and W. Hu, “Variational approach for breathers in a nonlinear fractional Schrödinger equation,” Commun. Nonlinear. Sci. Numer. Simulat. 71, 73–81 (2019).
[Crossref]

M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018).
[Crossref]

Lu, L.

L. Lu, J. D. Joannopoulos, and M. Soljaćič, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Lu, P.

B. Wang, P. Lu, C. Dai, and Y. Chen, “Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation,” Results Phys. 17, 103036 (2020).
[Crossref]

Luchko, Y.

Y. Luchko, “Fractional Schrö dinger equation for a particle moving in a potential well,” J. Math. Phys. 54(1), 012111 (2013).
[Crossref]

Luo, X.

Luther-Davies, B.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996).
[Crossref]

Ma, H.

P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$PT-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).

Malomed, B. A.

P. Li, B. A. Malomed, and D. Mihalache, “Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities,” Opt. Express 28(23), 34472–34488 (2020).
[Crossref]

Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity,” Chaos, Solitons Fractals 137, 109783 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Symmetry breaking of spatial Kerr solitons in fractional dimension,” Chaos, Solitons Fractals 132, 109602 (2020).
[Crossref]

W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016).
[Crossref]

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
[Crossref]

M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Spontaneous symmetry breaking of solitons in a double-channel potential,” Phys. Rev. A 75(6), 063621 (2007).
[Crossref]

G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007).
[Crossref]

Markowich, P.

C. Klein, C. Sparber, and P. Markowich, “Numerical study of fractional nonlinear Schrödinger equations,” Proc. R. Soc. A 470(2172), 20140364 (2014).
[Crossref]

Matuszewski, M.

M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
[Crossref]

M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Spontaneous symmetry breaking of solitons in a double-channel potential,” Phys. Rev. A 75(6), 063621 (2007).
[Crossref]

Mihalache, D.

P. Li, B. A. Malomed, and D. Mihalache, “Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities,” Opt. Express 28(23), 34472–34488 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Symmetry breaking of spatial Kerr solitons in fractional dimension,” Chaos, Solitons Fractals 132, 109602 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity,” Chaos, Solitons Fractals 137, 109783 (2020).
[Crossref]

Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020).
[Crossref]

P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$PT-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

Molina, M. I.

M. I. Molina, “The fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(8), 126180 (2020).
[Crossref]

M. I. Molina, “The two-dimensional fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(33), 126835 (2020).
[Crossref]

Oberthaler, M.

M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
[Crossref]

Pierangeli, D.

Qi, W.

L. Dong, C. Huang, and W. Qi, “Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials,” Nonlinear Dyn. 98(3), 1701–1708 (2019).
[Crossref]

Qiu, Y.

X. Zhu, S. Cao, J. Xie, Y. Qiu, and Y. He, “Vector surface solitons in optical lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(10), 3041–3047 (2020).
[Crossref]

Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020).
[Crossref]

Rodríguez, R. F.

J. Fujioka, A. Espinosa, and R. F. Rodríguez, “Fractional optical solitons,” Phys. Lett. A 374(9), 1126–1134 (2010).
[Crossref]

Ruan, W.

Schwarz, J. M.

M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys. 51(6), 062102 (2010).
[Crossref]

Shang, C.

Shi, X.

Skarka, V.

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

Smirnova, D.

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7(2), 021306 (2020).
[Crossref]

Soljacic, M.

L. Lu, J. D. Joannopoulos, and M. Soljaćič, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Soto-Crespo, J. M.

A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Novel bifurcation phenomena for solitons in nonlinear saturable couplers,” Opt. Commun. 116(4-6), 411–415 (1995).
[Crossref]

Sparber, C.

C. Klein, C. Sparber, and P. Markowich, “Numerical study of fractional nonlinear Schrödinger equations,” Proc. R. Soc. A 470(2172), 20140364 (2014).
[Crossref]

Stickler, B. A.

B. A. Stickler, “Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal,” Phys. Rev. E 88(1), 012120 (2013).
[Crossref]

Tian, Z.

Tikhonenko, V.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996).
[Crossref]

Trippenbach, M.

M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
[Crossref]

M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Spontaneous symmetry breaking of solitons in a double-channel potential,” Phys. Rev. A 75(6), 063621 (2007).
[Crossref]

Wang, B.

