Abstract

Ultrahigh electromagnetic fields (≥~1023 W cm−2) are necessary for the study of strong-field quantum electrodynamics (QED). In this study, for the first time, we propose the compression of a pre-seeding static magnetic field with a relativistic flying mirror to generate a high electromagnetic field. The produced field intensity can be further amplified to be 5 × 1023 W cm−2 owing to the multiple reflections between the flying mirror and a stationary solid target; this produced field intensity is approximately four orders of magnitude larger than that of the seeding field and far exceeds that of the driver laser field (9.6 × 1022 W cm−2). Therefore, the ultrahigh electromagnetic field can significantly facilitate strong-field QED effects such as high-energy gamma photon emission. An analytical theory is developed to self-consistently describe the motion of the flying mirror and the field amplification. The predications from the theory are well demonstrated by numerical simulations. The scheme of producing high-intensity electromagnetic fields proposed in this letter provides a new, powerful means to study strong-field QED with a relatively low laser intensity.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The invention of chirp pulse amplification (CPA) [1] technology enabled the production of relativistic lasers ($> 10^{18}$ W cm$^{-2}$) in the laboratory for the first time. Owing to the continuous advances in laser technologies, the highest intensity in the laboratory has reached $10^{22}$ W cm$^{-2}$[2,3].

However, much higher intensity lasers are still required to explore strong-field quantum electrodynamics (QED) under extreme conditions [47]. For example, QED predicts an interesting and fascinating phenomenon wherein electron–positron pairs spontaneously appear in vacuum [8,9] when the Schwinger field $E_s = m_e^2 c^3/e\hbar = 1.32 \times 10^{18}$ V m$^{-1}$ is applied [10]. The corresponding intensity is $I_s = \epsilon _0 c E_s^2/2 = 2.3 \times 10^{29}$ W cm$^{-2}$, which is approximately seven orders of magnitude higher than the current laser intensity. Moreover, some strong-field QED phenomena such as gamma photon emission [6,11], radiation reaction effect [1214], and vacuum birefringence effect [4] will occur when laser intensities exceed $10^{23}$ W cm$^{-2}$.

Although generating an ultraintense beam of $\geq 10^{23}$ W cm$^{-2}$ in the near future [4,15] is possible, further enhancing laser powers and intensities is extremely difficult due to laser-induced damage for solid-state optical components [16,17]. In addition, to reach the Schwinger intensity $I_s$, the energy contained in a femtosecond laser pulse would be tens of MJ [18], which is considered a technologically hopeless path in the near future.

Herein, we report a new, efficient scheme to achieve more intense electromagnetic fields than the present record based on a relativistic flying mirror (RFM) [1924]. An RFM is formed naturally when a relativistic circularly polarized laser pulse interacts with a sub-$\mu$m solid target. Owing to the continuous acceleration driven by the radiation pressure of the laser pulse, the flying mirror accelerates to 0.93c (c denotes the speed of light) quickly in our case and compresses an applied seed magnetic field to be an intense electromagnetic field. The magnetic field gain is approximately twenty-five-fold. If another stationary target exists, the generated field intensity can be further amplified to be $5\times 10^{23}$ W cm$^{-2}$ owing to the multiple reflections between the mirror and the target, which is larger than the driver laser intensity of $9.6\times 10^{22}$ W cm$^{-2}$. With respect to the initial magnetic field, the final field gain was approximately two orders of magnitude. An analytic theory is derived to successfully explain the magnetic field compression. The amplified ultrahigh field holds promise in terms of opening up new research frontiers in the field of strong-field QED, such as energetic gamma photon emission.

2. PIC simulation setup

To verify our scheme, we performed 1D and 2D PIC simulations using the fully relativistic code epoch [25]. A circularly polarized laser pulse was injected into the simulation box from the left boundary and propagated along the x-axis. The intensity of the pulse is $I_0 \approx 9.6\times 10^{22}$ W/cm$^{2}$, corresponding to a normalized laser amplitude of $a_0 \equiv eE_0/m_\textrm{e}c\omega _0 = 150$, where $E_0$ is the electric field amplitude of the laser, $\omega _0 = 2\pi c/\lambda _0$ is the angular frequency, and $\lambda _0 = 800~\textrm {nm}$ is the wavelength. The thin solid target is located at $x_0 = 8~\rm {\mu m}$ ($10 \lambda _0$) and modeled using a hydrogen plasma with a thickness $d = 240~\textrm {nm}$ and electron density $n_0 = 200n_\textrm{c}$, where $n_\textrm{c} = \varepsilon _\textrm{0} m_\textrm{e}\omega _0^2/ e^2 \approx 1.7\times 10^{21}$ cm$^{-3}$ is the critical density, $m_\textrm{e}$ is the electron mass, $- e$ is the electron charge, and $\varepsilon _\textrm{0}$ is the permittivity of vacuum. The applied magnetic field, which is along the y-axis and in the domain of $x > 10 \lambda _0$, satisfies $e\mathbf {B}_0/m_\textrm{e}\omega _0=3\mathbf {e}_y$. The dimensions of the 1D simulations are 300$\lambda _0$, and the cell size is $\Delta x = \lambda _0/200$; the dimensions are $90 \times 60\lambda _0^2$ in the 2D x-y plane, and the corresponding cell sizes are $\Delta x=\lambda _0/80$ and $\Delta y=\lambda _0/40$. In 2D simulations, the incident laser pulse has a Gaussian profile with a duration of $16\rm {T}_0$ (full width at half maximum), where $\rm {T}_0$ is the laser cycle, and a transverse spatial distribution of a fourth-order super-Gaussian, $a \propto \exp [-(r/w_0)^4]$, with $w_0 = 20\lambda _0$. We used 200 (1D) and 8 (2D) macroparticles per cell per species and open boundary conditions in the $\pm x$ and $\pm y$ directions. To speed up the simulation, moving window technology was used in 2D simulations.

3. Results and discussions

We begin by performing a 2D PIC simulation to test our scheme. Figure 1(a) shows the schematic of magnetic field compression. A high-intensity circularly polarized laser pulse interacting with a thin plasma target exerts a large force on the irradiated area owing to the radiation pressure of the pulse. The volume of irradiated plasma can be constantly accelerated and detached from the thin target. The pre-seeding magnetic field [Fig. 1(a)] was compressed by the flying mirror.

 figure: Fig. 1.

Fig. 1. 2D PIC simulation results. (a) Schematic of compressing static magnetic field with an RFM. (b) and (c) show the magnetic and electric fields in the x-y plane and its corresponding on-axis distribution after compression at $t=130 {\rm T_0}$, respectively. The incident laser pulse was completely reflected by the RFM at $t=130 {\rm T_0}$.

