Abstract

A dynamically tunable ultra-broadband terahertz perfect metamaterial absorber based on vanadium oxide (VO2) is proposed and numerically demonstrated. The excellent absorption bandwidth of greater than 90% absorptance is as wide as 5.10 THz from 3.03 to 8.13 THz under normal incidence. By changing the conductivity of VO2 from 200 S/m to 2×105 S/m, the absorption intensity can be dynamically tuned from 1.47% to 100%. The ultrabroad bandwidth and flexibility are dramatically improved compared with previously reported VO2 based absorbers. The physical mechanism of the ultra-wideband absorption is discussed based on the interference cancellation, impedance matching theory, and field distributions. The influences of structure parameters on perfect absorption are also discussed. In addition, the absorber has the advantages of insensitivity to polarization and incident angle. Such a tunable ultra-broadband absorber may have promising potential in the applications of modulating, cloaking, switching, and imaging technology.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Terahertz (THz) technologies referring to the frequency ranging from 0.1 to 10 THz, have attracted great interest in the last few decades due to their extensive application prospects in wireless communications [1,2], detectors [3,4], and imaging [5,6] due to their unique advantages, such as the highly coherent and nonionizing nature of THz radiation, wide unallocated frequency bands, distinctive wavelengths, and their penetration through a significant depth of dielectric materials [7]. To achieve these applications, the phase, amplitude, or polarization of THz radiations should be manipulated efficiently through functional components such as sources, detectors, modulators, switches, and absorbers. However, natural materials are not suitable for THz technologies [8], which impedes the progress of THz technologies and forms the THz gap. Therefore, designing efficient THz functional components is imperative and challenging. Due to the latest advances in nanomanufacturing technology, sub-wavelength plasmonic nano/microstructures, known as metamaterials, have been emerged as an effective solution for manipulating terahertz radiation [9,10] because metamaterials can break the limitations of the intrinsic characters of natural materials and then achieve physical characteristics that natural materials do not have [11,12].

Absorbers are a significant branch of functional components. A perfect metamaterial absorber (PMA) was first proposed in 2008 by Landy et al. [13]. Since then, the perfect metamaterial absorber has been extensively developing towards full-spectrum applications such as microwave [14], terahertz [15], infrared [16], visible light [17], and ultraviolet [18]. Besides, narrow-band [19], multi-peak [20], and broadband absorbers [21] have been developed for different applications. Broadband absorbers are useful in cloaking [22], power collecting [23], thermal emitter [24] and other fields [25,26], which can be gained by integrating multiple resonant structures horizontally and vertically [27,28]. However, the drawbacks of THz PMA are the narrow bandwidth, the fixed working frequency once made and complicated structure, which greatly limits the practical applications where broadband absorption and reconfigurable characteristics are requisite. One way to realize the tunability of metamaterials is to change the structure, such as the elasticity of the flexible polymer materials as the substrate [29,30], or the mechanical movement of the microelectromechanical system [31,32]. However, these methods are not suitable for the integration of functional devices. Another way to realize the tunability of metamaterials is to use active material as the basic material, whose physical properties change under different external conditions, such as graphene [33,34], Ge3Sb2Te6 (GST) [35], VO2 [36], and so on [3740]. Among these active materials, VO2 has the advantages of rapid response [41], large modulation intensity [42], and various modulation schemes, such as thermal control [43], optical stimulate [44,45], and impressed voltage [46,47]. In recent years, different applications based on VO2 have been explored, such as optical memory devices [48], temperature sensors [49], rewritable devices [50], and so on. In summary, VO2 is a promising method to achieve terahertz tunable PMA as the basic material.

Researchers have been devoted to improving the absorption bandwidth and tunability of the terahertz tunable absorber. Recently, some broadband terahertz tunable PMAs based on VO2 have been reported [ see [5159] in Table 1]. However, the results have not yet met the expectations of practical applications.

Tables Icon

Table 1. Comparison of absorption performances between different VO2-based terahertz absorbers.

In this paper, a dynamically tunable ultra-broadband terahertz PMA based on VO2 is proposed and numerically demonstrated. The designed absorber consists of three layers: the top VO2 periodic pattern, the middle dielectric spacer, and the bottom metallic substrate, which is a classical three-layer structure. By changing the conductivity of VO2 from 200 S/m to 2×105 S/m, VO2 transforms from insulation state to metal state, and the absorption amplitude of the designed absorber is dynamically tuned from 1.47% to 100%, which is caused by different permittivity under different conductivity of VO2. When VO2 is at a metal state, an ultrabroad absorption bandwidth of 90% is gained and as wide as 5.10 THz from 3.03 to 8.13 THz under normal incidence. When VO2 is at an insulation state, the absorption bandwidth of 90% absorptance is tuned to zero. By changing the thickness of the dielectric layer, the absorption bandwidth greater than 90% can be adjusted from 3.56 THz to 6.46 THz. The physical mechanism of the ultra-wideband absorption is discussed based on the interference cancellation theory, impedance matching theory, and field distributions. In addition, the designed absorber is robust to electromagnetic wave polarization and incident angle. The ultrabroad bandwidth and flexibility are greatly improved compared with previously reported VO2 based absorbers, which may greatly promote applications in modulating, switching, cloaking, and imaging technology.

2. Design

The designed absorber consists of three layers: the top VO2 periodic pattern, the middle dielectric spacer, and the bottom metallic substrate, which can be manufactured to three-layer film VO2/ quartz /Au first through a similar method to Sydney et al. [60] and then obtained the VO2 pattern through reactive-ion-etching as Kota et al. [61]. The schematic of the unit of the designed absorber is shown in Fig. 1. The top VO2 periodic unit pattern consists of two split-rectangles, and rectangle 2 is obtained by rotating rectangle 1 by 90°. The period of the unit cell is p = 28 µm. The long side length, short side length, and rectangle width of the split-rectangles are a = 26 µm, b = 18 µm, c = 1.6 µm, respectively. The width of the opening is d = 1 µm. The thickness of VO2 is e = 0.25 µm.

 figure: Fig. 1.

Fig. 1. (a) The three-dimensional schematic of the unit cell of the designed absorber. (b) The top view of the unit cell. The top VO2 periodic unit pattern consists of two split-rectangles, and rectangle 2 is obtained by rotating rectangle 1 by 90°. The red, blue, and yellow represent VO2, Quartz, and Au, respectively.