B. Wang, P. Lu, C. Dai, and Y. Chen, “Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation,” Results Phys. 17, 103036 (2020).
[Crossref]

Wang, R.

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
[Crossref]

Wang, Y.

Wu, H.

Wu, Z.

Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020).
[Crossref]

Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019).
[Crossref]

Xiao, J.

Xiao, M.

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
[Crossref]

Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
[Crossref]

Xie, J.

Xu, C.

Xu, S. L. Y.

M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys. 51(6), 062102 (2010).
[Crossref]

Yang, F.

Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020).
[Crossref]

X. Zhu, F. Yang, S. Cao, J. Xie, and Y. He, “Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices,” Opt. Express 28(2), 1631–1639 (2020).
[Crossref]

Yang, J.

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$PT-symmetric systems,” Rev. Mod. Phys. 88(3), 035002 (2016).
[Crossref]

J. Yang, “Symmetry breaking of solitons in two-dimensional complex potentials,” Phys. Rev. E 91(2), 023201 (2015).
[Crossref]

J. Yang, “Newton-conjugate-gradient methods for solitary wave computations,” J. Comput. Phys. 228(18), 7007–7024 (2009).
[Crossref]

J. Yang, Nonlinear waves in integrable and nonintegrable systems, (Society for Industrial and Applied Mathematics, 2010).

Yao, X.

X. Yao and X. Liu, “Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential,” Photonics Res. 6(9), 875–879 (2018).
[Crossref]

X. Yao and X. Liu, “Off-site and on-site vortex solitons in space-fractional photonic lattices,” Opt. Lett. 43(23), 5749–5752 (2018).
[Crossref]

Ye, F.

C. Huang, C. Shang, J. Li, L. Dong, and F. Ye, “Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice,” Opt. Express 27(5), 6259–6267 (2019).
[Crossref]

C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$PT-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018).
[Crossref]

Zang, F.

Zeng, J.

J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
[Crossref]

J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
[Crossref]

L. Zeng and J. Zeng, “One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice,” Opt. Lett. 44(11), 2661–2664 (2019).
[Crossref]

L. Zeng and J. Zeng, “One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential,” Nonlinear Dyn. 98(2), 985–995 (2019).
[Crossref]

Zeng, L.

L. Zeng and J. Zeng, “One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential,” Nonlinear Dyn. 98(2), 985–995 (2019).
[Crossref]

L. Zeng and J. Zeng, “One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice,” Opt. Lett. 44(11), 2661–2664 (2019).
[Crossref]

Zeng, S.

M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018).
[Crossref]

Zezyulin, D. A.

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$PT-symmetric systems,” Rev. Mod. Phys. 88(3), 035002 (2016).
[Crossref]

Zhang, D.

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

Zhang, J.

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
[Crossref]

Zhang, L.

Zhang, W.

C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$PT-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018).
[Crossref]

Zhang, X.

Zhang, Y.

Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019).
[Crossref]

W. Zhong, M. R. Belić, and Y. Zhang, “Fractional dimensional accessible solitons in a parity-time symmetric potential,” Ann. Phys. 530(2), 1700311 (2018).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
[Crossref]

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
[Crossref]

Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
[Crossref]

W. Zhong, M. R. Belić, and Y. Zhang, “Accessible solitons of fractional dimension,” Ann. Phys. 368, 110–116 (2016).
[Crossref]

W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016).
[Crossref]

Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
[Crossref]

Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
[Crossref]

Zhang, Y. Z.

S. W. Duo and Y. Z. Zhang, “Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation,” Comput. Math. Appl. 71(11), 2257–2271 (2016).
[Crossref]

Zhang, Z.

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

Zhong, H.

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
[Crossref]

L. Zhang, C. Li, H. Zhong, C. Xu, D. Lei, Y. Li, and D. Fan, “Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes,” Opt. Express 24(13), 14406–14418 (2016).
[Crossref]

Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
[Crossref]

Zhong, W.

W. Zhong, M. R. Belić, and Y. Zhang, “Fractional dimensional accessible solitons in a parity-time symmetric potential,” Ann. Phys. 530(2), 1700311 (2018).
[Crossref]

W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016).
[Crossref]

W. Zhong, M. R. Belić, and Y. Zhang, “Accessible solitons of fractional dimension,” Ann. Phys. 368, 110–116 (2016).
[Crossref]

Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
[Crossref]

Zhu, X.

Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020).
[Crossref]

X. Zhu, F. Yang, S. Cao, J. Xie, and Y. He, “Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices,” Opt. Express 28(2), 1631–1639 (2020).
[Crossref]

Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020).
[Crossref]

X. Zhu, S. Cao, J. Xie, Y. Qiu, and Y. He, “Vector surface solitons in optical lattices with fractional-order diffraction,” J. Opt. Soc. Am. B 37(10), 3041–3047 (2020).
[Crossref]

Ann. Phys. (3)

D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, M. R. Belić, and M. Xiao, “Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice,” Ann. Phys. 529(9), 1700149 (2017).
[Crossref]

W. Zhong, M. R. Belić, and Y. Zhang, “Accessible solitons of fractional dimension,” Ann. Phys. 368, 110–116 (2016).
[Crossref]

W. Zhong, M. R. Belić, and Y. Zhang, “Fractional dimensional accessible solitons in a parity-time symmetric potential,” Ann. Phys. 530(2), 1700311 (2018).
[Crossref]

Appl. Math. Optim. (1)

Y. Hu and G. Kallianpur, “Schrödinger equations with fractional Laplacians,” Appl. Math. Optim. 42(3), 281–290 (2000).
[Crossref]

Appl. Phys. Rev. (1)

D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7(2), 021306 (2020).
[Crossref]

Chaos (2)

J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
[Crossref]

J. Chen and J. Zeng, “Spontaneous symmetry breaking in purely nonlinear fractional systems,” Chaos 30(6), 063131 (2020).
[Crossref]

Chaos, Solitons Fractals (3)

Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He, “Soliton dynamics in a fractional complex Ginzburg-Landau model,” Chaos, Solitons Fractals 131, 109471 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Symmetry breaking of spatial Kerr solitons in fractional dimension,” Chaos, Solitons Fractals 132, 109602 (2020).
[Crossref]

P. Li, B. A. Malomed, and D. Mihalache, “Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity,” Chaos, Solitons Fractals 137, 109783 (2020).
[Crossref]

Commun. Nonlinear. Sci. Numer. Simulat. (1)

M. Chen, Q. Guo, D. Lu, and W. Hu, “Variational approach for breathers in a nonlinear fractional Schrödinger equation,” Commun. Nonlinear. Sci. Numer. Simulat. 71, 73–81 (2019).
[Crossref]

Comput. Math. Appl. (1)

S. W. Duo and Y. Z. Zhang, “Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation,” Comput. Math. Appl. 71(11), 2257–2271 (2016).
[Crossref]

Europhys. Lett. (1)

C. Huang, H. Deng, W. Zhang, F. Ye, and L. Dong, “Fundamental solitons in the nonlinear fractional Schrö dinger equation with a $\mathcal{PT}$PT-symmetric potential,” Europhys. Lett. 122(2), 24002 (2018).
[Crossref]

J. Comput. Phys. (1)

J. Yang, “Newton-conjugate-gradient methods for solitary wave computations,” J. Comput. Phys. 228(18), 7007–7024 (2009).
[Crossref]

J. Math. Phys. (2)

M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys. 51(6), 062102 (2010).
[Crossref]

Y. Luchko, “Fractional Schrö dinger equation for a particle moving in a potential well,” J. Math. Phys. 54(1), 012111 (2013).
[Crossref]

J. Opt. (1)

Z. Wu, P. Li, Y. Zhang, H. Guo, and Y. Gu, “Multicharged vortex induced in fractional Schröinger equation with competing nonlocal nonlinearities,” J. Opt. 21(10), 105602 (2019).
[Crossref]

J. Opt. Soc. Am. B (5)

Laser Photonics Rev. (1)

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3(3), 243–261 (2009).
[Crossref]

Materials (1)

L. Dong and C. Huang, “Composition relation between nonlinear Bloch waves and gap solitons in periodic fractional systems,” Materials 11(7), 1134 (2018).
[Crossref]

Nat. Photonics (1)

L. Lu, J. D. Joannopoulos, and M. Soljaćič, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Nonlinear Dyn. (3)

L. Zeng and J. Zeng, “One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential,” Nonlinear Dyn. 98(2), 985–995 (2019).
[Crossref]