Download Full Size | PPT Slide | PDF

The simulation shows that, at the beginning of compression, the generated magnetic field is small and then gradually increases with time. Figure 1(b) shows the spatial and on-axis distribution of the compressed magnetic field. The maximum value of the field has increased approximately twenty-five-fold. As the velocity of the mirror and the value of the compressed magnetic field have the same dependence on time, they are proportional to each other. A detailed analysis is performed using the following theoretical model. The corresponding electric field distribution $E_z$ is shown in Fig. 1(c), which has almost the same normalized magnitude as the magnetic field. A comparison between Fig. 1(b) and (c) indicates that an electromagnetic field was formed.

Owing to the transverse super-Gaussian profile of the laser pulse, the resulting flying mirror also has the same profile in the transverse space. This usage of the super-Gaussian laser helps maintain the structure of the mirror, thus leading to a longer acceleration time and a larger velocity. At this time of $t=130 {\rm T_0}$, the velocity of the mirror is approximately $0.93c$ shortly after the laser interactions with the mirror are complete.

Subsequently, we show that the intensity of the electromagnetic field in Fig. 1 can be further amplified to $5\times 10^{23}$ W cm$^{-2}$, far exceeding the value corresponding to the driver laser. QED effects cannot be ignored at this intensity. QED effects such as pair production, synchrotron emission and radiation reaction are included in the simulations. To this end, in addition to using the same input parameters as those in Fig. 1, another plasma slab was placed at $x=130 \lambda _0$ (white dashed line in Fig. 2(a)). The simulation results for the two-target geometry are shown in Fig. 2(a)–(f), where the QED effects were included in the simulations.

 figure: Fig. 2.

Fig. 2. 2D PIC simulation results. The results in (a)–(f) are from the laser interacting with the double-target configuration, wherein the second plasma target is located at $x=130 \lambda _0$ with a thickness of $2 \lambda _0$ and the same density ($200 n_c$) as target 2, where the white dashed line denotes the position of target 2. (a, b) Magnetic field distribution in space when the flying mirror approaches the second target at $t= 151 {\rm T_0}$ with and without the QED included in the simulations. (c) and (d) show the electric field distribution with respect to (a) and (b), respectively. (e) and (f) are the photon energy distribution (photon macroparticle) in space with or without a seed magnetic field, where the QED module is open in simulations.

Download Full Size | PPT Slide | PDF

The field amplification by the flying mirror in Fig. 1 is viewed as the first stage of magnetic field compression. The produced field and flying mirror propagate forward together. However, the field cannot penetrate the second stationary target owing to its high density. Then, the produced field can be further compressed and amplified owing to the multiple reflections between the mirror and the second target, which is viewed as the second stage. When QED effects are included, the maximum value of $eB/m_e\omega _0$ is 343 ($5\times 10^{23}$ W cm$^{-2}$), which is slightly smaller than the case without the QED considered, as shown in Fig. 2(a) and (b). Figure 2(c) shows that the electric field from the first stage cannot be further amplified efficiently in the second stage owing to the boundary effect of the stationary target. Including the QED module in the simulations has little effect on the maximum electric fields, as shown in Fig. 2(c)–(d), and the normalized electric field values are approximately one-third the value of the normalized magnetic field. The amplitude of the produced field is enhanced by two orders of magnitude with respect to the initial seed magnetic field and is approximately $2.5$ times higher than that of the laser field.

Compared with that in Fig. 2(b), the decrease in the magnetic field in Fig. 2(a) may be related to the generation of the gamma photon emission. According to the QED theory [5], when energetic electrons interact with electromagnetic fields, the energy of the field can be absorbed, and several energetic gamma photons are emitted, or even prolific electron–positron pair production is possible [8,26]. Although we did not observe a large number of positrons in our simulations, the gamma photon emission is significantly different when a seed magnetic field is present, as shown in Fig. 2(e) and (f). Energetic gamma photon emission occurs during the second stage (see $x=130\lambda _0$ in Fig. 2(f)) when a magnetic field is applied, and the maximum energy of the photons is approximately $400$ MeV. Before RFM impinges on the stationary target, the gamma photon energies produced are mostly tens of MeV, and there is no significat energy peak in the spatial distribution of photon energy.

Next, we give an explanation for the peak occuring in Fig. 2(f). In the QED regime, the probability for photon emission can be characterized by the quantum invariant [5]

$$\eta=\frac{1}{E_s}|\gamma_e \textbf{E}_{\bot} + \frac{\textbf P}{m_e} \times \bf{B}|.$$
which is the ratio of the electromagnetic field in the electron’s rest frame to the Schwiger field $E_s$, where $\gamma _e$ is the relativistic factor of the electron, $\bf {E}_{\bot }$ is the electric field perpendicular to the direction of motion of the electron, and $\textbf{P}/m_e c$ is the normalized momentum of electrons. When $\eta \sim 1$, the QED process of gamma photon emission must be considered. And the energy of radiated photons can be estimated as [8]
$$W=0.44\eta \gamma_e m_e c^2$$
When RFM impings on the stationay target at $t= 151 {\rm T_0}$, the electrons in the RFM have ultrahigh energies with the maximum value of relativistic factors approaching to $1400$, as shown in Fig. 3. As mentioned before, the laser pulse has been completely reflected at $t=130\rm {T}_0$, so the electrons in the RFM only interact with the produced electromagnetic field at this time. The quantum invariant can be reduced as $\eta = \frac {1}{E_s}\sqrt {(\gamma _e E_z + P_x B_y/m_e)^2 + (P_z B_y/m_e)^2}$ for our case. If taking $\gamma _e = 1400$, $eE_z/m_e \omega _0 c= -120$, $e B_y/m_e \omega _0 = 350$, $P_x/m_e c=1200$, and $P_z/m_e c = -1000$, then $\eta = 1.31$ and the maximum energy of radiated photons $W=412$ MeV, which is in agreement with the simulation results. However, note that because $\gamma _e E_z$ and $P_x B_y$ have different signs, so $(\gamma _e E_z + P_x B_y/m_e)^2 < (|\gamma _e E_z| + |P_x B_y/m_e|)^2$. When only considering the magnetic field component, then $\eta =\frac {1}{E_s}\sqrt {(P_x B_y/m_e)^2 + (P_z B_y/m_e)^2} = 1.65$, and $W=519$ MeV, which is larger than the simulation results. In the case of only electric field $E_z$, $\eta = \frac {1}{E_s}|\gamma _e E_z |= 0.51$ and $W=160$ MeV, which can’t explain the peak in Fig. 2(f). Therefore, we can conclude that the electromagnetic fields $E_z$ and $B_y$ produced in the interaction of RFM and the stationary target both have an effect on the emission process of gamma photons, and that the enhancement of the gamma photon emission at $x = 130\lambda _0$ is mainly related to the generation of an ultrahigh magnetic field. A complete exploration of the QED effects in this process is beyond the scope of this letter, and this issue will be addressed in future work.

 figure: Fig. 3.