Download Full Size | PPT Slide | PDF

The optical properties of VO2 in the THz range is described by the Drude model [6264], which can be expressed as

$$\varepsilon ({\omega ,\sigma } )= {\varepsilon _\infty } - \frac{{\omega _p^2(\sigma )}}{{({{\omega^2} + i\gamma \omega } )}}$$
where ${\varepsilon _\infty } = 12$ is the permittivity at the infinite frequency, $\gamma = 5.75 \times {10^{13}}\; \textrm{rad}/\textrm{s}$ is the collision frequency, and ${\omega _p}(\sigma )$ is plasma frequency dependent on conductivity, respectively. Plasma frequency ${\omega _p}(\sigma )$ as a function of $\sigma $ can be expressed as
$$\omega _p^2(\sigma )= \frac{\sigma }{{{\sigma _0}}}\omega _p^2({{\sigma_0}} )$$
with ${\sigma _0} = 3 \times {10^5}\;\textrm{S}/\textrm{m}$ and ${\omega _p}({{\sigma_0}} )= 1.4 \times {10^{15}}\; \textrm{rad}/\textrm{s}$. This paper assumes that the conductivity of VO2 in the insulator phase and the metal phase are 200 S/m and 2×105 S/m, respectively. The middle dielectric spacer employs quartz with a thickness of l = 8 µm. The relative permittivity of quartz with negligible loss is ε = 2.25 at THz frequencies [65]. The bottom metallic substrate employs gold with a thickness of g = 0.2 µm. The relative permittivity of gold is described by the Drude model [66], which can be expressed as
$${\varepsilon _{Au}} = 1 - \frac{{\omega _p^2}}{{\omega ({\omega + i\Gamma } )}}$$
Where plasma frequency ${\omega _p} = 1.37 \times {10^{16}}\; \textrm{rad}/\textrm{s}$ and collision frequency $\Gamma = 1.2 \times {10^{14}}\; rad/s$.

3. Result and discussion

The absorption can be expressed as $A = 1 - R - T$, where R, T and A represent reflection, transmission, and absorption, respectively. Since the thickness of the bottom metallic substrate is greater than the skin depth, the transmission T is 0. Therefore, the absorption A is calculated as $A = 1 - R$. The electromagnetic response of the absorber is calculated by the electromagnetic wave finite difference time domain method (FDTD, available from the Lumerical software package). A plane wave source with Bloch/Periodic source type is used. Its propagation direction is along the negative z-axis. Its polarization angle is set as 90°, and its polarization is along the positive y-axis. In this case, the electromagnetic wave is considered as transverse electric (TE) polarization. The size of the simulation region in the x-axis and y-axis are set as the period p of the absorber, while the boundary of the simulation region in the z-axis is far away from the structure. The periodic boundary conditions are used in the x and y-axis, and perfectly matched layers boundary conditions are used in the z-axis. Auto shutoff value and background index are set as 1×10−5 and 1, respectively. All materials are assumed to be nonmagnetic (i.e., μ = μ0).

The absorption spectra of the designed absorber with different conductivity of VO2 are shown in Fig. 2(a), which can be measured by Fourier-transform infrared spectroscopy [67]. When the conductivity of VO2 is 2×105 S/m, the absorption greater than 0.9 absorptance is from 3.03 to 8.13 THz with bandwidth as wide as 5.10 THz under normal incidence, shown as the red line in Fig. 2(a). There are four absorption peaks at f1 = 3.55 THz, f2 = 7.01 THz, f3 = 8.04 THz, and f4 = 8.95 THz. The central frequency of this 90% absorption band is 5.58 THz. When the conductivity of VO2 is 200 S/m, the absorber has only one absorption peak with an amplitude of 1.47%, as shown in the blue line in Fig. 2(a). As the conductivity increases from 200 S/m to 2×105 S/m which can be controlled by temperature [43], light [44,45] and bias voltage [46,47], the absorption intensity of the designed absorber can be tuned from 1.47% to 100% gradually. Figures 2(b) and 2(c) show the real and imaginary parts of the permittivity of VO2 in different conductivities. The resistive loss is proportional to the imaginary part of the permittivity [68]. The imaginary part increases rapidly as conductivity increases, which results in the remarkable change of spectral intensity. Furthermore, the central frequency of the absorption band stays nearly unchanged at 5.58 THz under different conductivity of VO2. This phenomenon can be explained by two aspects. First, the imaginary part of the epsilon of VO2 is much larger than the real part at different conductivity [58,59]. Second, the central frequency of the absorption band is mainly determined by the thickness of the dielectric space according to the interference cancellation theory [69]. For interference cancellation theory, the resonant wavelength ${\mathrm{\lambda }_0}$ in free space is related to the thicknesses of the dielectric spacer d by the following equation

$$d = \frac{{{\lambda _0}}}{{4n}} = \frac{{{\lambda _0}}}{{4\sqrt \varepsilon }}$$
where n and ε are the refractive index and the permittivity of quartz respectively. The corresponding wavelength of the central frequency 5.58 THz in the free space ${\mathrm{\lambda }_0}$ is about 54 µm. Therefore, the corresponding thickness of the dielectric spacer d is about 8.96 µm. The real thickness of the middle dielectric spacer l = 8.6 µm is almost equal to the d, which meets the interference cancellation condition.

 figure: Fig. 2.

Fig. 2. (a) The absorption spectra of the designed absorber with different conductivities of VO2 under normal incidence. (b) The real part and (c) the imaginary part of VO2 permittivity.

Download Full Size | PPT Slide | PDF

Figure 3(a) shows the absorption spectra by changing the thickness of the middle dielectric spacer when the conductivity of VO2 is 2×105 S/m, which indicates that the absorption bandwidth of more than 0.9 absorptance increases as the thickness of the dielectric spacer decreases, which has not been mentioned in previous studies [52,57,59]. The central frequency of absorption band redshifts with the increase of thickness, which is consistent with the interference cancellation theory. Thus, the central frequency of the absorption band is determined by the thickness of the dielectric spacer and is invariant as the change of conductivity of VO2. It is worth noting that the bandwidth of absorption greater than 90% can be adjusted from 3.56 to 6.46 THz by changing the thickness of the dielectric layer from 10.6 µm to 6.6 µm. The absorptance at peaks f1, f2 change a little while the absorptance at peaks f3 and f4 change greatly. At peak f3, the absorptance increases from 50.3% to 99.4% and the absorption peak first blueshifts a little and then redshifts because of the combination with peak f2. Peak f4 changes observably as the change of thickness of the dielectric layer. When l = 6.6 µm, the absorption bandwidth of 90% absorptance is as wide as 6.46 THz from 3.44 to 9.90 THz which is about 126% of the absorption bandwidth when l = 8.6 µm. And it is near double the absorption band of Wu et al. in 2021 [59]. A new absorption peak f4 was introduced in the structural design which is not mentioned in previous studies [52,57,59].

 figure: Fig. 3.

Fig. 3. (a) The absorption spectra by changing the thickness of the middle dielectric spacer from 6.6 to 10.6 µm when the conductivity of VO2 is 2×105 S/m. The white solid line, the yellow, black, cyan, blue, green dotted lines are 0.9 absorptance contour, the location of absorption peaks f1, the central frequency of absorption band, absorption peaks f2, f3, f4, respectively. (b) The effective impedance of the absorber when the conductivity of VO2 is 2×105 S/m and l = 8.6 µm.