L. Dong and C. Huang, “Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials,” Nonlinear Dyn. 98(2), 1019–1028 (2019).
[Crossref]

L. Dong, C. Huang, and W. Qi, “Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials,” Nonlinear Dyn. 98(3), 1701–1708 (2019).
[Crossref]

Opt. Commun. (1)

A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Novel bifurcation phenomena for solitons in nonlinear saturable couplers,” Opt. Commun. 116(4-6), 411–415 (1995).
[Crossref]

Opt. Express (10)

P. Li, B. A. Malomed, and D. Mihalache, “Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities,” Opt. Express 28(23), 34472–34488 (2020).
[Crossref]

X. Zhu, F. Yang, S. Cao, J. Xie, and Y. He, “Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices,” Opt. Express 28(2), 1631–1639 (2020).
[Crossref]

X. Huang, Z. Deng, Y. Bai, and X. Fu, “Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrödinger equation,” Opt. Express 25(26), 32560–32569 (2017).
[Crossref]

J. Xiao, Z. Tian, C. Huang, and L. Dong, “Surface gap solitons in a nonlinear fractional Schrödinger equation,” Opt. Express 26(3), 2650–2658 (2018).
[Crossref]

L. Dong and C. Huang, “Double-hump solitons in fractional dimensions with a $\mathcal{PT}$PT-symmetric potential,” Opt. Express 26(8), 10509 (2018).
[Crossref]

L. Zhang, C. Li, H. Zhong, C. Xu, D. Lei, Y. Li, and D. Fan, “Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes,” Opt. Express 24(13), 14406–14418 (2016).
[Crossref]

L. Zhang, X. Zhang, H. Wu, C. Li, D. Pierangeli, Y. Gao, and D. Fan, “Anomalous interaction of Airy beams in the fractional nonlinear Schrödinger equation,” Opt. Express 27(20), 27936–27945 (2019).
[Crossref]

F. Zang, Y. Wang, and L. Li, “Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient,” Opt. Express 26(18), 23740–23750 (2018).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation,” Opt. Express 25(26), 32401–32410 (2017).
[Crossref]

C. Huang, C. Shang, J. Li, L. Dong, and F. Ye, “Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice,” Opt. Express 27(5), 6259–6267 (2019).
[Crossref]

Opt. Lett. (5)

Photonics Res. (1)

X. Yao and X. Liu, “Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential,” Photonics Res. 6(9), 875–879 (2018).
[Crossref]

Phys. Lett. A (5)

J. Fujioka, A. Espinosa, and R. F. Rodríguez, “Fractional optical solitons,” Phys. Lett. A 374(9), 1126–1134 (2010).
[Crossref]

N. Laskin, “Fractional quantum mechanics and Lévy path integrals,” Phys. Lett. A 268(4-6), 298–305 (2000).
[Crossref]

M. I. Molina, “The fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(8), 126180 (2020).
[Crossref]

M. I. Molina, “The two-dimensional fractional discrete nonlinear Schrödinger equation,” Phys. Lett. A 384(33), 126835 (2020).
[Crossref]

H. Chen and S. Hu, “The asymmetric solitons in two-dimensional parity-time-symmetric potentials,” Phys. Lett. A 380(1-2), 162–165 (2016).
[Crossref]

Phys. Rev. A (3)

M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Spontaneous symmetry breaking of solitons in a double-channel potential,” Phys. Rev. A 75(6), 063621 (2007).
[Crossref]

M. Trippenbach, E. Infeld, J. Gocałek, M. Matuszewski, M. Oberthaler, and B. A. Malomed, “Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps,” Phys. Rev. A 78(1), 013603 (2008).
[Crossref]

V. Skarka, N. B. Aleksić, M. Lekić, B. N. Aleksić, B. A. Malomed, D. Mihalache, and H. Leblond, “Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking,” Phys. Rev. A 90(2), 023845 (2014).
[Crossref]

Phys. Rev. E (7)

J. Yang, “Symmetry breaking of solitons in two-dimensional complex potentials,” Phys. Rev. E 91(2), 023201 (2015).
[Crossref]

