Abstract

We demonstrate a multi-channel silicon photonic transmitter based on wavelength division multiplexing (WDM) and mode division multiplexing (MDM). The light source is realized by a silicon nitride (Si3N4) Kerr frequency comb and optical modulation is realized by silicon electro-optic modulators. Three wavelengths and two modes are employed to increase the optical transmission capacity. The accumulated data rate reaches 150 Gb/s. The dense integration of WDM and MDM components with a compact optical comb source opens new avenues for the future high-capacity multi-dimensional optical transmission.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

As data traffic grows exponentially for intra- and inter-datacenter (DC) networks, optical interconnects with large communication capacity and high scalability are highly required. Silicon photonics (SiPh) provides a good solution for short-distance and high-capacity optical interconnections due to its high speed, low power consumption, small footprint, and complementary metal-oxide-semiconductor (CMOS) compatibility [13]. High-performance silicon modulators are essential components for future low-cost and energy-efficient optical transceivers. Recently, high-speed modulation has been achieved by silicon Mach-Zehnder modulators (MZM) and micro-ring modulators (MRM) [4,5]. To obtain a higher data rate, the IEEE proposed 400 GbE standard has been extended to 800 GbE for silicon photonic transceivers. Multi-channel multiplexing techniques are necessary to obtain such a high accumulated data rate. Increasing the total transmission rate by spatial multiplexing with parallel single-mode fibers is a feasible solution. Recently, MZM-based parallel-channel transmitters have been demonstrated with data rates of 448 Gb/s [6] and 800 Gb/s [7]. However, increasing the number of spatial channels may not be a sustainable solution. Therefore, it is necessary to introduce more scalable multiplexing techniques.

Wavelength division multiplexing (WDM) is a commonly used technique for increasing communication capacity. The accumulated data rate increases with the number of wavelength channels. WDM transmitters based on MZMs [810], MRMs [1115], and electro-absorption modulators (EAMs) [16] have been extensively investigated. MRMs are popular in WDM systems because of their compact size and wavelength selectivity. The MRM-based C-band WDM transmitter has achieved a data transmission capability of 320 Gb/s [13]. O-band WDM transmitters have attracted a lot of attention in DCs due to near zero-dispersion characteristics of standard single-mode fiber around the 1310 nm wavelength [14]. Recently, Intel has demonstrated a co-packaged integrated O-band silicon photonic integrated circuit with an accumulated data rate of 16 × 106 Gb/s using the four-level pulse amplitude modulation (PAM4) signal format [15]. A 16-channel WDM transmitter enabled by Ge-Si EAMs with 50 Gbaud PAM4 modulation has also been implemented [16]. MZM is also widely used in WDM transmitters due to its large bandwidth and high thermal stability. MZM-based WDM transmitters have been demonstrated with 400G-FR4 [9] and 400G-DR4 [10]. These works show the potential of WDM transmitters in increasing the transmission capacity. However, WDM transmission usually requires multi-wavelength laser sources and wavelength precise controls. Multi-wavelength-channel laser arrays may increase the system complexity and power consumption [17].

In addition to WDM, mode division multiplexing (MDM) is a promising multiplexing technology to further increase the data transmission capacity by utilizing multiple eigenmodes in a multimode waveguide. An on-chip MDM communication network has achieved a total data rate of 3 × 104 Gb/s by using discrete multitone modulation [18]. Furthermore, it is possible to combine WDM and MDM to extend the data transmission capacity by making full use of the wavelength and mode degrees of freedom [19,20]. WDM-MDM transmission over a 21 km multimode fiber has been reported with an accumulated data rate of 3 × 4 × 10 Gb/s [20].

For the laser sources, optical frequency combs can be used as compact multi-wavelength light sources. The combination of WDM transmitters and optical frequency combs has been demonstrated [2123]. Optical frequency combs can be generated based on electro-optic modulation using phase modulators [21], MRMs [22], dual-drive Mach-Zehnder modulators (DD-MZMs) [23]. The modulation-generated comb features a tunable comb spacing, but the number of comb lines is limited.

Another approach to generating optical frequency combs is pumping a high-Q micro-resonator with a high-power continuous-wave (CW) laser. Comb lines with an equal frequency spacing are produced through the cascaded four-wave mixing (FWM) process through the Kerr nonlinear effect. Compared with the modulation method, the spectral bandwidth of the Kerr comb is not limited by the achievable modulation depth [2429]. In 2014, Joerg Pfeifle et al. demonstrated 1.44 Tbit/s coherent data transmission using Kerr frequency combs [24]. In 2017, Pablo Marin Palomo et al. demonstrated a coherent optical transmission system with a maximum capacity of 50.2 Tbits/s using dissipative Kerr solitons in a Si3N4 chip as the low noise WDM sources [26]. In 2020, Bill Corcoran et al. achieved 44.2 Tbit/s data transmission using an integrated soliton crystal source [28]. However, the modulators, multiplexers (MUXs), and de-multiplexers (DEMUXs) in the above works are all based on discrete components. Recently, an integrated Kerr comb-driven silicon photonic transmitter through WDM has been demonstrated [29]. The combination of WDM and MDM is a feasible way to further expand the transmitter capacity.

Here we report a WDM-MDM transmitter composed of a Si3N4 micro-resonator-based Kerr comb chip and a silicon WDM-MDM optical modulation chip. We achieve a total 3 × 2 × 25 Gb/s transmission rate under a single-channel 25 Gb/s modulation. To the best of our knowledge, this is the first demonstration of using a Si3N4-based Kerr frequency comb as the light source for a silicon WDM-MDM optical transmitter, providing a solution for the high-scalable integrated optical transmitter chip.

2. WDM-MDM transmitter architecture

Figure 1 shows the architecture of the WDM-MDM transmitter. A laser source is launched into a Si3N4 micro-resonator to generate perfect soliton crystals, a special kind of Kerr combs, where temporal solitons are equally spaced in the micro-resonator. The perfect soliton crystals have the advantages of good stability, low noise, and high conversion efficiency. Then, N equidistance comb lines are wavelength-demultiplexed by a DEMUX in the silicon WDM-MDM optical modulation chip. Each wavelength is split into M channels by a power splitter. N × M silicon MZMs are used for modulation. Compared to MRMs, MZMs are wavelength insensitive and can take full advantage of the broad spectrum of the Kerr comb. After modulation, the signals are wavelength-multiplexed by M MUXs. Finally, these M spatial channels are converted to M modes respectively in a multimode waveguide by mode multiplexers. If the modulation rate of each MZM is D, then the total accumulated data rate of the WDM-MDM transmitter is N × M × D.

 figure: Fig. 1.

Fig. 1. Architecture of WDM-MDM system.