Download Full Size | PPT Slide | PDF

To explain the physical mechanism of ultra-wideband absorption, we retrieved the effective impedance of the absorber by the S-parameters method [70], which is expressed by

$$Z = \sqrt {\frac{\mu }{\varepsilon }} = \sqrt {\frac{{{{({1 + {S_{11}}} )}^2} - S_{21}^2}}{{{{({1 - {S_{11}}} )}^2} - S_{21}^2}}} $$
where μ is effective permeability and ε is effective permittivity. When the effective impedance of the absorber matches the free space, the absorber can achieve a perfect absorption. Figure 3(b) shows the effective impedance of the designed absorber when the conductivity of VO2 is 2×105 S/m when l = 8.6 µm. In the range of 3.03 THz to 8.13 THz, the real and imaginary parts of the impedance are close to 1 and 0, respectively, which means the structure matches well with free space and then has excellent absorption, especially at f1 = 3.55 THz.

Figure 4 shows the electromagnetic field distribution in the interface between the top VO2 layer and the dielectric layer (normalized electric field |E|, and the normalized real part of electric field z component Ez) at four absorption peaks. Figures 4(a) to (d) show the normalized electric field |E| localizes in the transverse opening. This indicates that LC resonance plays an important role in the formation of broadband absorption. At f1 = 3.55 THz, the electric field is distributed along the side of rectangle 2 [see Fig. 4(a)]. At the other three absorption peaks, the electric field is not only distributed along the side of rectangle 2 but also along the side of rectangle 1 and at the corners of the two rectangles [see Fig. 4(b)-(d)]. These electric field distribution characteristics indicate that local surface plasmons are excited at these resonance frequencies and can be verified by the distribution of the normal component of the electric field (Ez), as shown in Fig. 4(e) - (h). As shown in Fig. 4(e), at peak 1, positive and negative charges localize at the upside and downside of the two rectangles respectively and then form dipole resonance. At peak 2, as shown in Fig. 4(f), positive charges localize at the upside openings and the downside corners of the two rectangles respectively and then form multi-dipole resonance. At peak 4, as shown in Fig. 4(h), the distribution is opposite of peak 2. At peak 3, as shown in Fig. 4(g), positive and negative charges localize at the upside and downside of the two rectangles but are complex. There is an accumulation of opposite charges on the rectangles, indicating that the electric multi-dipole resonance is excited, which corresponds to the natural behaviors of localized surface plasmon [71].

 figure: Fig. 4.

Fig. 4. The electromagnetic filed distribution in the interface between the top VO2 layer and the dielectric layer when the conductivity of VO2 is 2×105 S/m and the incident wave is TE mode. Normalized electric field |E| distribution at (a) f1 = 3.55 THz, (b) f2 = 7.01 THz, (c) f3 = 8.04 THz, and (d) f4 = 8.95 THz. Normalized z component electric field Ez distribution at (e) f1 = 3.55 THz, (f) f2 = 7.01 THz, (g) f3 = 8.04 THz, and (h) f4 = 8.95 THz.

Download Full Size | PPT Slide | PDF

The macroscopic material properties of metamaterials are determined by their structure, so it is important to study the influence of geometric parameters on the designed absorber. Figure 5 shows absorption spectra as the change of the long side length a, short side length b, rectangle width c of the split-rectangles, and the thickness of VO2 e. In Fig. 5(a), the absorption bandwidth and the intensity are almost unchanged as the long side length a increases from 24 to 28 µm, but the total absorption efficiency increases as a increases. Especially the peaks f1 and f2 are almost unchanged, while the peak f3 and f4 redshifts and has an increase of absorption intensity. In Fig. 5(b), as the short side length b increases from 14 to 22 µm, the changing trend is similar to Fig. 5(a), except that the intensity of the third absorption peak f3 slightly decreased. In Fig. 5(c), the peaks f3 and f4 are almost unchanged, while the peak f1 redshifts and f4 blueshifts as the rectangle width c increases from 1.2 to 2 µm. In Fig. 5(d), the absorption decreases as the thickness of VO2 increases from 0.1 to 0.35 µm. When the thickness of VO2 is too small such as e = 0.05 µm, the absorption region of VO2 is too small to effectively absorb the incident light.

 figure: Fig. 5.

Fig. 5. The absorption spectra as the change of the (a) long side length a, (b) short side length b, (c) rectangle width c, and (d) the thickness of VO2 e when the conductivity of VO2 is 2×105 S/m and l = 8.6 µm.

Download Full Size | PPT Slide | PDF

The robustness to the incident angle and polarization angle is very critical in practical application. Figure 6 shows the absorption spectra under different polarization angles and different incident angles for transverse electric (TE) polarization and transverse magnetic (TM) polarization. Figure 6(a) shows the designed absorber has excellent robustness under different polarization angles from 0° to 90°, due to the symmetry of the structure. Figures 6(b) and (c) show the absorption bandwidth remains almost unchanged when the incident angle is smaller than 60◦ for both TE polarization and TM polarization. As the incident angle increases up to 60°, the absorption amplitude is always above 0.8 absorptance. It is can be observed that some higher-order modes appear around 9 THz at high incident angles for TE and TM polarized waves. They are different under TE polarization and TM polarization, which is mainly due to the influence of the electric field on the response of electric multi-dipoles. Under TE polarization, the direction of the electric field is vertical to the incident plane and does not change with the incident angle. Therefore, the electric multi-dipoles resonance can be effectively excited. While under TM polarization, the tangential component of the electric field decreases with the increase of the incident angle, which is adverse to the excitation of the electric multi-dipole response.

 figure: Fig. 6.

Fig. 6. (a) The absorption spectra under different polarization angles, under different incident angles for (b) TE polarization and (c) TM polarization when the conductivity of VO2 is 2×105 S/m.

Download Full Size | PPT Slide | PDF

The designed absorber can be used for modulating technology. The modulation depth (MD) and the extinction ratio (ER) are the key characteristics of light modulator [72], which can be expressed as [73,74]

$$MD = \frac{{{P_{\textrm{max}}} - {P_{\textrm{min}}}}}{{{P_{\textrm{inc}}}}} = {R_\textrm{i}} - {R_\textrm{m}}$$
$$ER ={-} 10{\log _{10}}\frac{{{P_{\textrm{max}}}}}{{{P_{\textrm{min}}}}} ={-} 10{\log _{10}}\frac{{{R_\textrm{i}}}}{{{R_\textrm{m}}}}$$
where ${R_\textrm{i}}$ and ${R_\textrm{m}}$ are the reflection of the modulator when the VO2 is insulation and metal phases, respectively. ${P_{\textrm{max}}}$, ${P_{\textrm{min}}}$, and ${P_{\textrm{inc}}}$ are the maximum reflected power (VO2 will be in the insulation phase), the minimum reflected power (VO2 will be in the metal phase), and the incident power, respectively. In practical applications, MD and ER are required to be greater than 0.9 and less than −7 dB, respectively [74,75]. In Fig. 7(b), the MD of the absorption peaks f1, f2, f3, and f4 are 0.99, 0.98, 0.94, and 0.68, respectively. From 3.05 to 8.14 THz, the MD of the designed absorber is greater than 0.9. In Fig. 7(c), the ER of the absorption peaks f1, f2, f3, and f4 are −32.21 dB, −19.52 dB, −13.06 dB, and −4.96 dB, respectively. The ER of the designed absorber is less than −0.7 dB from 2.86 to 8.22 THz. The designed absorber is competitive as a broadband modulator.

 figure: Fig. 7.