G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, and D. J. Frantzeskakis, “Symmetry breaking in linearly coupled dynamical lattices,” Phys. Rev. E 76(6), 066606 (2007).
[Crossref]

N. Laskin, “Fractional Schrödinger equation,” Phys. Rev. E 66(5), 056108 (2002).
[Crossref]

N. Laskin, “Fractional quantum mechanics,” Phys. Rev. E 62(3), 3135–3145 (2000).
[Crossref]

B. A. Stickler, “Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal,” Phys. Rev. E 88(1), 012120 (2013).
[Crossref]

M. Chen, S. Zeng, D. Lu, W. Hu, and Q. Guo, “Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity,” Phys. Rev. E 98(2), 022211 (2018).
[Crossref]

W. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang, and T. Huang, “Spatiotemporal accessible solitons in fractional dimensions,” Phys. Rev. E 94(1), 012216 (2016).
[Crossref]

Phys. Rev. Lett. (2)

Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation,” Phys. Rev. Lett. 115(18), 180403 (2015).
[Crossref]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996).
[Crossref]

Proc. R. Soc. A (1)

C. Klein, C. Sparber, and P. Markowich, “Numerical study of fractional nonlinear Schrödinger equations,” Proc. R. Soc. A 470(2172), 20140364 (2014).
[Crossref]

Results Phys. (2)

B. Wang, P. Lu, C. Dai, and Y. Chen, “Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation,” Results Phys. 17, 103036 (2020).
[Crossref]

Z. Wu, S. Cao, W. Che, F. Yang, X. Zhu, and Y. He, “Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation,” Results Phys. 19, 103381 (2020).
[Crossref]

Rev. Mod. Phys. (1)

V. V. Konotop, J. Yang, and D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$PT-symmetric systems,” Rev. Mod. Phys. 88(3), 035002 (2016).
[Crossref]

Rom. Rep. Phys. (1)

P. Li, J. Li, B. Han, H. Ma, and D. Mihalache, “$\mathcal{PT}$PT-Symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation,” Rom. Rep. Phys. 71(2), 106 (2019).

Sci. Rep. (3)

C. Huang and L. Dong, “Beam propagation management in a fractional Schrödinger equation,” Sci. Rep. 7(1), 5442 (2017).
[Crossref]

Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belić, and Y. Zhang, “Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation,” Sci. Rep. 7(1), 17872 (2017).
[Crossref]

Y. Zhang, H. Zhong, M. R. Belić, N. Ahmed, Y. Zhang, and M. Xiao, “Diffraction-free beams in fractional Schrö dinger equation,” Sci. Rep. 6(1), 23645 (2016).
[Crossref]

Other (5)

N. Laskin, Fractional quantum mechanics, (World Scientific, Singapore, 2018).

S. Trillo and W. Torruella, eds., Spatial solitons, (Springer, 2001).

Y. S. Kivshar and G. P. Agrawal, Optical solitons: From fibers to photonic crystal, (Academic Press, 2003).

Y. S. Kivshar and G. P. Agrawal, Optical Solitons, From Fibers to Photonic Crystals, (Academic, 2003).

J. Yang, Nonlinear waves in integrable and nonintegrable systems, (Society for Industrial and Applied Mathematics, 2010).

Supplementary Material (2)