Download Full Size | PPT Slide | PDF

2.1 Kerr frequency combs in the Si3N4 micro-resonator

Figure 2(a) shows the structure of the Si3N4 micro-resonator. The ring radius is 232 µm, corresponding to an FSR of 98 GHz. The Si3N4 waveguide has a cross-section of 1500 × 800 nm2 to let the micro-resonator work in the anomalous dispersion regime, which is essential for the Kerr comb generation. Soliton micro-combs, relying on the double balance of dispersion and nonlinearity as well as parametric gain and cavity loss, are formed in the mode-locked regime of a high-quality micro-resonator. Soliton crystals are a kind of special soliton combs, induced by the avoided mode crossings (AMXs) of the micro-resonator. The AMXs modulate the intracavity CW background, forming the orders of soliton combs pulse. The perfect soliton crystal with N × FSR equally spaced lines can be treated as an ideal comb source, corresponding to the N × FSR pulse repetition rate.

 figure: Fig. 2.

Fig. 2. (a) Kerr frequency comb generation from a CW laser-driven Si3N4 micro-resonator. The inset shows the scanning electron microscope (SEM) image of the device. (b) Simulation results of the Kerr frequency comb at three stages: (I) primary comb, (II) chaotic MI comb, and (III) soliton crystal comb.

Download Full Size | PPT Slide | PDF

Figure 2(b) shows different micro-comb stages from the blue-detuned side to the red-detuned side. The primary comb and soliton crystal comb show the ordered time-domain pulses, corresponding to low noise. In comparison, the chaotic modulation instability (MI) comb generates disordered time-domain pulses with high noise. It should be noted that the soliton micro-combs can be heterogeneously integrated combining both indium phosphide/silicon (InP/Si) semiconductor lasers and Si3N4 micro-resonators on a monolithic silicon substrate [30], which makes it feasible to realize a monolithic WDM-MDM transmitter chip.

2.2 WDM-MDM optical modulation

Figure 3(a) shows the diagram of the silicon WDM-MDM transmitter chip. Three comb lines generated by the Si3N4 chip are coupled into the silicon chip as the optical carriers. These comb lines are separated by a DEMUX composed of three groups of coupled racetrack micro-ring resonators. Each optical carrier is then divided into two branches by a 1 × 2 multimode interferometer (MMI), and respectively modulated by two individual MZMs. After modulation, the upper and the bottom branches of the three wavelengths are multiplexed by three MUXs, respectively. The MUXs have the same structure as the DEMUX, but with reverse input and output ports. The two waveguide channels are combined by a mode multiplexer based on an adiabatic coupler (ADC). The bottom channel is converted to the TE1 mode, while the upper channel remains the TE0 mode. Thus, the modulated signals are multiplexed in both wavelength and mode domains and transmitted in a single multimode waveguide channel, which greatly expands the data transmission capacity. The MZMs possess carrier-depletion PN junctions with single-drive push-pull traveling-wave electrode (TWE) structures. The length of MZM modulation arms is 3 mm. The modulation arms are based on silicon ridge waveguides with a width of 500 nm and a height of 220 nm. The distance from the edge of the heavily doped region to the edge of the waveguide is 500 nm. Metal lines are connected to the p++-doping regions to form a good ohmic contact. A bias voltage is applied to the n++-doping region to ensure the reverse bias of PN junctions. The width, height, and gap of metal2 (metal1) transmission lines are 62 µm (10 µm), 2 µm (2 µm), and 24 µm (58 µm), respectively. All the six MZMs are identical. The radius of all the racetrack micro-rings in the MUXs and the DEMUXs is 10 µm. The gap size between the micro-ring and the bus waveguide is 0.2 µm, and that between the two micro-rings is 0.45 µm. The coupling length is 3 µm. TiN-based micro-heaters are integrated into all the micro-rings for phase shifting. The structural parameters of the ADC are adopted from Ref. [31]. To facilitate the measurement of the chip performance, an extra mode de-multiplexer based on the identical ADC is included.

 figure: Fig. 3.

Fig. 3. (a) Schematic of the silicon WDM-MDM transmitter chip. The insets show the cross-section structures of the MZM and the mode multiplexer. (b) Microscope image of the fabricated chip.

Download Full Size | PPT Slide | PDF

The chip was fabricated on a 200 mm silicon-on-insulator wafer with CMOS compatible processes. Figure 3(b) shows the microscope image of the chip. The footprint of the chip is 5.4 × 2.8 mm2. The fiber-to-chip coupler is based on an inverse taper with a tip width of 180 nm. The coupling loss is around 2.4 dB/facet using a lensed fiber.

3. Experimental setup and results

3.1 Low-noise comb generation

Dissipative Kerr solitons are ideal light sources for signal transmission due to the merits of low noise and mutual coherence. However, the thermal effect of the Si3N4 micro-resonator prevents the generation of a single soliton. Many methods are proposed to overcome the thermal effect like ‘power-kicking’ [32,33], ‘forward and backward tuning method’ [34], and ‘auxiliary-assisted heating’ [35]. These methods require precise control of the pump laser wavelength and increase the complexity of the system.

Figure 4(a) presents the experimental setup for Kerr frequency comb generation. We used an erbium-doped fiber amplifier (EDFA) to amplify the laser power to 30 dBm and pump the mode of 1541.36 nm near the AMX of 1537.6 nm. A bandpass filter (BPF) was used to eliminate the amplified spontaneous emission (ASE) noise of the EDFA. By tuning the pump frequency from the blue-detuned to red-detuned regimes of the chosen cavity mode, three different Kerr frequency comb stages were sequentially observed by an optical spectrum analyzer (OSA), as shown in Fig. 4(c). We filtered out a single comb line and measured the low-frequency intensity noise by an electrical spectrum analyzer (ESA). Both the primary comb (I) and low-noise MI comb (III) have low noise at low RF frequencies. The chaotic MI comb has a high RF noise from 0 to 0.5 GHz, indicating it is a high-noise state. As the spectrum of the frequency comb in stage III does not completely match the sech2 profile, we categorize it as a low-noise MI comb. A similar comb state was also observed in [36]. It may belong to a kind of soliton crystal. Figure 4(b) shows the dispersion of the Si3N4 micro-resonator used in our experiment. The pump wavelength is 6-FSRs away from the AMX which is the same as the comb spacing. Besides, multiple mode interactions occur at different wavelengths, supporting the possibility of disordering the soliton crystal. The spectrum of the microcomb is similar to the disordered soliton crystal proposed in [37]. Further simulations and experiments are needed to explore the diverse soliton crystals. In the following experiments, we use the low-noise MI comb (III) as the light source for WDM-MDW data transmission.

 figure: Fig. 4.