Fig. 7. (a) The red and blue lines represent the reflection spectrum when the conductivity of VO2 is 2×105 S/m (VO2 is at metal phase) and 2×102 S/m (VO2 is at insulation phase), respectively. (b) MD and (c) ER as a function with frequency.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, a dynamically tunable ultra-broadband terahertz PMA is proposed and numerically demonstrated, which consists of two VO2 split rectangles and a metal ground plane separated by a dielectric spacer. By changing the conductivity of VO2 from 200 S/m to 2×105 S/m, the absorption intensity can be dynamically tuned from 1.47% to 100% and the bandwidth of 90% terahertz absorptance can be dynamically tuned from zero to 5.10 THz from 3.03 to 8.13 THz under normal incidence. It is worth to note that the THz absorption bandwidth can be adjusted from 3.56 to 6.46 THz by changing the thickness of the dielectric layer easily because of the appearance of absorption peaks f4. Compared with previous reports, the designed absorber has significantly improved tunability and bandwidth with a classical three-layer structure, even doubling the bandwidth compared to the absorption bandwidth of Wu et al. in 2021 [59]. The origin of the physical mechanism of ultra-wideband absorption is discussed based on the interference cancellation theory, the impedance matching theory, and field distributions. The influences of structure parameters on absorption are also discussed. In addition, the designed absorber shows excellent robustness under different polarization angles from 0° to 90°, due to the symmetry of the structure. Furthermore, the absorber has the advantage of insensitivity of incident angle. The MD of the designed absorber is greater than 0.9 from 3.05 to 8.14 THz, and the ER is less than −0.7 dB from 2.86 to 8.22 THz. Therefore, the tunable ultra-broadband absorber may greatly promote applications of modulating, cloaking, and imaging technology.

Funding

China Postdoctoral Science Foundation (2015M571545); National Natural Science Foundation of China (61504078).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011). [CrossRef]  

2. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016). [CrossRef]  

3. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007). [CrossRef]  

4. S. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011). [CrossRef]  

5. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008). [CrossRef]  

6. J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014). [CrossRef]  

7. R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020). [CrossRef]  

8. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009). [CrossRef]  

9. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009). [CrossRef]  

10. J.-H. Kang, D.-S. Kim, and M. Seo, “Terahertz wave interaction with metallic nanostructures,” Nanophotonics 7(5), 763–793 (2018). [CrossRef]  

11. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef]  

12. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003). [CrossRef]  

13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef]  

14. B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014). [CrossRef]  

15. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015). [CrossRef]  

16. J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016). [CrossRef]  

17. T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015). [CrossRef]  

18. M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014). [CrossRef]  

19. M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018). [CrossRef]  

20. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013). [CrossRef]  

21. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011). [CrossRef]  

22. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015). [CrossRef]  

23. X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018). [CrossRef]  

24. D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019). [CrossRef]  

25. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012). [CrossRef]  

26. W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014). [CrossRef]  

27. W. Ma, Y. Z. Wen, and X. M. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013). [CrossRef]  

28. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012). [CrossRef]  

29. S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012). [CrossRef]  

30. Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017). [CrossRef]  

31. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009). [CrossRef]  

32. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016). [CrossRef]  

33. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014). [CrossRef]  

34. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef]  

35. M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019). [CrossRef]  

36. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008). [CrossRef]  

37. Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016). [CrossRef]  

38. R. X. Wang, L. Li, J. L. Liu, F. Yan, F. J. Tian, H. Tian, J. Z. Zhang, and W. M. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017). [CrossRef]  

39. X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019). [CrossRef]  

40. G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018). [CrossRef]  

41. A. Holsteen, I. S. Kim, and L. J. Lauhon, “Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition,” Nano Lett. 14(4), 1898–1902 (2014). [CrossRef]  

42. Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018). [CrossRef]  

43. J. J. Liu and L. L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020). [CrossRef]  

44. Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014). [CrossRef]  

45. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011). [CrossRef]  

46. L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016). [CrossRef]  

47. F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019). [CrossRef]  

48. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009). [CrossRef]  

49. A. Keshavarz and A. Zakery, “Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial,” Appl. Phys. A: Mater. Sci. Process. 123(12), 797 (2017). [CrossRef]  

50. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007). [CrossRef]  

51. Z. Y. Song, K. Wang, J. W. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018). [CrossRef]  

52. Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019). [CrossRef]  

53. S. X. Wang, C. F. Cai, M. H. You, F. Y. Liu, M. H. Wu, S. Z. Li, H. G. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019). [CrossRef]  

54. R. N. Dao, X. R. Kong, H. F. Zhang, and X. R. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019). [CrossRef]  

55. J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019). [CrossRef]  

56. A. P. Chen and Z. Y. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020). [CrossRef]  

57. Z. Y. Song, M. W. Jiang, Y. D. Deng, and A. P. Chen, “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020). [CrossRef]  

58. J. Huang, J. N. Li, Y. Yang, J. Li, J. H. Li, Y. T. Zhang, and J. Q. Yao, “Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces,” Opt. Express 28(12), 17832–17840 (2020). [CrossRef]  

59. G. Z. Wu, X. F. Jiao, Y. D. Wang, Z. P. Zhao, Y. B. Wang, and J. G. Liu, “Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide,” Opt. Express 29(2), 2703–2711 (2021). [CrossRef]  

60. S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020). [CrossRef]  

61. K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018). [CrossRef]  

62. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012). [CrossRef]  

63. Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012). [CrossRef]  

64. S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017). [CrossRef]  

65. X. Dong, X. Luo, Y. Zhou, Y. Lu, F. Hu, X. Xu, and G. Li, “Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface,” Opt. Express 28(21), 30675–30685 (2020). [CrossRef]  

66. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef]  

67. X. L. You, A. Upadhyay, Y. Z. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon,” Opt. Lett. 45(5), 1196–1199 (2020). [CrossRef]  

68. L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018). [CrossRef]  

69. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012). [CrossRef]  

70. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005). [CrossRef]  

71. Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015). [CrossRef]  

72. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006). [CrossRef]  

73. S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016). [CrossRef]  

74. C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018). [CrossRef]  

75. E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017). [CrossRef]  

References

  • View by:

  1. H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
    [Crossref]
  2. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  3. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
    [Crossref]
  4. S. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011).
    [Crossref]
  5. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
    [Crossref]
  6. J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
    [Crossref]
  7. R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020).
    [Crossref]
  8. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
    [Crossref]
  9. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
    [Crossref]
  10. J.-H. Kang, D.-S. Kim, and M. Seo, “Terahertz wave interaction with metallic nanostructures,” Nanophotonics 7(5), 763–793 (2018).
    [Crossref]
  11. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]
  12. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
    [Crossref]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  14. B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
    [Crossref]
  15. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  16. J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
    [Crossref]
  17. T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015).
    [Crossref]
  18. M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
    [Crossref]
  19. M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
    [Crossref]
  20. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref]
  21. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref]
  22. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref]
  23. X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018).
    [Crossref]
  24. D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
    [Crossref]
  25. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref]
  26. W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
    [Crossref]
  27. W. Ma, Y. Z. Wen, and X. M. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
    [Crossref]
  28. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref]
  29. S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
    [Crossref]
  30. Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
    [Crossref]
  31. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [Crossref]
  32. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
    [Crossref]
  33. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref]
  34. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref]
  35. M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
    [Crossref]
  36. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
    [Crossref]
  37. Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
    [Crossref]
  38. R. X. Wang, L. Li, J. L. Liu, F. Yan, F. J. Tian, H. Tian, J. Z. Zhang, and W. M. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
    [Crossref]
  39. X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
    [Crossref]
  40. G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
    [Crossref]
  41. A. Holsteen, I. S. Kim, and L. J. Lauhon, “Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition,” Nano Lett. 14(4), 1898–1902 (2014).
    [Crossref]
  42. Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
    [Crossref]
  43. J. J. Liu and L. L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
    [Crossref]
  44. Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
    [Crossref]
  45. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
    [Crossref]
  46. L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
    [Crossref]
  47. F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
    [Crossref]
  48. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
    [Crossref]
  49. A. Keshavarz and A. Zakery, “Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial,” Appl. Phys. A: Mater. Sci. Process. 123(12), 797 (2017).
    [Crossref]
  50. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
    [Crossref]
  51. Z. Y. Song, K. Wang, J. W. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref]
  52. Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
    [Crossref]
  53. S. X. Wang, C. F. Cai, M. H. You, F. Y. Liu, M. H. Wu, S. Z. Li, H. G. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
    [Crossref]
  54. R. N. Dao, X. R. Kong, H. F. Zhang, and X. R. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
    [Crossref]
  55. J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
    [Crossref]
  56. A. P. Chen and Z. Y. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
    [Crossref]
  57. Z. Y. Song, M. W. Jiang, Y. D. Deng, and A. P. Chen, “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020).
    [Crossref]
  58. J. Huang, J. N. Li, Y. Yang, J. Li, J. H. Li, Y. T. Zhang, and J. Q. Yao, “Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces,” Opt. Express 28(12), 17832–17840 (2020).
    [Crossref]
  59. G. Z. Wu, X. F. Jiao, Y. D. Wang, Z. P. Zhao, Y. B. Wang, and J. G. Liu, “Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide,” Opt. Express 29(2), 2703–2711 (2021).
    [Crossref]
  60. S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
    [Crossref]
  61. K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018).
    [Crossref]
  62. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref]
  63. Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
    [Crossref]
  64. S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
    [Crossref]
  65. X. Dong, X. Luo, Y. Zhou, Y. Lu, F. Hu, X. Xu, and G. Li, “Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface,” Opt. Express 28(21), 30675–30685 (2020).
    [Crossref]
  66. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref]
  67. X. L. You, A. Upadhyay, Y. Z. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon,” Opt. Lett. 45(5), 1196–1199 (2020).
    [Crossref]
  68. L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
    [Crossref]
  69. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref]
  70. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
    [Crossref]
  71. Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
    [Crossref]
  72. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006).
    [Crossref]
  73. S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
    [Crossref]
  74. C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
    [Crossref]
  75. E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
    [Crossref]

2021 (1)

2020 (8)

S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
[Crossref]

A. P. Chen and Z. Y. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
[Crossref]

Z. Y. Song, M. W. Jiang, Y. D. Deng, and A. P. Chen, “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020).
[Crossref]

J. Huang, J. N. Li, Y. Yang, J. Li, J. H. Li, Y. T. Zhang, and J. Q. Yao, “Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces,” Opt. Express 28(12), 17832–17840 (2020).
[Crossref]

X. L. You, A. Upadhyay, Y. Z. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon,” Opt. Lett. 45(5), 1196–1199 (2020).
[Crossref]

X. Dong, X. Luo, Y. Zhou, Y. Lu, F. Hu, X. Xu, and G. Li, “Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface,” Opt. Express 28(21), 30675–30685 (2020).
[Crossref]

J. J. Liu and L. L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
[Crossref]

R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020).
[Crossref]

2019 (8)

D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
[Crossref]

M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
[Crossref]

S. X. Wang, C. F. Cai, M. H. You, F. Y. Liu, M. H. Wu, S. Z. Li, H. G. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

R. N. Dao, X. R. Kong, H. F. Zhang, and X. R. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

2018 (9)

G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref]

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref]

Z. Y. Song, K. Wang, J. W. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018).
[Crossref]

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018).
[Crossref]

J.-H. Kang, D.-S. Kim, and M. Seo, “Terahertz wave interaction with metallic nanostructures,” Nanophotonics 7(5), 763–793 (2018).
[Crossref]

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

2017 (5)

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

R. X. Wang, L. Li, J. L. Liu, F. Yan, F. J. Tian, H. Tian, J. Z. Zhang, and W. M. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

A. Keshavarz and A. Zakery, “Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial,” Appl. Phys. A: Mater. Sci. Process. 123(12), 797 (2017).
[Crossref]

2016 (6)

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref]

2015 (4)

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref]

2014 (7)

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref]

A. Holsteen, I. S. Kim, and L. J. Lauhon, “Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition,” Nano Lett. 14(4), 1898–1902 (2014).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref]

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

2013 (2)

2012 (6)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
[Crossref]

2011 (5)

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref]

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

S. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011).
[Crossref]

2009 (5)

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

2008 (3)

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

2007 (2)

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]

2006 (1)

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

2003 (1)

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Abbott, D.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

Ahn, K. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Ahn, Y. H.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Ako, R. T.

R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020).
[Crossref]

Alu, A.

D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
[Crossref]

An, Z.

Appleby, R.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

Astorino, M. D.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Averitt, R. D.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref]

Bai, J. J.

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Bao, H. G.

Baranov, D. G.

D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
[Crossref]

Basov, D. N.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Bearpark, T.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Behera, J. K.

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

Bernussi, A. A.

Bhaskaran, H.

Bhaskaran, M.

X. L. You, A. Upadhyay, Y. Z. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon,” Opt. Lett. 45(5), 1196–1199 (2020).
[Crossref]

R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020).
[Crossref]

Bian, B.-R.