Fig. 3. (a), (b) Electron relativistic factor $\gamma _e$ and distributions of the electron phase space at $t= 151 {\rm T_0}$, where the simulation parameters are the same as in Fig. 2(f) .

Download Full Size | PPT Slide | PDF

We now illustrate how to form the flying mirror with 1D PIC simulation and derive a theory to describe the magnetic field compression in the first stage. We traced the trajectories of typical particles (50 electrons and 50 protons), as shown in Fig. 4. It can be inferred that electrons and protons leave the target together as an electrically neutral plasma sheet at time $\Delta t = 2.4 \rm {T}_0$, as shown by the dashed cross lines in Fig. 4. The slope of the trajectories represents the velocity of the flying mirror and increases rapidly with time, indicating that the mirror rapidly accelerates under the effect of light pressure, which is extremely beneficial for generating a high electromagnetic field by compressing the magnetic field behind the target. The 1D PIC simulation shows that the velocity of mirror reaches $0.9c$ at $t=90\rm {T}_0$.

 figure: Fig. 4.

Fig. 4. Trajectories of electrons and protons from 1D PIC simulation. The numbers of these two species were both 50. The pulse begins to interact with the plasma at $t=10\rm {T}_0$. The blue dashed cross lines indicate the thickness of the plasma target, and the moment particles leave the target. The laser pulse has a trapezoidal time-domain distribution, with $3 \rm {T}_0 - 10 \rm {T}_0 - 3 \rm {T}_0$.

Download Full Size | PPT Slide | PDF

The light pressure drives the acceleration of the mirror that then compresses the applied magnetic field. Figure 5(a) shows typical magnetic field distribution at two different moments. At $t=120\rm {T}_0$, the laser-plasma interaction was terminated for a while, while the magnetic field of the laser pulse was still in the box, as shown by the sinusoid-like curve on the left of the field distribution. The distribution of the magnetic field at $t=250\rm {T}_0$ shows that the field magnitude on the left of the peak is zero, indicating the conservation of magnetic flux during magnetic field compression. The compressed magnetic field gains a maximum value of $eB/m_e \omega _0 = 60$, which is 20 times higher than the initial value. At the end of the laser–plasma interaction, the maximum value of the field remains the same, as shown in Fig. 5(a). The width of the compressed magnetic field increases gradually, as indicated by the arrow in Fig. 5(a). This indicates that the magnetic field produced at the previous moment propagates forward at the speed of light. Figure 5(b) and (c) clearly show that the static magnetic field is compressed into an electromagnetic field.

 figure: Fig. 5.

Fig. 5. 1D PIC simulation results of compressing a static magnetic field. (a) Typical magnetic field spatial distribution at two different moments, where $t= 120~\rm {T}_0$ is moment shortly after the end of the laser-plasma interaction, and the reflected pulse from the RFM has left the simulation box at $t= 250~\rm {T}_0$. The arrow indicates the width of the magnetic field. (b) and (c) show the electric fields $E_y$, $E_z$ and $B_y$, $B_z$, respectively. The input parameters in the simulation are the same as those in Fig. 4.

Download Full Size | PPT Slide | PDF

It is important to note that the driving laser pulse must have an ultrahigh temporal contrast to ensure interaction with a solid target. However, the significant improvement in plasma mirror [27] technology has allowed to achieve a contrst of $3 \times 10^{11}$, which is great for accelerating ultrathin foils as a rigid body. In order to show the scheme of generating ultra-high electromagnetic fields, a laser pulse with super-Gaussian intensity distribution in transverse direction is used as the driving laser in the paper. However, when the intensity of the laser pulse has a Gaussian distribution in transverse direction, the scheme of generating fields of QED intensity is still efficient. The produced fields in Fig. 1 also have a Gaussian distribution in transverse direction.

4. Theory

The high magnetic field generation associated with the motion of the mirror in the first stage can be calculated as follows: First, as mentioned above, the flux is conserved before and after magnetic compression. The flux before compression is $\Phi _1=B_0\beta \Delta t$, and the flux after compression is $\Phi _2 = B(1-\beta ) \Delta t$, where $\beta$ is the velocity of the mirror, normalized to $c$. According to the conservation of magnetic flux, the compressed field can be expressed as follows:

$$B=\frac{\beta}{1-\beta}B_0,$$
When the velocity of the flying mirror approaches $c$, Eq. (3) can be simplified as
$$B=2\gamma^2{B}_0,$$
where $\gamma = \sqrt {1/(1-\beta ^2)}$ is the relativity factor of the mirror.

The behavior of the flying mirror was subject to two forces. Owing to the high density of the plasma target, the incident laser pulse is reflected off the surface of the mirror, which exerts a force $\mathbf {F}_1$ to the mirror, named radiation pressure. This force $\mathbf {F}_1= (1+R)\varepsilon _0 E^2 \frac {1-\beta }{1+\beta } \mathbf {e}_x$ was first given by Einstein [28], where $R$ is the reflection coefficient and is often used to describe the radiation pressure acceleration of ions [2932]. In addition, because the produced magnetic field propagates at velocity $c$, it exerts a recoil force to inhibit the movement of the flying mirror. Thus, the second force can be expressed as $\mathbf {F}_2 = -\frac {B^2}{\mu _0} \frac {1-\beta }{\beta }\mathbf {e}_x$. Combining $\mathbf {F}_1$ and $\mathbf {F}_2$ provides a precise description of the motion of the mirror under the effect of the laser and the produced electromagnetic field, which can be written as

$$\begin{aligned} \frac{dp}{dt} & = 2\varepsilon_0 E^2(t-x) \frac{1-\beta}{1+\beta} - \frac{B^2}{\mu_0} \frac{1-\beta}{\beta}\\ \frac{dx}{dt} & =\beta. \end{aligned}$$
where $p=\sigma \gamma \beta$, $\sigma$ is the surface density, $\mu _0$ is the vacuum permeability, and $t$ and $x$ are normalized to $\rm {T}_0$ and $\lambda _0$, respectively. Here, we have restricted to $R=1$ for simplicity, and it is reasonable for the entire reflection in the current case.

Equations (3)–(5) give a self-consistent solution to the magnetic compression scheme presented herein. To examine the correctness of the theoretical model, a comparison between the theory and PIC simulations is shown in Fig. 6, where Eqs. (3) and (5) are numerically solved. From $t=10-115\rm {T}_0$, the flying mirror gradually accelerates under the combined effect of the radiation pressure from the incident pulse and the recoil force from the produced electromagnetic field, and the $\gamma$ approaches 2.96, indicating that the velocity of the flying mirror is $0.94 c$.

 figure: Fig. 6.