Fig. 4. (a) Schematic of the experimental setup for generating the low-noise MI comb. EDFA: erbium-doped fiber amplifier; BPF: band-pass filter; NF: notch filter; OSA: optical spectrum analyzer; ESA: electrical spectrum analyzer. (b) Integrated dispersion of the Si3N4 micro-resonator. The dotted lines mark the AMXs. (c) Comb generation process during the scanning of the pump laser frequency: (I) primary comb, (II) chaotic MI comb, and (III) low-noise MI comb. The left column shows the optical spectra and the right column shows the corresponding low-frequency electrical spectra of a single comb line. The asterisks refer to the wavelengths used in the transmitter. The inserted diagram shows the optical transmission power trace when the pump scans over a resonance.

Download Full Size | PPT Slide | PDF

The frequency interval of the primary comb lines is 18.75 nm, while that of the low-noise MI comb is 4.75 nm. As the FSR of the dual coupled micro-ring-based MUXs and DEMUX is almost twice the comb line spacing, we cannot use three equally-spaced comb lines as the light sources for the WDM-MDM transmitter chip. Therefore, we adopted three comb lines at 1541.36 nm (λ1), 1546.56 nm (λ2), and 1560.21 nm (λ3) as the WDM wavelength channels.

3.2 Characterization of the mode (De)MUX and wavelength (De)MUX

Figure 5(a) illustrates the test device incorporating a mode MUX and a mode DEMUX. Figure 5(b) shows the measured transmission spectra. The loss for CH2-CH3 is slightly larger than that for CH1-CH4 because light from CH2 goes through mode conversion twice. The insertion loss of one mode (DE)MUX is approximately 0.6 dB. The inter-mode crosstalk is less than -20.4 dB.

 figure: Fig. 5.

Fig. 5. (a) Schematic structure of the mode (de)multiplexing test device. (b) Measured transmission spectra of the device.

Download Full Size | PPT Slide | PDF

The bandpass wavelengths of the wavelength MUX and DEMUX in the chip can be flexibly tuned by thermo-optic phase shifters to match the comb lines. When one micro-ring filter is tuned, the presence of thermal crosstalk causes a slight shift of the other two micro-ring filters. Therefore, in our experiment, we tuned them iteratively to ensure three passbands were well-aligned with three comb lines by monitoring and maximizing the output power at the corresponding wavelengths. Figure 6(a) shows the transmission spectrum of the coupled micro-ring filter. The FSR and the 3-dB bandwidth are 8.77 nm and 0.308 nm at around 1550 nm wavelength, respectively. The 3-dB optical bandwidth gradually increases from 1520 nm to 1580 nm wavelength. The out-of-band rejection ratio is around 30.8 dB. The insertion loss is 4.1 dB, which is higher than our simulation due to fabrication process variations. Optimizing the coupling of the micro-rings and improving the fabrication processes can further reduce the insertion loss. Figures 6(b) and (c) show the measured spectra of the TE0 and TE1 branches after the adjustment of the entire WDM-MDM transmitter chip. The 3-dB bandwidth of the passband at the three modulation wavelengths is 0.228 ± 0.03 nm. The narrower bandwidth is due to the filtering effect of two subsequent micro-ring filters. When all channels are aligned, the on-chip insertion loss is approximately 18.5 dB at 1550.1 nm, consisting of 8.2 dB loss from the two dual coupled micro-rings, 3.2 dB loss from the MMI, 3.09 dB loss from the MZM, 1.21 dB loss from the mode multiplexers and 2.8 dB loss from the passive silicon waveguide.

 figure: Fig. 6.

Fig. 6. (a) Measured transmission spectrum of the coupled micro-rings. (b, c) Measured transmission spectra for (b) TE0 and (c) TE1 branches when three comb lines are filtered.

Download Full Size | PPT Slide | PDF

3.3 Characterization of the MZM

We measured the optical transmission of the MZM at 1546.56 nm wavelength when the bias voltage applied to the upper and bottom modulation arms is scanned. As illustrated in Fig. 7(a), the transmission reaches the minimum when the applied voltage is around 7.1 V. Therefore, the modulation efficiency Vπ·L of the MZM is 2.1 V·cm. The modulation efficiency can be further improved to 0.55 V·cm using a U-shaped PN junction design as we demonstrated previously [38].

 figure: Fig. 7.

Fig. 7. (a) Optical power transmission versus reverse bias voltage on one PN junction. (b) EE-S11 responses of the MZM under several reverse bias voltages. (c) EO-S21 responses of the MZM and crosstalk between adjacent MZMs.

Download Full Size | PPT Slide | PDF

Figure 7(b) shows the electrical-electrical (EE) S11 response of TWE measured by a 43.5 GHz vector network analyzer (VNA, Anritsu, MS46522B) under various DC bias voltages. The measured frequency range is 100 MHz to 40 GHz. The microwave reflection is below -10 dB, which indicates a good impedance match between the TWE of the MZM and the RF cable. Figure 7(c) shows the electrical-optical (EO) S21 responses measured by the VNA when a 50 GHz PD (U2t, XPDV2120R) is used for optical to electrical conversion. The EO-S21 curves are normalized to the 100 MHz frequency point. The EO 3-dB bandwidth is 12.8 GHz when the bias voltage is -2 V. The crosstalk (CT) between MZMs, measured by applying the microwave signal on the adjacent MZM, is less than -40 dB.

3.4 System performance

Figure 8 shows the experimental setup for WDM-MDM modulation. The 1541.36 nm light from a distributed feedback (DFB) laser was amplified to 30 dBm by EDFA1 to pump the Si3N4 micro-resonator chip for the low-noise comb generation. BPF1 was used to eliminate the ASE noise of EDFA1, and a notch filter (NF) was used to reduce the power of the pump comb line. The comb lines at 1541.36 (λ1) nm, 1546.56 (λ2) nm, and 1560.21 (λ3) nm were separately selected by BPF2. Each comb line was amplified to 10 dBm by EDFA2 to meet the input optical power requirements of the WDM-MDM transmitter chip, and BPF3 was used to eliminate the ASE noise of EDFA2. Then, each comb line with 10 dBm optical power was launched into the transmitter chip. In the experiment, we also stabilized the generated comb source by feedback control of the comb power.

 figure: Fig. 8.

Fig. 8. Experimental setup for WDM-MDM system using the Si3N4 frequency comb. PC: polarization controller; EDFA: erbium-doped fiber amplifier; NF: notch filter; BPF: band-pass filter; PPG: pulse pattern generator; RF AMP: RF microwave amplifier; PD: photodiode; DCA: digital communication analyzer; BERT: Bit Error Rate Tester; The black lines indicate the optical paths. The blue lines indicate the electrical paths. The blue dotted lines indicate the BER test paths.