NameDescription
Visualization 1       The shape of two humps of the symmetric soliton changes with the decrease of Lévy index and a fixed soliton power 1 for the self-focusing saturable nonlinearity.
Visualization 2       The shape of two humps of the antisymmetric soliton changes with the decrease of Lévy index and a fixed soliton power 1 for the self-defocusing saturable nonlinearity.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Two-dimensional symmetric potential (6) with $V_{0}=4$ , $\xi _{0}=1.5$ , and $\chi _{_{0}}=1$ . (b) Power curves for the stable and unstable symmetric solitons (solid and dashed blue, respectively), stable antisymmetric solitons (solid black), and stable asymmetric solitons (solid red) under the self-focusing nonlinearity $\sigma =1$ . (c) Power curves for the stable symmetric solitons (solid black), stable and unstable antisymmetric solitons (solid and dotted blue, respectively), and stable asymmetric solitons (solid red) under the self-defocusing saturable nonlinearity ( $\sigma =-1$ . The inset shows the enlarged area. (d)-(f) depict the antisymmetric, symmetric, and asymmetric solitons with self-focusing nonlinearity at $\beta =1.6$ , marked by “d, e, f” in (b). (g)-(i) depict the symmetric, antisymmetric, and asymmetric solitons with self-defocusing saturable nonlinearity at $\beta =0.543$ , marked by “g, h, i” in (c).
Fig. 2.
Fig. 2. Symmetry breaking bifurcations represented by dependence of the integral power of unstable and stable symmetric (dashed and blue thick solid curves, respectively) and stable asymmetric (thin solid red curves) soliton solutions on propagation constant $\beta$ in the case of the self-focusing saturable nonlinearity ( $\sigma =+1$ ) for different values of the Lévy index $\alpha$ and the strength of saturable nonlinearity, as indicated in the panels. Other parameters of the potential are the same as in Fig. 1.
Fig. 3.
Fig. 3. Symmetry breaking bifurcations represented by dependence of the integral power of unstable and stable antisymmetric (dashed and blue thick solid curves, respectively) and stable asymmetric (thin solid red curves) soliton solutions on propagation constant $\beta$ in the case of the self-defocusing saturable nonlinearity ( $\sigma =-1$ ) for different values of the Lévy index $\alpha$ and the strength of saturable nonlinearity, as indicated in the panels. Other parameters of the potential are the same as in Fig. 1.
Fig. 4.
Fig. 4. Symmetry breaking bifurcation diagrams shown in terms of asymmetry coefficient in Eq. (21), corresponding to the situation displayed in Fig. 2, for different values of the Lé vy index $\alpha$ and the strength of saturable nonlinearity, as indicated in the panels. Solid thick blue curves represent stable symmetric soliton solutions, dashed blue curves represent unstable symmetric soliton solutions, solid red curves with circle symbol represent stable asymmetric soliton solutions.
Fig. 5.
Fig. 5. Symmetry breaking bifurcation diagrams shown in terms of asymmetry coefficient in Eq. (21), corresponding to the situation displayed in Fig. 3, for different values of the Lé vy index $\alpha$ and the strength of saturable nonlinearity, as indicated in the panels. Solid thick blue curves represent stable antisymmetric soliton solutions, dashed blue curves represent unstable antisymmetric soliton solutions, solid red curves with circle symbol represent stable asymmetric soliton solutions.
Fig. 6.
Fig. 6. The largest linear instability growth rates of symmetric (solid blue curves with circle symbol) and asymmetric (solid thick red curves) soliton solutions in Fig. 2.
Fig. 7.
Fig. 7. The eigenvalue spectrum of linear stability analysis for the stable antisymmetric soliton of the self-focusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$ , and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the antisymmetric soliton with $\beta =1.45$ . Panels (b) and (c) display the initial and evolved field intensities, respectively. (d) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$ , is equal to 0.62.
Fig. 8.
Fig. 8. The eigenvalue spectrum of linear stability analysis for the unstable symmetric soliton of the self-focusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$ , and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the symmetric soliton at $\beta =1.6$ . Panels (b)-(f) display the initial and evolved field intensities at different propagation lengths, respectively. (g) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$ , is equal to 0.74.
Fig. 9.
Fig. 9. The eigenvalue spectrum of linear stability analysis for the stable asymmetric soliton of the self-focusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$ , and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the asymmetric soliton at $\beta =1.6$ . Panels (b) and (c) display the initial and evolved field intensities, respectively. (d) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$ , is equal to 0.64.
Fig. 10.
Fig. 10. The largest linear instability growth rates of antisymmetric (solid blue curves with circle symbol) and asymmetric (solid thick red curves) soliton solutions in Fig. 3.
Fig. 11.
Fig. 11. The eigenvalue spectrum of linear stability analysis for the stable symmetric soliton of the self-defocusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$ , and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the symmetric soliton with $\beta =0.92$ . Panels (b) and (c) display the initial and evolved field intensities, respectively. (d) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$ , is equal to 0.76.
Fig. 12.
Fig. 12. The eigenvalue spectrum of linear stability analysis for the unstable antisymmetric soliton of the self-defocusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$ , and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the antisymmetric soliton at $\beta =0.55$ . Panels (b)-(f) display the initial and evolved field intensities at different propagation lengths, respectively., respectively. (g) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$ , is equal to 1.33.
Fig. 13.
Fig. 13. The eigenvalue spectrum of linear stability analysis for the stable asymmetric soliton of the self-defocusing saturable nonlinearity with the saturable parameter $S=1$ and the Lévy index $\alpha =1.5$ , and the corresponding evolution plots. Panel (a) shows the eigenvalue spectra of linear stability analysis for the asymmetric soliton at $\beta =0.55$ . Panels (b) and (c) display the initial and evolved field intensities, respectively. (d) The evolution is displayed by iso-intensity surface drawn so that the local intensity, $\left \vert \Psi \right \vert ^{2}$ , is equal to 1.34.