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Bousquet, B.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Bryllert, T.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Cai, C. F.

Cai, G. X.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
[Crossref]

Cai, L.

Canioni, L.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Cao, J.

Cao, T.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Carrillo, S. G.

Chae, B. G.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chang, S. J.

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Chao, J.

S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
[Crossref]

Chattopadhyay, G.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Chen, A. P.

Z. Y. Song, M. W. Jiang, Y. D. Deng, and A. P. Chen, “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020).
[Crossref]

A. P. Chen and Z. Y. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
[Crossref]

Chen, C.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Chen, H.

Chen, H. T.

Chen, L.

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Chen, L. Y.

Chen, L.-Y.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Chen, Q.

M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Chen, X.

X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018).
[Crossref]

W. Hu, Z. Ye, L. Liao, H. Chen, L. Chen, R. Ding, L. He, X. Chen, and W. Lu, “128 ( 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett. 39(17), 5184–5187 (2014).
[Crossref]

Cheng, Y.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Cheng, Y. Z.

Cheng, Z.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Chew, L.

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

Chin, M. K.

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Choi, E. H.

Choi, M.

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Choi, S. B.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Cong, L.

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Cooper, K. B.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Crernin, K.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Cryan, M. J.

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Cui, T. J.

Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Cumming, D. R.

Dao, R. N.

R. N. Dao, X. R. Kong, H. F. Zhang, and X. R. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Darmawan, S.

Deng, Y. D.

Z. Y. Song, M. W. Jiang, Y. D. Deng, and A. P. Chen, “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020).
[Crossref]

M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Dengler, R. J.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Desbarats, P.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Di Ventra, M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Ding, R.

Dong, X.

Driscoll, T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Du, K.

Du, S.

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

Duan, G.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Duan, X.

X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Elbahri, M.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Fan, F.

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref]

Fan, L. L.

J. J. Liu and L. L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
[Crossref]

Fan, Z.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Fastampa, R.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Faupel, F.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Feng, Y.

Fernandez-Dominguez, A. I.

Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Frederique, L.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Frezza, F.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Fumeaux, C.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Gill, J.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Gong, R.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Gou, P.

Grant, J.

Gu, C.

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

Gu, T.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Guillet, J. P.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Guo, S.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Han, J.

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Hao, S.

X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Hayat, H.

He, L.

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Ho, C. P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Holsteen, A.

A. Holsteen, I. S. Kim, and L. J. Lauhon, “Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition,” Nano Lett. 14(4), 1898–1902 (2014).
[Crossref]

Holtz, M.

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Hu, E.-T.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Hu, F.

X. Dong, X. Luo, Y. Zhou, Y. Lu, F. Hu, X. Xu, and G. Li, “Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface,” Opt. Express 28(21), 30675–30685 (2020).
[Crossref]

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Hu, W.

Huang, J.

Huang, W.

Huang, Y.

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Iizuka, H.

K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018).
[Crossref]

Ito, K.

K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018).
[Crossref]

Jang, W. H.

Jiang, M.

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Jiang, M. W.

Z. Y. Song, M. W. Jiang, Y. D. Deng, and A. P. Chen, “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020).
[Crossref]

Jiang, T.

Jiang, W.

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Jiao, X. F.

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Jokerst, N. M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Kang, J. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Kang, J.-H.

J.-H. Kang, D.-S. Kim, and M. Seo, “Terahertz wave interaction with metallic nanostructures,” Nanophotonics 7(5), 763–793 (2018).
[Crossref]

Kang, L.

S. X. Wang, C. F. Cai, M. H. You, F. Y. Liu, M. H. Wu, S. Z. Li, H. G. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref]

Kastel, J.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Kats, M. A.

D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
[Crossref]

Ke, Y.

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Keshavarz, A.

A. Keshavarz and A. Zakery, “Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial,” Appl. Phys. A: Mater. Sci. Process. 123(12), 797 (2017).
[Crossref]

Khalid, A.

Kim, B. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Kim, D. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Kim, D.-S.

J.-H. Kang, D.-S. Kim, and M. Seo, “Terahertz wave interaction with metallic nanostructures,” Nanophotonics 7(5), 763–793 (2018).
[Crossref]

Kim, H. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kim, H. T.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Kim, I. S.

A. Holsteen, I. S. Kim, and L. J. Lauhon, “Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition,” Nano Lett. 14(4), 1898–1902 (2014).
[Crossref]

Kim, J. Y.

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Kim, K. W.

Kim, S.

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Kim, T. T.

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Kim, Y.

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Klemm, M.

Komiyama, S.

S. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011).
[Crossref]

Kong, X. R.

R. N. Dao, X. R. Kong, H. F. Zhang, and X. R. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Krasnok, A.

D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
[Crossref]

Kyoung, J. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Lauhon, L. J.

A. Holsteen, I. S. Kim, and L. J. Lauhon, “Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition,” Nano Lett. 14(4), 1898–1902 (2014).
[Crossref]

Lee, C.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Lee, S.

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Lee, S. H.

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Lee, Y.

Lee, Y. W.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

Lee, Y.-P.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Li, C.

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

Li, G.

Li, J.

J. Huang, J. N. Li, Y. Yang, J. Li, J. H. Li, Y. T. Zhang, and J. Q. Yao, “Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces,” Opt. Express 28(12), 17832–17840 (2020).
[Crossref]

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

Li, J. H.

Li, J. N.

Li, J. W.

Li, L.

Li, Q.

Li, S. Z.

Li, Y. N.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Liao, L.

Liao, Z.

Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref]

Lin, Q.

Liu, F. Y.

Liu, G. D.

Liu, J. G.

Liu, J. J.

J. J. Liu and L. L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
[Crossref]

Liu, J. L.

Liu, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Liu, Q. H.

Liu, S.-B.

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Liu, X.-C.

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Liu, Y. N.

M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Liu, Z.

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

Llombart, N.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Long, L. S.

S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
[Crossref]

Long, Y.

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Lu, W.

Lu, Y.

Luo, H.

Luo, X.

Luo, Y.

Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref]

Ma, B.

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Ma, W.

Ma, Y.

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref]

Maiolo, L.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Manek-Honninger, I.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Manjappa, M.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Mao, Z.-W.

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Mario, L. Y.

Marrani, M.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Mayer, T. S.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref]

McBurney, R.

S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
[Crossref]

Mehdi, I.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Meng, H. Y.

Meng, Y.

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

Miao, Y. P.

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Min, B.

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Missori, M.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Mounaix, P.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Muzi, M.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

Nash, G. R.

Nechepurenko, I. A.

D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
[Crossref]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Nishikawa, K.

K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018).
[Crossref]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Palit, S.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Pan, M.

Pan, R.

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

Park, D. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, H. R.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, J. W.

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Pitchappa, P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Qazilbash, M. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Qian, J.

Qiao, S.