Download Full Size | PPT Slide | PDF

For the WDM-MDM transmitter chip, a pseudo-random binary sequence (PRBS-31) signal was generated by a pulse pattern generator (PPG, Keysight, N4960A, N4951B). The peak-to-peak voltage (Vpp) of the PRBS signal is 7 V after being amplified by a microwave amplifier. One end of the modulator's TWE is applied with the PRBS signal through a 40 GHz GS probe, and the other end is applied with a 50 Ω resistor.

The output modulated signal was amplified by EDFA3 and filtered by BPF4 to eliminate the ASE noise of EDFA3. It was finally detected by a 50 GHz PD and received by a digital communication analyzer (DCA, Agilent DCA-X 86100D) and a bit error rate tester (BERT, Keysight, N4952A), respectively. For eye diagram measurement under 25 Gb/s on-off keying (OOK) modulation, the average optical power received by the PD is 4 dBm, and the DC bias voltage is fixed at 3 V. The measured eye diagrams of two modes and three wavelengths are shown in Fig. 9(a). The modulation extinction ratios (ER) are all greater than 7.62 dB and the signal noise ratios (SNR) are all greater than 6.69 dB.

 figure: Fig. 9.

Fig. 9. (a) Eye diagrams and (b) BER curves of 25 Gb/s OOK signals under different wavelengths and modes.

Download Full Size | PPT Slide | PDF

Figure 9(b) gives the bit error rate (BER) performance of the 25 Gb/s OOK signals. The comb line at λ1 is also the pump signal, which was firstly attenuated by the NF to -5 dBm. The optical power input to BPF2 is almost the same as the comb line at λ3. Therefore, the BER performance at λ1 is similar to that at λ3. However, the comb line power is -11 dBm at λ2, which is far lower than the other two wavelengths. Therefore, it has larger ASE noise, leading to worse BER performance. In addition, the BER performance is also slightly affected by the different gain characteristics of the EDFAs at the three wavelengths. In general, the BER performance of two modes and three wavelengths can reach the threshold of 1 × 10−9.

4. Discussion

In our proof-of-concept experiment, we used three EDFAs in comb generation and data modulation. It is possible to remove these EDFAs and realize the proposed scheme in Fig. 1 if we increase the comb line power and reduce the insertion loss of the transmitter chip. Raising the Q-factor of the Si3N4 micro-resonator is critical in reducing the Kerr comb pump power. Recently, a soliton frequency comb has been generated in a high Q-factor (∼ 107) Si3N4 micro-resonator without EDFAs [39]. The comb line power is dependent on the pump power as well as the conversion efficiency. Several comb generation mechanisms possess a high conversion efficiency, such as the soliton crystals [40], dark solitons [41], etc. It is noted that the comb line power of a dark soliton has been demonstrated to exceed 0 dBm in a certain range of wavelength [41]. Therefore, it is possible to generate comb lines with enough power for signal modulation. Monolithic or hybrid integration of the Si3N4 micro-resonator chip with the silicon transmitter chip can reduce the coupling loss to less than 1 dB [42]. In addition, the on-chip insertion loss of the transmitter chip can be reduced to ∼8 dB (1 dB from the wavelength MUX/DEMUX, 3.2 dB from the MMI, 2.4 dB from the MZM, 0.8 dB from the mode MUX, and 0.6 dB from the passive silicon waveguide) by optimizing the design and the fabrication processes. Therefore, the modulated WDM-MDM optical signal after the transmitter chip can still have enough power for transmission.

5. Conclusions

We have demonstrated a WDM-MDM transmitter composed of a Si3N4 micro-resonator-based Kerr comb chip and a silicon WDM-MDM optical modulation chip. The low-noise comb source has the advantages of good stability and low noise. Three wavelengths and two modes were employed to increase the optical transmission capacity. We achieved a total of 3 × 2 × 25 Gb/s transmission capacity under a single-channel 25 Gb/s modulation rate. The BER performance is below the error-free threshold of 1 × 10−9 for the 25 Gb/s single-channel data rate. This is the first demonstration of using a Si3N4-based Kerr frequency comb as the light source for a silicon WDM-MDM optical transmitter, providing a solution for the highly scalable integrated optical transmitter chip. This scheme opens new avenues for the future high-capacity multi-dimensional optical transmission and the hybrid integration of comb sources and transmitter chips.

Funding

National Key Research and Development Program of China (2019YFB1802903, 2018YFB2201702, 2019YFB2203200); National Natural Science Foundation of China (62075128, 62090052, 62135010); Science and Technology Commission of Shanghai Municipality (2017SHZDZX03); Wuhan National Laboratory for Optoelectronics (2019WNLOKF004).

Disclosures

The authors declare no conflicts of interest.

Data availability

The data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009). [CrossRef]  

2. Y. Yao, Z. Cheng, J. Dong, and X. Zhang, “Performance of integrated optical switches based on 2D materials and beyond,” Front. Optoelectron. 13(2), 129–138 (2020). [CrossRef]  

3. Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019). [CrossRef]  

4. M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res. 6(2), 109–116 (2018). [CrossRef]  

5. J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37(1), 110–115 (2019). [CrossRef]  

6. M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

7. H. Zhang, M. Li, Y. Zhang, D. Zhang, Q. Liao, J. He, S. Hu, B. Zhang, L. Wang, X. Xiao, N. Qi, and S. Yu, “800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter,” Photon. Res. 8(11), 1776 (2020). [CrossRef]  

8. T. Aoki, S. Sekiguchi, T. Simoyama, S. Tanaka, M. Nishizawa, N. Hatori, Y. Sobu, A. Sugama, T. Akiyama, and A. Hayakawa, “Low-crosstalk simultaneous 16-channel× 25 Gb/s operation of high-density silicon photonics optical transceiver,” J. Lightwave Technol. 36(5), 1262–1267 (2018). [CrossRef]  

9. E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

10. R. Blum, “Integrated silicon photonics for high-volume data center applications,” in Optical Interconnects XX, (International Society for Optics and Photonics, 2020), 112860M.