Tables (2)

Tables Icon

Table 1. The values of the critical power and the respective propagation constant, P c r ( β c r ), at the symmetry breaking bifurcation points of self-focusing saturable nonlinearity.

Tables Icon

Table 2. The values of the critical power and the respective propagation constant, P c r 1 ( β c r 1 ) and P c r 2 ( β c r 2 ), at the symmetry breaking bifurcation points of self-defocusing saturable nonlinearity.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

i A z = [ ( 2 ) α / 2 2 k 0 n 0 k 0 ( n n 0 ) k 0 n N L ] A ,
( 2 ) α 2 A ( x , y ) = F 1 [ ( k x 2 + k y 2 ) α 2 F A ( x , y ) ] ,
i Ψ ζ ( 2 ) α / 2 Ψ + V ( ξ , η ) Ψ + σ | Ψ | 2 Ψ 1 + S | Ψ | 2 = 0 ,
Ψ ( ζ , ξ , η ) = ψ ( ξ , η ) e i β ζ ,
( 2 ) α / 2 ψ + V ψ + σ | ψ | 2 ψ 1 + S | ψ | 2 β ψ = 0.
V ( ξ , η ) = V 0 [ exp ( ( ξ + ξ 0 ) 2 χ 0 η 2 ) + exp ( ( ξ ξ 0 ) 2 χ 0 η 2 ) ] ,
ψ ( ξ , η ) = ψ ( ξ , η ) .
P ( β ) = + + | ψ ( ξ , η ) | 2 d ξ d η .
H = [ Ψ ( 2 ) α / 2 Ψ V | Ψ | 2 σ S | Ψ | 2 + σ S 2 ln ( 1 + S | Ψ | 2 ) ] d ξ d η .
L 0 ψ = 0 ,
L 0 = ( 2 ) α / 2 + V + σ | ψ | 2 β .
ψ n + 1 = ψ n + Δ ψ n ,
L 1 n Δ ψ n = L 0 ( ψ n ) ,
L 1 = ( 2 ) α / 2 + V + σ [ | ψ | 2 1 + S | ψ | 2 + 2 ψ Re ( ψ ) 1 + S | ψ | 2 2 S | ψ | 2 ψ Re ( ψ ) ( 1 + S | ψ | 2 ) 2 ] β .
Ψ ( ζ , ξ , η ) = e i β ζ [ ψ ( ξ , η ) + u ( ξ , η ) e δ ζ + v ( ξ , η ) e δ ζ ] ,
i ( L 11 L 12 L 21 L 22 ) ( u v ) = δ ( u v ) ,
L 11 = ( 2 ) α / 2 + V β + 2 σ | ψ | 2 1 + S | ψ | 2 σ S | ψ | 4 ( 1 + S | ψ | 2 ) 2 ,
L 12 = + σ ψ 2 1 + S | ψ | 2 σ S | ψ | 2 ψ 2 ( 1 + S | ψ | 2 ) 2 ,
L 21 = σ ψ 2 1 + S | ψ | 2 + σ S | ψ | 2 ψ 2 ( 1 + S | ψ | 2 ) 2 ,
L 22 = + ( 2 ) α / 2 V + β 2 σ | ψ | 2 1 + S | ψ | 2 + S σ | ψ | 4 ( 1 + S | ψ | 2 ) 2 .
Θ = P L P R P L + P R ,
P ( β ) P L ( β ) + P R ( β ) ,
P L ( β ) = + d η 0 | ψ ( ξ , η ) | 2 d ξ ,
P R ( β ) = + d η 0 + | ψ ( ξ , η ) | 2 d ξ .

Metrics