Fig. 6. Comparison between theory and 1D PIC simulation. (a) Relative factor $\gamma$ of the flying mirror. (b) Magnetic field profiles after compression. All input parameters of the laser and plasma are the same as those in Fig. 4. However, a sinusoidal laser is used in (c),(d), with a duration $16\rm {T}_0$ and the other parameters remain the same as (a),(b). The electric field of a sinusoidal laser $\mathbf {E} = (\mathbf {e}_y+i\mathbf {e}_z)E_0\sin ( \pi t/16\rm {T}_0)\exp (ik_0x-i\omega _0 t)$, where $\rm {k}_0$ is the wave number.

Download Full Size | PPT Slide | PDF

As the light pressure is much greater than the recoil force, the acceleration does not stop until the laser is completely consumed. Subsequently, the flying mirror starts to slow down owing to the recoil force, and the produced magnetic field begins to decrease. Therefore, the profile of the pulse magnetic field is as shown in Fig. 6(b). Equation (4) clearly shows the numerical relation between the produced magnetic field and the $\gamma$ factor. For example, it implies that $B$ increases to 18 times the initial value ($\rm {B}_0$) for the maximum $\gamma$, which is in good agreement with Fig. 6(b). Another case is shown in Fig. 6(c) and (d), where a sinusoidal laser is used. It can be seen that the analytic theory agrees well with the PIC simulation results.

5. Conclusion

In conclusion, we have presented a new scheme for generating high-intensity electromagnetic field. The static magnetic field can be compressed by an RFM into an electromagnetic field, and the generated field is enhanced approximately twenty-five-fold with respect to its original amplitude. Owing to the multiple reflections between the flying mirror and the second target, the produced field intensity can be further amplified to a QED intensity $5\times 10^{23}$ W cm$^{-2}$, far exceeding the driver laser intensity $9.6\times 10^{22}$ W cm$^{-2}$, and is approximately four orders of magnitude larger than the applied magnetic field intensity. Therefore, the ultrahigh field can significantly facilitate strong-field QED effects such as high-energy gamma photon emission. This new phenomenon opens up new opportunities to explore strong-field QED with a relatively low laser intensity as well as paves the way for laboratory astrophysics [3335] and high-energy density physics associated with high magnetic fields [3645].

Although a magnetic field of $3\times 10^{4}$ T is used to generate an ultrahigh electromagnetic field in this paper, the principle of magnetic field compression applies to magnetic fields of any value due to the normalized representation of magnetic fields. Currently, technology to generate strong magnetic fields based on high-power lasers is developing rapidly, and can already generate fields of kilotesla order in experiments [46]. In theory, a new way of generating megatesla magnetic fields has been proposed [45]. With the development of magnetic field generation technology, such a strong field ($\sim 10^{4}$ T) may be produced in the near future.

Funding

Ministry of Science and Technology of the People's Republic of China (2016YFA0401102, 2018YFA0404803); National Natural Science Foundation of China (11922515, 11935008, 12005138).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985). [CrossRef]  

2. J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019). [CrossRef]  

3. C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019). [CrossRef]  

4. B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018). [CrossRef]  

5. V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6(5), 497–617 (1985). [CrossRef]  

6. A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177–1228 (2012). [CrossRef]  

7. M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys. 78(2), 591–640 (2006). [CrossRef]  

8. A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101(20), 200403 (2008). [CrossRef]  

9. S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010). [CrossRef]  

10. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82(5), 664–679 (1951). [CrossRef]  

11. X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020). [CrossRef]  

12. L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014). [CrossRef]  

13. A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014). [CrossRef]  

14. I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010). [CrossRef]  

15. K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020). [CrossRef]  

16. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996). [CrossRef]  

17. D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020). [CrossRef]  

18. S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: a new way towards the extreme intensities,” Phys. Rev. Lett. 94(10), 103903 (2005). [CrossRef]  

19. K. Landecker, “Possibility of frequency multiplication and wave amplification by means of some relativistic effects,” Phys. Rev. 86(6), 852–855 (1952). [CrossRef]  

20. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer, (Springer, 2013).

21. S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91(8), 085001 (2003). [CrossRef]  

22. H. Vincenti, “Achieving extreme light intensities using optically curved relativistic plasma mirrors,” Phys. Rev. Lett. 123(10), 105001 (2019). [CrossRef]  

23. F. Quéré and H. Vincenti, “Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit,” High Power Laser Sci. Eng. 9, e6 (2021). [CrossRef]  

24. L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021). [CrossRef]  

25. T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015). [CrossRef]  

26. Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019). [CrossRef]  

27. I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016). [CrossRef]  

28. A. Einstein, “Zur elektrodynamik bewegter Körper,” Ann. Phys. 322(10), 891–921 (1905). [CrossRef]  

29. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004). [CrossRef]  

30. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013). [CrossRef]  

31. A. Macchi, “Theory of light sail acceleration by intense lasers: an overview,” High Power Laser Sci. Eng. 2, e10 (2014). [CrossRef]  

32. X. Zheng, X. Zhang, S. Ahrens, and B. Shen, “High-performance ion source generated by ultraviolet laser irradiation of Cu crystals,” Phys. Plasmas 28(7), 073105 (2021). [CrossRef]  

33. G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014). [CrossRef]  

34. C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015). [CrossRef]  

35. B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014). [CrossRef]  

36. O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009). [CrossRef]  

37. J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010). [CrossRef]  

38. P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011). [CrossRef]  

39. M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012). [CrossRef]  

40. A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18(10), 105011 (2016). [CrossRef]  

41. K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020). [CrossRef]  

42. S. Weng, Q. Zhao, Z. Sheng, W. Yu, S. Luan, M. Chen, L. Yu, M. Murakami, W. B. Mori, and J. Zhang, “Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas,” Optica 4(9), 1086–1091 (2017). [CrossRef]  

43. X. Zheng, S. Weng, Z. Zhang, H. Ma, M. Chen, P. McKenna, and Z. Sheng, “Simultaneous polarization transformation and amplification of multi-petawatt laser pulses in magnetized plasmas,” Opt. Express 27(14), 19319–19330 (2019). [CrossRef]  

44. X. Zheng, S. Weng, H. Ma, Y. Wang, M. Chen, P. McKenna, and Z. Sheng, “Control of laser light by a plasma immersed in a tunable strong magnetic field,” Opt. Express 27(16), 23529–23538 (2019). [CrossRef]  

45. M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020). [CrossRef]  

46. S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013). [CrossRef]  

References

  • View by:

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
    [Crossref]
  2. J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019).
    [Crossref]
  3. C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
    [Crossref]
  4. B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
    [Crossref]
  5. V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6(5), 497–617 (1985).
    [Crossref]
  6. A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177–1228 (2012).
    [Crossref]
  7. M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys. 78(2), 591–640 (2006).
    [Crossref]
  8. A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101(20), 200403 (2008).
    [Crossref]
  9. S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010).
    [Crossref]
  10. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82(5), 664–679 (1951).
    [Crossref]
  11. X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
    [Crossref]
  12. L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014).
    [Crossref]
  13. A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
    [Crossref]
  14. I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010).
    [Crossref]
  15. K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
    [Crossref]
  16. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
    [Crossref]
  17. D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
    [Crossref]
  18. S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: a new way towards the extreme intensities,” Phys. Rev. Lett. 94(10), 103903 (2005).
    [Crossref]
  19. K. Landecker, “Possibility of frequency multiplication and wave amplification by means of some relativistic effects,” Phys. Rev. 86(6), 852–855 (1952).
    [Crossref]
  20. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer, (Springer, 2013).
  21. S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91(8), 085001 (2003).
    [Crossref]
  22. H. Vincenti, “Achieving extreme light intensities using optically curved relativistic plasma mirrors,” Phys. Rev. Lett. 123(10), 105001 (2019).
    [Crossref]
  23. F. Quéré and H. Vincenti, “Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit,” High Power Laser Sci. Eng. 9, e6 (2021).
    [Crossref]
  24. L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
    [Crossref]
  25. T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
    [Crossref]
  26. Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019).
    [Crossref]
  27. I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
    [Crossref]
  28. A. Einstein, “Zur elektrodynamik bewegter Körper,” Ann. Phys. 322(10), 891–921 (1905).
    [Crossref]
  29. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).
    [Crossref]
  30. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
    [Crossref]
  31. A. Macchi, “Theory of light sail acceleration by intense lasers: an overview,” High Power Laser Sci. Eng. 2, e10 (2014).
    [Crossref]
  32. X. Zheng, X. Zhang, S. Ahrens, and B. Shen, “High-performance ion source generated by ultraviolet laser irradiation of Cu crystals,” Phys. Plasmas 28(7), 073105 (2021).
    [Crossref]
  33. G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
    [Crossref]
  34. C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
    [Crossref]
  35. B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
    [Crossref]
  36. O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
    [Crossref]
  37. J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
    [Crossref]
  38. P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
    [Crossref]
  39. M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
    [Crossref]
  40. A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18(10), 105011 (2016).
    [Crossref]
  41. K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020).
    [Crossref]
  42. S. Weng, Q. Zhao, Z. Sheng, W. Yu, S. Luan, M. Chen, L. Yu, M. Murakami, W. B. Mori, and J. Zhang, “Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas,” Optica 4(9), 1086–1091 (2017).
    [Crossref]
  43. X. Zheng, S. Weng, Z. Zhang, H. Ma, M. Chen, P. McKenna, and Z. Sheng, “Simultaneous polarization transformation and amplification of multi-petawatt laser pulses in magnetized plasmas,” Opt. Express 27(14), 19319–19330 (2019).
    [Crossref]
  44. X. Zheng, S. Weng, H. Ma, Y. Wang, M. Chen, P. McKenna, and Z. Sheng, “Control of laser light by a plasma immersed in a tunable strong magnetic field,” Opt. Express 27(16), 23529–23538 (2019).
    [Crossref]
  45. M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020).
    [Crossref]
  46. S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
    [Crossref]

2021 (3)

F. Quéré and H. Vincenti, “Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit,” High Power Laser Sci. Eng. 9, e6 (2021).
[Crossref]

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

X. Zheng, X. Zhang, S. Ahrens, and B. Shen, “High-performance ion source generated by ultraviolet laser irradiation of Cu crystals,” Phys. Plasmas 28(7), 073105 (2021).
[Crossref]

2020 (5)

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020).
[Crossref]

M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020).
[Crossref]

2019 (6)

X. Zheng, S. Weng, Z. Zhang, H. Ma, M. Chen, P. McKenna, and Z. Sheng, “Simultaneous polarization transformation and amplification of multi-petawatt laser pulses in magnetized plasmas,” Opt. Express 27(14), 19319–19330 (2019).
[Crossref]

X. Zheng, S. Weng, H. Ma, Y. Wang, M. Chen, P. McKenna, and Z. Sheng, “Control of laser light by a plasma immersed in a tunable strong magnetic field,” Opt. Express 27(16), 23529–23538 (2019).
[Crossref]

J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019).
[Crossref]

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

H. Vincenti, “Achieving extreme light intensities using optically curved relativistic plasma mirrors,” Phys. Rev. Lett. 123(10), 105001 (2019).
[Crossref]

Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019).
[Crossref]

2018 (1)

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

2017 (1)

2016 (2)

A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18(10), 105011 (2016).
[Crossref]

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

2015 (2)

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

2014 (5)

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

A. Macchi, “Theory of light sail acceleration by intense lasers: an overview,” High Power Laser Sci. Eng. 2, e10 (2014).
[Crossref]

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014).
[Crossref]

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

2013 (2)

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

2012 (2)

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177–1228 (2012).
[Crossref]

2011 (1)

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

2010 (3)

I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010).
[Crossref]

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

2009 (1)

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

2008 (1)

A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101(20), 200403 (2008).
[Crossref]

2006 (1)

M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys. 78(2), 591–640 (2006).
[Crossref]

2005 (1)

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: a new way towards the extreme intensities,” Phys. Rev. Lett. 94(10), 103903 (2005).
[Crossref]

2004 (1)

T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).
[Crossref]

2003 (1)

S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91(8), 085001 (2003).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
[Crossref]

1985 (2)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6(5), 497–617 (1985).
[Crossref]

1952 (1)

K. Landecker, “Possibility of frequency multiplication and wave amplification by means of some relativistic effects,” Phys. Rev. 86(6), 852–855 (1952).
[Crossref]

1951 (1)

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82(5), 664–679 (1951).
[Crossref]

1905 (1)

A. Einstein, “Zur elektrodynamik bewegter Körper,” Ann. Phys. 322(10), 891–921 (1905).
[Crossref]

Ahrens, S.

X. Zheng, X. Zhang, S. Ahrens, and B. Shen, “High-performance ion source generated by ultraviolet laser irradiation of Cu crystals,” Phys. Plasmas 28(7), 073105 (2021).
[Crossref]

Akli, K.

L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014).
[Crossref]

Albertazzi, B.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Arber, T. D.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Arefiev, A.

A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18(10), 105011 (2016).
[Crossref]

Arefiev, A. V.

K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020).
[Crossref]

M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020).
[Crossref]

Azechi, H.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Baeva, T.

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: a new way towards the extreme intensities,” Phys. Rev. Lett. 94(10), 103903 (2005).
[Crossref]

Balabanski, D. L.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Balascuta, S.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Barnak, D. H.

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

Bashinov, A.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

Béard, J.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Bell, A. R.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101(20), 200403 (2008).
[Crossref]

Bennett, K.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Betti, R.