11. S. Pitris, C. Mitsolidou, M. Moralis-Pegios, K. Fotiadis, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, and X. Yin, “400 Gb/s silicon photonic transmitter and routing WDM technologies for glueless 8-socket Chip-to-Chip interconnects,” J. Lightwave Technol. 38(13), 3366–3375 (2020). [CrossRef]  

12. M. Moralis-Pegios, S. Pitris, T. Alexoudi, N. Terzenidis, H. Ramon, J. Lambrecht, J. Bauwelinck, X. Yin, Y. Ban, and P. De Heyn, “4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly,” Opt. Express 28(4), 5706–5714 (2020). [CrossRef]  

13. R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014). [CrossRef]  

14. S. Pitris, M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, X. Yin, and J. Bauwelinck, “O-band silicon photonic transmitters for datacom and computercom interconnects,” J. Lightwave Technol. 37(19), 5140–5148 (2019). [CrossRef]  

15. S. Fathololoumi, D. Hui, S. Jadhav, J. Chen, K. Nguyen, M. Sakib, Z. Li, H. Mahalingam, S. Amiralizadeh, and N. N. Tang, “1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration,” J. Lightwave Technol. 39(4), 1155–1161 (2021). [CrossRef]  

16. J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

17. D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

18. X. Wu, C. Huang, K. Xu, W. Zhou, C. Shu, and H. K. Tsang, “3× 104 Gb/s single-λ interconnect of mode-division multiplexed network with a multicore fiber,” J. Lightwave Technol. 36(2), 318–324 (2018). [CrossRef]  

19. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014). [CrossRef]  

20. Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

21. D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020). [CrossRef]  

22. Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018). [CrossRef]  

23. J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018). [CrossRef]  

24. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014). [CrossRef]  

25. A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018). [CrossRef]  

26. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017). [CrossRef]  

27. H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018). [CrossRef]  

28. B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020). [CrossRef]  

29. A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

30. C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021). [CrossRef]  

31. J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in ECOC 2016; 42nd European Conference on Optical Communication, (VDE, 2016), 1-3.

32. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016). [CrossRef]  

33. W. Wang, L. Wang, and W. Zhang, “Advances in soliton microcomb generation,” Adv. Photonics 2(3), 034001 (2020). [CrossRef]  

34. H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017). [CrossRef]  

35. H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019). [CrossRef]  

36. H. Weng, A. A. Afridi, J. Liu, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, W. Guo, and J. F. Donegan, “Near-octave-spanning breathing soliton crystal in an AlN microresonator,” Opt. Lett. 46(14), 3436–3439 (2021). [CrossRef]  

37. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017). [CrossRef]  

38. G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019). [CrossRef]  

39. B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020). [CrossRef]  

40. M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019). [CrossRef]  

41. B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019). [CrossRef]  

42. X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: A review,” Applied Sciences 10(4), 1538 (2020). [CrossRef]  

References

  • View by:

  1. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [Crossref]
  2. Y. Yao, Z. Cheng, J. Dong, and X. Zhang, “Performance of integrated optical switches based on 2D materials and beyond,” Front. Optoelectron. 13(2), 129–138 (2020).
    [Crossref]
  3. Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019).
    [Crossref]
  4. M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res. 6(2), 109–116 (2018).
    [Crossref]
  5. J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
    [Crossref]
  6. M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.
  7. H. Zhang, M. Li, Y. Zhang, D. Zhang, Q. Liao, J. He, S. Hu, B. Zhang, L. Wang, X. Xiao, N. Qi, and S. Yu, “800  Gbit/s transmission over 1  km single-mode fiber using a four-channel silicon photonic transmitter,” Photon. Res. 8(11), 1776 (2020).
    [Crossref]
  8. T. Aoki, S. Sekiguchi, T. Simoyama, S. Tanaka, M. Nishizawa, N. Hatori, Y. Sobu, A. Sugama, T. Akiyama, and A. Hayakawa, “Low-crosstalk simultaneous 16-channel× 25 Gb/s operation of high-density silicon photonics optical transceiver,” J. Lightwave Technol. 36(5), 1262–1267 (2018).
    [Crossref]
  9. E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.
  10. R. Blum, “Integrated silicon photonics for high-volume data center applications,” in Optical Interconnects XX, (International Society for Optics and Photonics, 2020), 112860M.
  11. S. Pitris, C. Mitsolidou, M. Moralis-Pegios, K. Fotiadis, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, and X. Yin, “400 Gb/s silicon photonic transmitter and routing WDM technologies for glueless 8-socket Chip-to-Chip interconnects,” J. Lightwave Technol. 38(13), 3366–3375 (2020).
    [Crossref]
  12. M. Moralis-Pegios, S. Pitris, T. Alexoudi, N. Terzenidis, H. Ramon, J. Lambrecht, J. Bauwelinck, X. Yin, Y. Ban, and P. De Heyn, “4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly,” Opt. Express 28(4), 5706–5714 (2020).
    [Crossref]
  13. R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
    [Crossref]
  14. S. Pitris, M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, X. Yin, and J. Bauwelinck, “O-band silicon photonic transmitters for datacom and computercom interconnects,” J. Lightwave Technol. 37(19), 5140–5148 (2019).
    [Crossref]
  15. S. Fathololoumi, D. Hui, S. Jadhav, J. Chen, K. Nguyen, M. Sakib, Z. Li, H. Mahalingam, S. Amiralizadeh, and N. N. Tang, “1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration,” J. Lightwave Technol. 39(4), 1155–1161 (2021).
    [Crossref]
  16. J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.
  17. D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.
  18. X. Wu, C. Huang, K. Xu, W. Zhou, C. Shu, and H. K. Tsang, “3× 104 Gb/s single-λ interconnect of mode-division multiplexed network with a multicore fiber,” J. Lightwave Technol. 36(2), 318–324 (2018).
    [Crossref]
  19. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
    [Crossref]
  20. Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.
  21. D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
    [Crossref]
  22. Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
    [Crossref]
  23. J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
    [Crossref]
  24. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref]
  25. A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
    [Crossref]
  26. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
    [Crossref]
  27. H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
    [Crossref]
  28. B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
    [Crossref]
  29. A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).
  30. C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
    [Crossref]
  31. J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in ECOC 2016; 42nd European Conference on Optical Communication, (VDE, 2016), 1-3.
  32. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
    [Crossref]
  33. W. Wang, L. Wang, and W. Zhang, “Advances in soliton microcomb generation,” Adv. Photonics 2(3), 034001 (2020).
    [Crossref]
  34. H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
    [Crossref]
  35. H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
    [Crossref]
  36. H. Weng, A. A. Afridi, J. Liu, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, W. Guo, and J. F. Donegan, “Near-octave-spanning breathing soliton crystal in an AlN microresonator,” Opt. Lett. 46(14), 3436–3439 (2021).
    [Crossref]
  37. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
    [Crossref]
  38. G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
    [Crossref]
  39. B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
    [Crossref]
  40. M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
    [Crossref]
  41. B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019).
    [Crossref]
  42. X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: A review,” Applied Sciences 10(4), 1538 (2020).
    [Crossref]

2021 (3)

2020 (9)

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: A review,” Applied Sciences 10(4), 1538 (2020).
[Crossref]

W. Wang, L. Wang, and W. Zhang, “Advances in soliton microcomb generation,” Adv. Photonics 2(3), 034001 (2020).
[Crossref]

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

Y. Yao, Z. Cheng, J. Dong, and X. Zhang, “Performance of integrated optical switches based on 2D materials and beyond,” Front. Optoelectron. 13(2), 129–138 (2020).
[Crossref]