Qiu, M.

Qu, Y.

Recur, B.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Ren, Q.

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Rhee, J. Y.

Rong, Q.

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Rotermund, F.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Sabbaghi, P.

S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
[Crossref]

Saha, S.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Schalch, J.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Schlecht, E.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Seddon, N.

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[Crossref]

Seo, M.

J.-H. Kang, D.-S. Kim, and M. Seo, “Terahertz wave interaction with metallic nanostructures,” Nanophotonics 7(5), 763–793 (2018).
[Crossref]

Seo, M. A.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Shen, X.

Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Shi, Q. W.

Shi, T.

Siegel, P. H.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Simpson, R. E.

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Singh, N.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Singh, R.

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Skalare, A.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Smith, D. R.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Song, H. J.

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

Song, Z. Y.

A. P. Chen and Z. Y. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
[Crossref]

Z. Y. Song, M. W. Jiang, Y. D. Deng, and A. P. Chen, “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020).
[Crossref]

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
[Crossref]

M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Y. Song, K. Wang, J. W. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Sriram, S.

X. L. You, A. Upadhyay, Y. Z. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon,” Opt. Lett. 45(5), 1196–1199 (2020).
[Crossref]

R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020).
[Crossref]

Srivastava, Y. K.

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref]

Strunskus, T.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Su, X. R.

R. N. Dao, X. R. Kong, H. F. Zhang, and X. R. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Sun, L.

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Sun, W. M.

Sun, X. D.

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref]

Taylor, S.

S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
[Crossref]

Tedeschi, N.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Tian, F. J.

Tian, H.

Tu, H.-T.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Tuong, P. V.

Upadhyay, A.

R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020).
[Crossref]

X. L. You, A. Upadhyay, Y. Z. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon,” Opt. Lett. 45(5), 1196–1199 (2020).
[Crossref]

Veroli, A.

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Wallace, H. B.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

Wang, B.-Y.

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Wang, H.

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Wang, K.

Wang, L. L.

Wang, L. P.

S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
[Crossref]

Wang, R. X.

Wang, S.

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

Wang, S. S.

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Wang, S. X.

Wang, S.-Y.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Wang, Y.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Wang, Y. B.

Wang, Y. D.

Wang, Z. S.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
[Crossref]

Watari, T.

K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018).
[Crossref]

Wei, C. W.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Wei, M. L.

M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
[Crossref]

Wei, W.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

Wen, Y. Z.

Werner, D. H.

S. X. Wang, C. F. Cai, M. H. You, F. Y. Liu, M. H. Wu, S. Z. Li, H. G. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Withayachumnankul, W.

X. L. You, A. Upadhyay, Y. Z. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon,” Opt. Lett. 45(5), 1196–1199 (2020).
[Crossref]

R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020).
[Crossref]

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Wright, C. D.

Wu, G. Z.

Wu, M. H.

Wuttig, M.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]

Xiao, Y. Z.

D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
[Crossref]

Xu, J.

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Xu, X.

X. Dong, X. Luo, Y. Zhou, Y. Lu, F. Hu, X. Xu, and G. Li, “Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface,” Opt. Express 28(21), 30675–30685 (2020).
[Crossref]

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]

Yan, F.

R. X. Wang, L. Li, J. L. Liu, F. Yan, F. J. Tian, H. Tian, J. Z. Zhang, and W. M. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, S.

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

Yang, L.

Yang, Y.

Yang, Z.

Yao, J. Q.

Ye, Z.

Yoshimoto, H.

K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018).
[Crossref]

You, M. H.

You, X. L.

Yu, H.

Yu, K.-H.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Yu, X. M.

Yun, S. J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Zakery, A.

A. Keshavarz and A. Zakery, “Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial,” Appl. Phys. A: Mater. Sci. Process. 123(12), 797 (2017).
[Crossref]

Zang, K.-Y.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Zhai, X.

Zhang, H. F.

R. N. Dao, X. R. Kong, H. F. Zhang, and X. R. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Zhang, J.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Zhang, J. Z.

Zhang, L.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

Zhang, R.-J.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Zhang, S. S.

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Zhang, W.

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Zhang, X.

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref]

Zhang, Y.

Zhang, Y. T.

Zhao, C. J.

Zhao, J.

Zhao, S.

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Zhao, X.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Zhao, Y.

Zhao, Z.

Zhao, Z. P.

Zheng, Y.-X.

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Zhou, L.

X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018).
[Crossref]

Zhou, Y.

X. Dong, X. Luo, Y. Zhou, Y. Lu, F. Hu, X. Xu, and G. Li, “Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface,” Opt. Express 28(21), 30675–30685 (2020).
[Crossref]

X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018).
[Crossref]

Zhou, Y. G.

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
[Crossref]

Zhu, B.

Zhu, W.

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

Zhu, Y.

Zillohu, A. U.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Zou, Y.

ACS Photonics (1)

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Crernin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Adv. Mater. (1)

S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24(26), 3491–3497 (2012).
[Crossref]

Adv. Opt. Mater. (2)

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

R. T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Dielectrics for terahertz metasurfaces: material selection and fabrication techniques,” Adv. Opt. Mater. 8(3), 1900750 (2020).
[Crossref]

APL Photonics (1)

K. Ito, T. Watari, K. Nishikawa, H. Yoshimoto, and H. Iizuka, “Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons,” APL Photonics 3(8), 086101 (2018).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

A. Keshavarz and A. Zakery, “Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial,” Appl. Phys. A: Mater. Sci. Process. 123(12), 797 (2017).
[Crossref]

Appl. Phys. Lett. (7)

Y. Meng, J. K. Behera, Y. Ke, L. Chew, Y. Wang, Y. Long, and R. E. Simpson, “Design of a 4-level active photonics phase change switch using VO2 and Ge2Sb2Te5,” Appl. Phys. Lett. 113(7), 071901 (2018).
[Crossref]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

C. Li, W. Zhu, Z. Liu, S. Yan, R. Pan, S. Du, J. Li, and C. Gu, “Tunable near-infrared perfect absorber based on the hybridization of phase-change material and nanocross-shaped resonators,” Appl. Phys. Lett. 113(23), 231103 (2018).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

X. Duan, X. Chen, Y. Zhou, L. Zhou, and S. Hao, “Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle,” IEEE Antennas Wirel. Propag. Lett. 17(9), 1617–1621 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Komiyama, “Single-photon detectors in the terahertz range,” IEEE J. Sel. Top. Quantum Electron. 17(1), 54–66 (2011).
[Crossref]

F. Hu, H. Wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

IEEE Photonics J. (2)

Z. Y. Song, M. L. Wei, Z. S. Wang, G. X. Cai, Y. N. Li, and Y. G. Zhou, “Terahertz Absorber With Reconfigurable Bandwidth Based on Isotropic Vanadium Dioxide Metasurfaces,” IEEE Photonics J. 11(2), 1 (2019).
[Crossref]