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Bhattacharjee, A.

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

Billette, J.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Bonito, R.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Borghesi, M.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).
[Crossref]

Brady, C. S.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Bromage, J.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Bu, Z.

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

Bulanov, S. S.

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010).
[Crossref]

Bulanov, S. V.

M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020).
[Crossref]

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010).
[Crossref]

T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).
[Crossref]

S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91(8), 085001 (2003).
[Crossref]

Burkley, Z.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Butcher, T.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Cao, Z.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Capponi, L.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Cernaianu, M. O.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Chang, P. Y.

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Chang, P.-Y.

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

Chanteloup, J.-C. F.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Chen, M.

Chen, S.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Chen, S. N.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Choi, I. W.

J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019).
[Crossref]

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Chopineau, L.

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

Chowdhury, E. A.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Ciardi, A.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Cowan, T. E.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Cuciuc, M.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Cucoanes, A.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Dancus, I.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Danson, C. N.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Denoeud, A.

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

Dhal, A.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Di Piazza, A.

A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177–1228 (2012).
[Crossref]

Diaconescu, B.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Doria, D.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Drake, R. P.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Einstein, A.

A. Einstein, “Zur elektrodynamik bewegter Körper,” Ann. Phys. 322(10), 891–921 (1905).
[Crossref]

Esirkepov, T.

T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).
[Crossref]

S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91(8), 085001 (2003).
[Crossref]

Evans, R. G.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
[Crossref]

Feng, G.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Fiksel, G.

A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18(10), 105011 (2016).
[Crossref]

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

Fiuza, F.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Fox, W.

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

Frank, A.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Frenje, J.

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Frenje, J. A.

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

Froula, D. H.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Fuchs, J.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Fujioka, S.

K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020).
[Crossref]

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Galvanauskas, A.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Germaschewski, K.

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

Ghenuche, P.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Ghita, D. G.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Gillies, P.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Gizzi, L. A.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Gonoskov, A.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

Gonoskov, I.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

Gordienko, S.

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: a new way towards the extreme intensities,” Phys. Rev. Lett. 94(10), 103903 (2005).
[Crossref]

Gotchev, O. V.

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Gregori, G.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Gu, Y. Q.

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

Gu, Y.-J.

Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019).
[Crossref]

Haefner, C.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Harvey, C.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

Hatsagortsyan, K. Z.

A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177–1228 (2012).
[Crossref]

Hein, J.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
[Crossref]

Herrmannsdörfer, T.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Higginson, D. P.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Hillier, D. I.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Hironaka, Y.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Hohenberger, M.

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

Honrubia, J. J.

M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020).
[Crossref]

Hopps, N. W.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Hu, G. Y.

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

Hu, S. X.

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

Huarte-Espinosa, M.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Huntington, C. M.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Ilderton, A.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

Ishihara, K.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Jeon, C.

Jeong, T. M.

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Ji, L.

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

Ji, L. L.

L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014).
[Crossref]

Jirka, M.

Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019).
[Crossref]

Johzaki, T.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Kato, Y.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Keitel, C. H.

A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177–1228 (2012).
[Crossref]

Khazanov, E. A.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Kim, A.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

Kim, C. M.

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Kim, H. T.

J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019).
[Crossref]

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Kim, I. J.

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Kirk, J. G.

A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101(20), 200403 (2008).
[Crossref]

Kisyov, S.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Klimo, O.

Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019).
[Crossref]

Knauer, J. P.

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Kodama, R.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Koga, J. K.

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010).
[Crossref]

Korn, G.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Kroll, F.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Kugland, N. L.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Kuranz, C. C.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Landecker, K.

K. Landecker, “Possibility of frequency multiplication and wave amplification by means of some relativistic effects,” Phys. Rev. 86(6), 852–855 (1952).
[Crossref]

Lawrence-Douglas, A.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Leblanc, A.

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

Lee, C.-L.

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Lee, H. W.

J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019).
[Crossref]

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Lee, S. K.

J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019).
[Crossref]

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Levy, M. C.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Li, C. K.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Li, R.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

Li, Y.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Limpert, J.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Liu, J.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Luan, S.

M. Trines, R. M. G.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Ma, H.

Ma, J.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Ma, W.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Macchi, A.

A. Macchi, “Theory of light sail acceleration by intense lasers: an overview,” High Power Laser Sci. Eng. 2, e10 (2014).
[Crossref]

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer, (Springer, 2013).

Manuel, M. J.-E.

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Marklund, M.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys. 78(2), 591–640 (2006).
[Crossref]

Marshall, F. J.

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

Martin, P.

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

McKenna, P.

Mei, Z.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Meinecke, J.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Meyerhofer, D. D.

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Mori, W. B.

Morita, T.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Mourou, G.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Mourou, G. A.

I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010).
[Crossref]

Müller, C.

A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177–1228 (2012).
[Crossref]

Murakami, M.

M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020).
[Crossref]

S. Weng, Q. Zhao, Z. Sheng, W. Yu, S. Luan, M. Chen, L. Yu, M. Murakami, W. B. Mori, and J. Zhang, “Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas,” Optica 4(9), 1086–1091 (2017).
[Crossref]

Nakashima, H.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Nakatsutsumi, M.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Nam, C. H.

J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019).
[Crossref]

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Nastasa, V.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Naughton, K.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Naumova, N. M.

I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010).
[Crossref]

Neely, D.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Nees, J. A.

I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010).
[Crossref]

Nickles, P. V.

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Nilson, P. M.

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

Nishimura, H.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Ong, J. F.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Pae, K. H.

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Papadopoulos, D.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Park, H.-S.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Passoni, M.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Penman, R. R.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Pépin, H.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
[Crossref]

Petrasso, R.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Petrasso, R. D.

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Pikuz, S. A.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Plechaty, C.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Polomarov, O.

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Porat, E.

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

Portugall, O.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Pukhov, A.

L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014).
[Crossref]

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: a new way towards the extreme intensities,” Phys. Rev. Lett. 94(10), 103903 (2005).
[Crossref]

Qian, L.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Quéré, F.

F. Quéré and H. Vincenti, “Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit,” High Power Laser Sci. Eng. 9, e6 (2021).
[Crossref]

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

Ramsay, M. G.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Remington, B. A.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Revet, G.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Riconda, C.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Ridgers, C. P.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Riquier, R.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Ritus, V. I.

V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6(5), 497–617 (1985).
[Crossref]

Rocca, J. J.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Romagnani, L.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Ross, J. S.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Rotaru, F.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
[Crossref]

Rygg, J. R.

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Ryutov, D. D.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Sakawa, Y.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Sangwan, D.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Santos, J. J.

K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020).
[Crossref]

Schlenvoigt, H.-P.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Schmitz, H.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Schreiber, J.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Schwinger, J.