H. Zhang, M. Li, Y. Zhang, D. Zhang, Q. Liao, J. He, S. Hu, B. Zhang, L. Wang, X. Xiao, N. Qi, and S. Yu, “800  Gbit/s transmission over 1  km single-mode fiber using a four-channel silicon photonic transmitter,” Photon. Res. 8(11), 1776 (2020).
[Crossref]

S. Pitris, C. Mitsolidou, M. Moralis-Pegios, K. Fotiadis, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, and X. Yin, “400 Gb/s silicon photonic transmitter and routing WDM technologies for glueless 8-socket Chip-to-Chip interconnects,” J. Lightwave Technol. 38(13), 3366–3375 (2020).
[Crossref]

M. Moralis-Pegios, S. Pitris, T. Alexoudi, N. Terzenidis, H. Ramon, J. Lambrecht, J. Bauwelinck, X. Yin, Y. Ban, and P. De Heyn, “4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly,” Opt. Express 28(4), 5706–5714 (2020).
[Crossref]

2019 (7)

Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019).
[Crossref]

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
[Crossref]

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

S. Pitris, M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, X. Yin, and J. Bauwelinck, “O-band silicon photonic transmitters for datacom and computercom interconnects,” J. Lightwave Technol. 37(19), 5140–5148 (2019).
[Crossref]

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
[Crossref]

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019).
[Crossref]

2018 (7)

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications,” Photon. Res. 6(2), 109–116 (2018).
[Crossref]

T. Aoki, S. Sekiguchi, T. Simoyama, S. Tanaka, M. Nishizawa, N. Hatori, Y. Sobu, A. Sugama, T. Akiyama, and A. Hayakawa, “Low-crosstalk simultaneous 16-channel× 25 Gb/s operation of high-density silicon photonics optical transceiver,” J. Lightwave Technol. 36(5), 1262–1267 (2018).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

X. Wu, C. Huang, K. Xu, W. Zhou, C. Shu, and H. K. Tsang, “3× 104 Gb/s single-λ interconnect of mode-division multiplexed network with a multicore fiber,” J. Lightwave Technol. 36(2), 318–324 (2018).
[Crossref]

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

2017 (3)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

2016 (1)

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

2014 (3)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

2009 (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Afridi, A. A.

Akiyama, T.

Alexoudi, T.

Amiralizadeh, S.

Amma, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Anderson, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Andrekson, P. A.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Aoki, T.

Baehr-Jones, T.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Ban, Y.

Bauwelinck, J.

Bergman, K.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Bergmen, K.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

Billah, M. R.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Blaicher, M.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Blum, R.

R. Blum, “Integrated silicon photonics for high-volume data center applications,” in Optical Interconnects XX, (International Society for Optics and Photonics, 2020), 112860M.

Boes, A.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Brasch, V.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Byrd, M. J.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Chang, L.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Chen, C. P.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

Chen, J.

S. Fathololoumi, D. Hui, S. Jadhav, J. Chen, K. Nguyen, M. Sakib, Z. Li, H. Mahalingam, S. Amiralizadeh, and N. N. Tang, “1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration,” J. Lightwave Technol. 39(4), 1155–1161 (2021).
[Crossref]

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

Chen, S.

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

Chen, Z.

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Cheng, L.

X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: A review,” Applied Sciences 10(4), 1538 (2020).
[Crossref]

Cheng, Q.

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Cheng, Z.

Y. Yao, Z. Cheng, J. Dong, and X. Zhang, “Performance of integrated optical switches based on 2D materials and beyond,” Front. Optoelectron. 13(2), 129–138 (2020).
[Crossref]

Chu, S. T.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Cole, D. C.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Corcoran, B.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Cui, W.

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

Cunningham, J. E.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Da Ros, F.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

da Silva, E. P.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Dai, J.

Daudlin, S.

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

De Heyn, P.

Del’Haye, P.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

DeRose, C.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Diddams, S. A.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Dietrich, P.-I.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Ding, R.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Donegan, J. F.

Dong, J.

Y. Yao, Z. Cheng, J. Dong, and X. Zhang, “Performance of integrated optical switches based on 2D materials and beyond,” Front. Optoelectron. 13(2), 129–138 (2020).
[Crossref]

Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019).
[Crossref]

Dong, P.

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

Driscoll, J. B.

Dubé-Demers, R.

Duzevik, I.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Fathololoumi, S.

Fotiadis, K.

Fu, H.

X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: A review,” Applied Sciences 10(4), 1538 (2020).
[Crossref]

Fujikata, J.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Fülöp, A.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Gabrielli, L. H.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

Gaeta, A. L.

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019).
[Crossref]

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Gao, D.

Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019).
[Crossref]

Ge, D.

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Geiselmann, M.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Geng, Y.

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

Gopal, V.

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Gorodetsky, M. L.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Guo, H.

M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

Guo, J.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

Guo, W.

Guo, Y.

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Hatori, N.

Hayakawa, A.

He, J.

He, Y.

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Helgason, Ó. B.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Herr, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Hofmann, A.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Hoose, T.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Hosseini, E. S.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Hu, H.

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

Hu, S.

Huang, C.

Huang, S.-W.

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

Hui, D.

Ingerslev, K.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Jabon, K.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Jadhav, S.

Jang, J. K.

Jayatilleka, H.

Jeong, S.-H.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Ji, X.

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019).
[Crossref]

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Joshi, C.

Karpov, M.

M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Katamawari, R.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Kawashita, K.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Kim, B. Y.

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019).
[Crossref]

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Kim, K.

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

Kippenberg, T. J.

M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Kong, D.

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Kumar, R.

Lamb, E. S.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Lambrecht, J.

LaRochelle, S.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Leaird, D. E.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, G.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, J.

H. Weng, A. A. Afridi, J. Liu, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, W. Guo, and J. F. Donegan, “Near-octave-spanning breathing soliton crystal in an AlN microresonator,” Opt. Lett. 46(14), 3436–3439 (2021).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Li, M.

Li, Q.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Li, X.

Li, Z.

S. Fathololoumi, D. Hui, S. Jadhav, J. Chen, K. Nguyen, M. Sakib, Z. Li, H. Mahalingam, S. Amiralizadeh, and N. N. Tang, “1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration,” J. Lightwave Technol. 39(4), 1155–1161 (2021).
[Crossref]

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Liao, Q.

Lihachev, G.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Lim, A. E.-J.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Lin, J.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

Lipson, M.

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019).
[Crossref]

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Little, B. E.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Liu, G. N.

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in ECOC 2016; 42nd European Conference on Optical Communication, (VDE, 2016), 1-3.