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

IEEE Trans. Nanotechnol. (1)

A. P. Chen and Z. Y. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

J. Appl. Phys. (1)

B.-Y. Wang, S.-B. Liu, B.-R. Bian, Z.-W. Mao, X.-C. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Honninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Lett. (1)

M. L. Wei, Z. Y. Song, Y. D. Deng, Y. N. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Microw. Opt. Technol. Lett. (1)

J. J. Liu and L. L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
[Crossref]

Nano Lett. (3)

A. Holsteen, I. S. Kim, and L. J. Lauhon, “Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition,” Nano Lett. 14(4), 1898–1902 (2014).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Nanophotonics (1)

J.-H. Kang, D.-S. Kim, and M. Seo, “Terahertz wave interaction with metallic nanostructures,” Nanophotonics 7(5), 763–793 (2018).
[Crossref]

Nat. Commun. (1)

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref]

Nat. Mater. (3)

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref]

D. G. Baranov, Y. Z. Xiao, I. A. Nechepurenko, A. Krasnok, A. Alu, and M. A. Kats, “Nanophotonic engineering of far-field thermal emitters,” Nat. Mater. 18(9), 920–930 (2019).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Nat. Photonics (2)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nature (1)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref]

Opt. Commun. (4)

J. J. Bai, S. S. Zhang, F. Fan, S. S. Wang, X. D. Sun, Y. P. Miao, and S. J. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

E.-T. Hu, T. Gu, S. Guo, K.-Y. Zang, H.-T. Tu, K.-H. Yu, W. Wei, Y.-X. Zheng, S.-Y. Wang, R.-J. Zhang, Y.-P. Lee, and L.-Y. Chen, “Tunable broadband near-infrared absorber based on ultrathin phase-change material,” Opt. Commun. 403, 166–169 (2017).
[Crossref]

Z. Y. Song, M. W. Jiang, Y. D. Deng, and A. P. Chen, “Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material,” Opt. Commun. 464, 125494 (2020).
[Crossref]

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Opt. Express (15)

R. X. Wang, L. Li, J. L. Liu, F. Yan, F. J. Tian, H. Tian, J. Z. Zhang, and W. M. Sun, “Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref]

W. Ma, Y. Z. Wen, and X. M. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
[Crossref]

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref]

J. Huang, J. N. Li, Y. Yang, J. Li, J. H. Li, Y. T. Zhang, and J. Q. Yao, “Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces,” Opt. Express 28(12), 17832–17840 (2020).
[Crossref]

G. Z. Wu, X. F. Jiao, Y. D. Wang, Z. P. Zhao, Y. B. Wang, and J. G. Liu, “Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide,” Opt. Express 29(2), 2703–2711 (2021).
[Crossref]

Z. Y. Song, K. Wang, J. W. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

S. X. Wang, C. F. Cai, M. H. You, F. Y. Liu, M. H. Wu, S. Z. Li, H. G. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref]

L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006).
[Crossref]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref]

X. Dong, X. Luo, Y. Zhou, Y. Lu, F. Hu, X. Xu, and G. Li, “Switchable broadband and wide-angular terahertz asymmetric transmission based on a hybrid metal-VO2 metasurface,” Opt. Express 28(21), 30675–30685 (2020).
[Crossref]

Opt. Lett. (4)

Optik (1)

R. N. Dao, X. R. Kong, H. F. Zhang, and X. R. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Phys. Rev. Lett. (3)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Sci. Rep. (4)

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2015).
[Crossref]

M. D. Astorino, R. Fastampa, F. Frezza, L. Maiolo, M. Marrani, M. Missori, M. Muzi, N. Tedeschi, and A. Veroli, “Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber,” Sci. Rep. 8(1), 1985 (2018).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernandez-Dominguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 4326 (2017).
[Crossref]

Science (3)

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. Taylor, L. S. Long, R. McBurney, P. Sabbaghi, J. Chao, and L. P. Wang, “Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling,” Sol. Energy Mater. Sol. Cells 217, 110739 (2020).
[Crossref]

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) The three-dimensional schematic of the unit cell of the designed absorber. (b) The top view of the unit cell. The top VO2 periodic unit pattern consists of two split-rectangles, and rectangle 2 is obtained by rotating rectangle 1 by 90°. The red, blue, and yellow represent VO2, Quartz, and Au, respectively.
Fig. 2.
Fig. 2. (a) The absorption spectra of the designed absorber with different conductivities of VO2 under normal incidence. (b) The real part and (c) the imaginary part of VO2 permittivity.
Fig. 3.
Fig. 3. (a) The absorption spectra by changing the thickness of the middle dielectric spacer from 6.6 to 10.6 µm when the conductivity of VO2 is 2×105 S/m. The white solid line, the yellow, black, cyan, blue, green dotted lines are 0.9 absorptance contour, the location of absorption peaks f1, the central frequency of absorption band, absorption peaks f2, f3, f4, respectively. (b) The effective impedance of the absorber when the conductivity of VO2 is 2×105 S/m and l = 8.6 µm.
Fig. 4.
Fig. 4. The electromagnetic filed distribution in the interface between the top VO2 layer and the dielectric layer when the conductivity of VO2 is 2×105 S/m and the incident wave is TE mode. Normalized electric field |E| distribution at (a) f1 = 3.55 THz, (b) f2 = 7.01 THz, (c) f3 = 8.04 THz, and (d) f4 = 8.95 THz. Normalized z component electric field Ez distribution at (e) f1 = 3.55 THz, (f) f2 = 7.01 THz, (g) f3 = 8.04 THz, and (h) f4 = 8.95 THz.
Fig. 5.
Fig. 5. The absorption spectra as the change of the (a) long side length a, (b) short side length b, (c) rectangle width c, and (d) the thickness of VO2 e when the conductivity of VO2 is 2×105 S/m and l = 8.6 µm.
Fig. 6.
Fig. 6. (a) The absorption spectra under different polarization angles, under different incident angles for (b) TE polarization and (c) TM polarization when the conductivity of VO2 is 2×105 S/m.
Fig. 7.
Fig. 7. (a) The red and blue lines represent the reflection spectrum when the conductivity of VO2 is 2×105 S/m (VO2 is at metal phase) and 2×102 S/m (VO2 is at insulation phase), respectively. (b) MD and (c) ER as a function with frequency.

Tables (1)

Tables Icon

Table 1. Comparison of absorption performances between different VO2-based terahertz absorbers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω , σ ) = ε ω p 2 ( σ ) ( ω 2 + i γ ω )
ω p 2 ( σ ) = σ σ 0 ω p 2 ( σ 0 )
ε A u = 1 ω p 2 ω ( ω + i Γ )
d = λ 0 4 n = λ 0 4 ε
Z = μ ε = ( 1 + S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2
M D = P max P min P inc = R i R m
E R = 10 log 10 P max P min = 10 log 10 R i R m

Metrics