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82(5), 664–679 (1951).
[Crossref]

Séguin, F. H.

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Sergeev, A.

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

Shaykin, A. A.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Shen, B.

X. Zheng, X. Zhang, S. Ahrens, and B. Shen, “High-performance ion source generated by ultraviolet laser irradiation of Cu crystals,” Phys. Plasmas 28(7), 073105 (2021).
[Crossref]

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

Shen, B. F.

L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014).
[Crossref]

Sheng, Z.

Shigemori, K.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Shin, J.

Shiraga, H.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
[Crossref]

Shorokhov, O.

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: a new way towards the extreme intensities,” Phys. Rev. Lett. 94(10), 103903 (2005).
[Crossref]

Shou, Y.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Shukla, P. K.

M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys. 78(2), 591–640 (2006).
[Crossref]

Siders, C. W.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Singhal, H.

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Sircombe, N. J.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Söderström, P.-A.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Sokolov, I. V.

I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010).
[Crossref]

Soloviev, A.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Spindloe, C.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Spitkovsky, A.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Spohr, K. M.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
[Crossref]

Stutman, D.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Suliman, G.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Sunahara, A.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Sung, J. H.

J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27(15), 20412–20420 (2019).
[Crossref]

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Szatmári, S.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Tajima, T.

T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).
[Crossref]

S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91(8), 085001 (2003).
[Crossref]

Takabe, H.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Tanaka, K. A.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Tesileanu, O.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Thomas, A. G. R.

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010).
[Crossref]

Toncian, T.

K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020).
[Crossref]

A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18(10), 105011 (2016).
[Crossref]

Tsoneva, N.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Tudor, L.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Ur, C. A.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Ursescu, D.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Vincenti, H.

F. Quéré and H. Vincenti, “Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit,” High Power Laser Sci. Eng. 9, e6 (2021).
[Crossref]

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

H. Vincenti, “Achieving extreme light intensities using optically curved relativistic plasma mirrors,” Phys. Rev. Lett. 123(10), 105001 (2019).
[Crossref]

Vinci, T.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Wang, D.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Wang, P.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Wang, X. B.

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

Wang, Y.

Watanabe, T.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Weber, S.

Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019).
[Crossref]

Weichaman, K.

M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020).
[Crossref]

Weichman, K.

K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020).
[Crossref]

Weng, S.

Xu, J.

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

Xu, T.

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

Xu, Z.

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

Ya Faenov, A.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Yamamoto, N.

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Yang, P.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Yanovsky, V. P.

I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010).
[Crossref]

Yoon, J. W.

Yu, L.

Yu, W.

Yu. Kostyukov, I.

L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014).
[Crossref]

Yu. Skobelev, I.

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Zamfir, N. V.

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Zh. Esirkepov, T.

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010).
[Crossref]

Zhang, J.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

S. Weng, Q. Zhao, Z. Sheng, W. Yu, S. Luan, M. Chen, L. Yu, M. Murakami, W. B. Mori, and J. Zhang, “Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas,” Optica 4(9), 1086–1091 (2017).
[Crossref]

Zhang, X.

X. Zheng, X. Zhang, S. Ahrens, and B. Shen, “High-performance ion source generated by ultraviolet laser irradiation of Cu crystals,” Phys. Plasmas 28(7), 073105 (2021).
[Crossref]

Zhang, Z.

X. Zheng, S. Weng, Z. Zhang, H. Ma, M. Chen, P. McKenna, and Z. Sheng, “Simultaneous polarization transformation and amplification of multi-petawatt laser pulses in magnetized plasmas,” Opt. Express 27(14), 19319–19330 (2019).
[Crossref]

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Zhang, Z. M.

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

Zhao, B.

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

Zhao, Q.

Zhao, Y.

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

Zheng, J.

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

Zheng, X.

Zhu, J.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Zhu, P.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Zuegel, J. D.

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

Zuo, Y.

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

Zylstra, A. B.

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

Ann. Phys. (1)

A. Einstein, “Zur elektrodynamik bewegter Körper,” Ann. Phys. 322(10), 891–921 (1905).
[Crossref]

High Power Laser Sci. Eng. (5)

A. Macchi, “Theory of light sail acceleration by intense lasers: an overview,” High Power Laser Sci. Eng. 2, e10 (2014).
[Crossref]

F. Quéré and H. Vincenti, “Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit,” High Power Laser Sci. Eng. 9, e6 (2021).
[Crossref]

C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
[Crossref]

X. B. Wang, G. Y. Hu, Z. M. Zhang, Y. Q. Gu, B. Zhao, Y. Zuo, and J. Zheng, “Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma,” High Power Laser Sci. Eng. 8, e34 (2020).
[Crossref]

D. Wang, Y. Shou, P. Wang, J. Liu, Z. Mei, Z. Cao, J. Zhang, P. Yang, G. Feng, S. Chen, Y. Zhao, J. Schreiber, and W. Ma, “Laser-induced damage thresholds of ultrathin targets and their constraint on laser contrast in laser-driven ion acceleration experiments,” High Power Laser Sci. Eng. 8, e41 (2020).
[Crossref]

J. Sov. Laser Res. (1)

V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6(5), 497–617 (1985).
[Crossref]

Matter Radiat. Extremes (2)

K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, and N. V. Zamfir, “Current status and highlights of the ELI-NP research program,” Matter Radiat. Extremes 5(2), 024402 (2020).
[Crossref]

Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019).
[Crossref]

Nat. Phys. (2)

L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, and F. Quéré, “Spatio-temporal characterization of attosecond pulses from plasma mirrors,” Nat. Phys. 17(8), 968–973 (2021).
[Crossref]

C. M. Huntington, F. Fiuza, J. S. Ross, A. B. Zylstra, R. P. Drake, D. H. Froula, G. Gregori, N. L. Kugland, C. C. Kuranz, M. C. Levy, C. K. Li, J. Meinecke, T. Morita, R. Petrasso, C. Plechaty, B. A. Remington, D. D. Ryutov, Y. Sakawa, A. Spitkovsky, H. Takabe, and H.-S. Park, “Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows,” Nat. Phys. 11(2), 173–176 (2015).
[Crossref]

New J. Phys. (1)

A. Arefiev, T. Toncian, and G. Fiksel, “Enhanced proton acceleration in an applied longitudinal magnetic field,” New J. Phys. 18(10), 105011 (2016).
[Crossref]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Plasmas (4)

M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser,” Phys. Plasmas 19(5), 056306 (2012).
[Crossref]

J. P. Knauer, O. V. Gotchev, P. Y. Chang, D. D. Meyerhofer, O. Polomarov, R. Betti, J. A. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, and F. H. Séguin, “Compressing magnetic fields with high-energy lasers,” Phys. Plasmas 17(5), 056318 (2010).
[Crossref]