Liu, J.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

H. Weng, A. A. Afridi, J. Liu, J. Li, J. Dai, X. Ma, Y. Zhang, Q. Lu, W. Guo, and J. F. Donegan, “Near-octave-spanning breathing soliton crystal in an AlN microresonator,” Opt. Lett. 46(14), 3436–3439 (2021).
[Crossref]

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
[Crossref]

Liu, L.

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in ECOC 2016; 42nd European Conference on Optical Communication, (VDE, 2016), 1-3.

Liu, T.

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Liu, Y.

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

Lo, G.-Q.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Lobanov, V. E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

Lorences-Riesgo, A.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Lu, L.

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

Lu, Q.

Lucas, E.

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

Luo, L. W.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

Ma, X.

Ma, Y.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Mahalingam, H.

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Mazur, M.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Merget, F.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Mitchell, A.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Mitsolidou, C.

Mizuno, T.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Moehrle, M.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Moralis-Pegios, M.

Morandotti, R.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Moss, B. R.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Mu, X.

X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: A review,” Applied Sciences 10(4), 1538 (2020).
[Crossref]

Nguyen, K.

Nguyen, T. G.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Nishizawa, M.

Noguchi, M.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Nooruzzaman, M.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Novick, A.

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Okawachi, Y.

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019).
[Crossref]

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Okayama, H.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Onawa, Y.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Ono, H.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Ophir, N.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

Oxenløwe, L. K.

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

Papp, S. B.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Peters, J.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

Pfeiffer, M. H.

M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

Pfeifle, J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Pitris, S.

Poitras, C. B.

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

Poulton, C. V.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Pu, M.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Qi, M.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in ECOC 2016; 42nd European Conference on Optical Communication, (VDE, 2016), 1-3.

Qi, N.

Qiu, K.

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

Ramon, H.

Riemensberger, J.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

Rizzo, A.

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

Rong, H.

Rusch, L.

Rusch, L. A.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Sakib, M.

Sasaki, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Sekiguchi, S.

Sepehrian, H.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Shen, B.

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Shi, W.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

Shimura, D.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Shiue, R.-J.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Shu, C.

Shubin, I.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Simoyama, T.

Sobu, Y.

Su, Z.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Sugama, A.

Sun, J.

Takahashi, S.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

Tan, M.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Tanaka, S.

Tang, N. N.

Terzenidis, N.

Tian, Y.

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Timurdogan, E.

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Troppenz, U.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Tsang, H. K.

Van Campenhout, J.

Wang, H.

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Wang, J.

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in ECOC 2016; 42nd European Conference on Optical Communication, (VDE, 2016), 1-3.

Wang, L.

Wang, P.-H.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Wang, R. N.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Wang, W.

W. Wang, L. Wang, and W. Zhang, “Advances in soliton microcomb generation,” Adv. Photonics 2(3), 034001 (2020).
[Crossref]

Wang, X.

Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019).
[Crossref]

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Weiner, A. M.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

Weng, H.

Weng, W.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
[Crossref]

Wolf, S.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Wong, C. W.

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

Wu, J.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Wu, S.

X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: A review,” Applied Sciences 10(4), 1538 (2020).
[Crossref]

Wu, X.

Wu, Z.

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Xiang, C.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Xiao, X.

Xie, W.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Xin, H.

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

Xu, K.

Xu, X.

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Xu, Y.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

Xuan, Y.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in ECOC 2016; 42nd European Conference on Optical Communication, (VDE, 2016), 1-3.

Xuan, Z.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Yang, Q.-F.

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Yang, Y.

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

Yao, Y.

Y. Yao, Z. Cheng, J. Dong, and X. Zhang, “Performance of integrated optical switches based on 2D materials and beyond,” Front. Optoelectron. 13(2), 129–138 (2020).
[Crossref]

Ye, F.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

Yin, X.

Yu, J.

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Yu, M.

Yu, S.

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

Zhang, B.

Zhang, D.

Zhang, H.

Zhang, W.

W. Wang, L. Wang, and W. Zhang, “Advances in soliton microcomb generation,” Adv. Photonics 2(3), 034001 (2020).
[Crossref]

Zhang, X.

Y. Yao, Z. Cheng, J. Dong, and X. Zhang, “Performance of integrated optical switches based on 2D materials and beyond,” Front. Optoelectron. 13(2), 129–138 (2020).
[Crossref]

Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019).
[Crossref]

Zhang, Y.

Zhang, Z.

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

Zhao, Y.

Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019).
[Crossref]

B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y. Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, “Turn-key, high-efficiency Kerr comb source,” Opt. Lett. 44(18), 4475–4478 (2019).
[Crossref]

Zheng, X.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Zhou, G.

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

Zhou, H.

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

Zhou, L.

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

Zhou, Q.

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

Zhou, W.

Zhu, J.

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

Zwickel, H.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Adv. Photonics (1)

W. Wang, L. Wang, and W. Zhang, “Advances in soliton microcomb generation,” Adv. Photonics 2(3), 034001 (2020).
[Crossref]

Applied Sciences (1)

X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: A review,” Applied Sciences 10(4), 1538 (2020).
[Crossref]

Front. Optoelectron. (2)

Y. Yao, Z. Cheng, J. Dong, and X. Zhang, “Performance of integrated optical switches based on 2D materials and beyond,” Front. Optoelectron. 13(2), 129–138 (2020).
[Crossref]

Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, “On-chip programmable pulse processor employing cascaded MZI-MRR structure,” Front. Optoelectron. 12(2), 148–156 (2019).
[Crossref]

IEEE Photon. J. (2)

R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E.-J. Lim, G.-Q. Lo, K. Bergman, and T. Baehr-Jones, “A compact low-power 320-Gb/s WDM transmitter based on silicon microrings,” IEEE Photon. J. 6(3), 1–8 (2014).
[Crossref]

G. Zhou, L. Zhou, Y. Guo, S. Chen, L. Lu, L. Liu, and J. Chen, “32-Gb/s OOK and 64-Gb/s PAM-4 modulation using a single-drive silicon Mach–Zehnder modulator with 2 V drive voltage,” IEEE Photon. J. 11(6), 1–10 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

J. Lightwave Technol. (7)

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “Intra-datacenter interconnects with a serialized silicon optical frequency comb modulator,” J. Lightwave Technol. 38(17), 4677–4682 (2020).
[Crossref]

S. Pitris, M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, X. Yin, and J. Bauwelinck, “O-band silicon photonic transmitters for datacom and computercom interconnects,” J. Lightwave Technol. 37(19), 5140–5148 (2019).
[Crossref]

S. Fathololoumi, D. Hui, S. Jadhav, J. Chen, K. Nguyen, M. Sakib, Z. Li, H. Mahalingam, S. Amiralizadeh, and N. N. Tang, “1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration,” J. Lightwave Technol. 39(4), 1155–1161 (2021).
[Crossref]

S. Pitris, C. Mitsolidou, M. Moralis-Pegios, K. Fotiadis, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, and X. Yin, “400 Gb/s silicon photonic transmitter and routing WDM technologies for glueless 8-socket Chip-to-Chip interconnects,” J. Lightwave Technol. 38(13), 3366–3375 (2020).
[Crossref]

X. Wu, C. Huang, K. Xu, W. Zhou, C. Shu, and H. K. Tsang, “3× 104 Gb/s single-λ interconnect of mode-division multiplexed network with a multicore fiber,” J. Lightwave Technol. 36(2), 318–324 (2018).
[Crossref]

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
[Crossref]

T. Aoki, S. Sekiguchi, T. Simoyama, S. Tanaka, M. Nishizawa, N. Hatori, Y. Sobu, A. Sugama, T. Akiyama, and A. Hayakawa, “Low-crosstalk simultaneous 16-channel× 25 Gb/s operation of high-density silicon photonics optical transceiver,” J. Lightwave Technol. 36(5), 1262–1267 (2018).
[Crossref]

Light Sci. Appl. (1)

H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, and C. W. Wong, “Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities,” Light Sci. Appl. 8(1), 1–10 (2019).
[Crossref]

Nat Commun (1)

L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat Commun 5(1), 3069 (2014).
[Crossref]

Nat. Commun. (2)

A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, and A. M. Weiner, “High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators,” Nat. Commun. 9(1), 1598 (2018).
[Crossref]

B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, and A. Mitchell, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nat. Commun. 11(1), 2568 (2020).
[Crossref]

Nat. Photonics (3)

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, and D. Hillerkuss, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, and T. Mizuno, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12(8), 469–473 (2018).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11(10), 671–676 (2017).
[Crossref]

Nat. Phys. (2)

M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15(10), 1071–1077 (2019).
[Crossref]

H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators,” Nat. Phys. 13(1), 94–102 (2017).
[Crossref]

Nature (2)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, and M. H. Anderson, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, and W. Xie, “Integrated turnkey soliton microcombs,” Nature 582(7812), 365–369 (2020).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Photon. Res. (2)

Proc. IEEE (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Science (2)

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351(6271), 357–360 (2016).
[Crossref]

C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, and J. Riemensberger, “Laser soliton microcombs heterogeneously integrated on silicon,” Science 373(6550), 99–103 (2021).
[Crossref]

Other (8)

J. Wang, Y. Xuan, M. Qi, L. Liu, and G. N. Liu, “Ultra-broadband integrated four-channel mode-division-multiplexing based on tapered mode-evolution couplers,” in ECOC 2016; 42nd European Conference on Optical Communication, (VDE, 2016), 1-3.

A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, and A. L. Gaeta, “Integrated Kerr frequency comb-driven silicon photonic transmitter,” arXiv preprint arXiv:2109.10297 (2021).

E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, and I. Duzevik, “400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), T3H. 2.

R. Blum, “Integrated silicon photonics for high-volume data center applications,” in Optical Interconnects XX, (International Society for Optics and Photonics, 2020), 112860M.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, and A. Hofmann, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), Th5D. 6.

Z. Wu, J. Li, Y. Tian, D. Ge, J. Zhu, Y. Zhang, J. Yu, Z. Li, Z. Chen, and Y. He, “3× 4× 10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection,” in Optical Fiber Communication Conference, (Optical Society of America, 2018), W4J. 3.

J. Fujikata, M. Noguchi, S.-H. Jeong, Y. Onawa, D. Shimura, K. Kawashita, R. Katamawari, H. Okayama, S. Takahashi, and H. Ono, “High-Speed and 16 λ-WDM Operation of Ge/Si Electro-Absorption Modulator for C-band Spectral Regime,” in2020 Optical Fiber Communications Conference and Exhibition (OFC), (IEEE, 2020), 1-3.

D. Kong, H. Xin, K. Kim, Y. Liu, L. K. Oxenløwe, P. Dong, and H. Hu, “300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator,” in Optical Fiber Communication Conference, (Optical Society of America, 2020), W2A. 1.

Data availability

The data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Architecture of WDM-MDM system.
Fig. 2.
Fig. 2. (a) Kerr frequency comb generation from a CW laser-driven Si3N4 micro-resonator. The inset shows the scanning electron microscope (SEM) image of the device. (b) Simulation results of the Kerr frequency comb at three stages: (I) primary comb, (II) chaotic MI comb, and (III) soliton crystal comb.
Fig. 3.
Fig. 3. (a) Schematic of the silicon WDM-MDM transmitter chip. The insets show the cross-section structures of the MZM and the mode multiplexer. (b) Microscope image of the fabricated chip.
Fig. 4.
Fig. 4. (a) Schematic of the experimental setup for generating the low-noise MI comb. EDFA: erbium-doped fiber amplifier; BPF: band-pass filter; NF: notch filter; OSA: optical spectrum analyzer; ESA: electrical spectrum analyzer. (b) Integrated dispersion of the Si3N4 micro-resonator. The dotted lines mark the AMXs. (c) Comb generation process during the scanning of the pump laser frequency: (I) primary comb, (II) chaotic MI comb, and (III) low-noise MI comb. The left column shows the optical spectra and the right column shows the corresponding low-frequency electrical spectra of a single comb line. The asterisks refer to the wavelengths used in the transmitter. The inserted diagram shows the optical transmission power trace when the pump scans over a resonance.
Fig. 5.
Fig. 5. (a) Schematic structure of the mode (de)multiplexing test device. (b) Measured transmission spectra of the device.
Fig. 6.
Fig. 6. (a) Measured transmission spectrum of the coupled micro-rings. (b, c) Measured transmission spectra for (b) TE0 and (c) TE1 branches when three comb lines are filtered.
Fig. 7.
Fig. 7. (a) Optical power transmission versus reverse bias voltage on one PN junction. (b) EE-S11 responses of the MZM under several reverse bias voltages. (c) EO-S21 responses of the MZM and crosstalk between adjacent MZMs.
Fig. 8.
Fig. 8. Experimental setup for WDM-MDM system using the Si3N4 frequency comb. PC: polarization controller; EDFA: erbium-doped fiber amplifier; NF: notch filter; BPF: band-pass filter; PPG: pulse pattern generator; RF AMP: RF microwave amplifier; PD: photodiode; DCA: digital communication analyzer; BERT: Bit Error Rate Tester; The black lines indicate the optical paths. The blue lines indicate the electrical paths. The blue dotted lines indicate the BER test paths.
Fig. 9.
Fig. 9. (a) Eye diagrams and (b) BER curves of 25 Gb/s OOK signals under different wavelengths and modes.

Metrics