X. Zheng, X. Zhang, S. Ahrens, and B. Shen, “High-performance ion source generated by ultraviolet laser irradiation of Cu crystals,” Phys. Plasmas 28(7), 073105 (2021).
[Crossref]

I. J. Kim, K. H. Pae, I. W. Choi, C.-L. Lee, H. T. Kim, H. Singhal, J. H. Sung, S. K. Lee, H. W. Lee, P. V. Nickles, T. M. Jeong, C. M. Kim, and C. H. Nam, “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23(7), 070701 (2016).
[Crossref]

Phys. Rev. (2)

K. Landecker, “Possibility of frequency multiplication and wave amplification by means of some relativistic effects,” Phys. Rev. 86(6), 852–855 (1952).
[Crossref]

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82(5), 664–679 (1951).
[Crossref]

Phys. Rev. B (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996).
[Crossref]

Phys. Rev. E (1)

I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and G. A. Mourou, “Emission and its back-reaction accompanying electron motion in relativistically strong and QED-strong pulsed laser fields,” Phys. Rev. E 81(3), 036412 (2010).
[Crossref]

Phys. Rev. Lett. (11)

L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112(14), 145003 (2014).
[Crossref]

A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113(1), 014801 (2014).
[Crossref]

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Coherent focusing of high harmonics: a new way towards the extreme intensities,” Phys. Rev. Lett. 94(10), 103903 (2005).
[Crossref]

A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101(20), 200403 (2008).
[Crossref]

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, “Schwinger limit attainability with extreme power lasers,” Phys. Rev. Lett. 105(22), 220407 (2010).
[Crossref]

S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91(8), 085001 (2003).
[Crossref]

H. Vincenti, “Achieving extreme light intensities using optically curved relativistic plasma mirrors,” Phys. Rev. Lett. 123(10), 105001 (2019).
[Crossref]

G. Fiksel, W. Fox, A. Bhattacharjee, D. H. Barnak, P.-Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Magnetic reconnection betweent colliding magnetized laser-produced plasma plumes,” Phys. Rev. Lett. 113(10), 105003 (2014).
[Crossref]

T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92(17), 175003 (2004).
[Crossref]

P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, and R. D. Petrasso, “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107(3), 035006 (2011).
[Crossref]

O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F. H. Séguin, and R. Betti, “Laser-driven magnetic-flux compression in high-energy-density plasmas,” Phys. Rev. Lett. 103(21), 215004 (2009).
[Crossref]

Plasma Phys. Control. Fusion (1)

B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60(4), 044002 (2018).
[Crossref]

Plasma Phys. Controlled Fusion (1)

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).
[Crossref]

Rev. Mod. Phys. (3)

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84(3), 1177–1228 (2012).
[Crossref]

M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys. 78(2), 591–640 (2006).
[Crossref]

Sci. Rep. (3)

K. Weichman, J. J. Santos, S. Fujioka, T. Toncian, and A. V. Arefiev, “Generation of focusing ion beams by magnetized electron sheath acceleration,” Sci. Rep. 10(1), 18966 (2020).
[Crossref]

M. Murakami, J. J. Honrubia, K. Weichaman, A. V. Arefiev, and S. V. Bulanov, “Generation of megatesla magnetic fields by intense-laser-driven microtube implosions,” Sci. Rep. 10(1), 16653 (2020).
[Crossref]

S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3(1), 1170 (2013).
[Crossref]

Science (1)

B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. Schlenvoigt, I. Yu. Skobelev, A. Ya Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346(6207), 325–328 (2014).
[Crossref]

Other (1)

A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer, (Springer, 2013).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. 2D PIC simulation results. (a) Schematic of compressing static magnetic field with an RFM. (b) and (c) show the magnetic and electric fields in the x-y plane and its corresponding on-axis distribution after compression at $t=130 {\rm T_0}$, respectively. The incident laser pulse was completely reflected by the RFM at $t=130 {\rm T_0}$.
Fig. 2.
Fig. 2. 2D PIC simulation results. The results in (a)–(f) are from the laser interacting with the double-target configuration, wherein the second plasma target is located at $x=130 \lambda _0$ with a thickness of $2 \lambda _0$ and the same density ($200 n_c$) as target 2, where the white dashed line denotes the position of target 2. (a, b) Magnetic field distribution in space when the flying mirror approaches the second target at $t= 151 {\rm T_0}$ with and without the QED included in the simulations. (c) and (d) show the electric field distribution with respect to (a) and (b), respectively. (e) and (f) are the photon energy distribution (photon macroparticle) in space with or without a seed magnetic field, where the QED module is open in simulations.
Fig. 3.
Fig. 3. (a), (b) Electron relativistic factor $\gamma _e$ and distributions of the electron phase space at $t= 151 {\rm T_0}$, where the simulation parameters are the same as in Fig. 2(f) .
Fig. 4.
Fig. 4. Trajectories of electrons and protons from 1D PIC simulation. The numbers of these two species were both 50. The pulse begins to interact with the plasma at $t=10\rm {T}_0$. The blue dashed cross lines indicate the thickness of the plasma target, and the moment particles leave the target. The laser pulse has a trapezoidal time-domain distribution, with $3 \rm {T}_0 - 10 \rm {T}_0 - 3 \rm {T}_0$.
Fig. 5.
Fig. 5. 1D PIC simulation results of compressing a static magnetic field. (a) Typical magnetic field spatial distribution at two different moments, where $t= 120~\rm {T}_0$ is moment shortly after the end of the laser-plasma interaction, and the reflected pulse from the RFM has left the simulation box at $t= 250~\rm {T}_0$. The arrow indicates the width of the magnetic field. (b) and (c) show the electric fields $E_y$, $E_z$ and $B_y$, $B_z$, respectively. The input parameters in the simulation are the same as those in Fig. 4.
Fig. 6.
Fig. 6. Comparison between theory and 1D PIC simulation. (a) Relative factor $\gamma$ of the flying mirror. (b) Magnetic field profiles after compression. All input parameters of the laser and plasma are the same as those in Fig. 4. However, a sinusoidal laser is used in (c),(d), with a duration $16\rm {T}_0$ and the other parameters remain the same as (a),(b). The electric field of a sinusoidal laser $\mathbf {E} = (\mathbf {e}_y+i\mathbf {e}_z)E_0\sin ( \pi t/16\rm {T}_0)\exp (ik_0x-i\omega _0 t)$, where $\rm {k}_0$ is the wave number.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η = 1 E s | γ e E + P m e × B | .
W = 0.44 η γ e m e c 2
B = β 1 β B 0 ,
B = 2 γ 2 B 0 ,
d p d t = 2 ε 0 E 2 ( t x ) 1 β 1 + β B 2 μ 0 1 β β d x d t = β .