Abstract

Arrays of high-index dielectric nanoparticles supporting both electrical and magnetic resonances have gained increasing attention for their excellent light-trapping (LT) effects, thus greatly improving the performance of ultrathin solar cells. This work explores front-located, high-index dielectric subwavelength nanosphere arrays as an efficient and broadband LT structure patterned on top of an ultrathin perovskite solar cell (PSC) for a greatly enhanced absorption. Combined strong light scattering and anti-reflection properties achieved by optimized geometrical parameters of the LT structure lead to a broadband absorption enhancement in the ultrathin thickness of a photoactive layer (100 nm) yielding the short-circuit current density (Jsc) of 18.7 mA/cm2, which is 31.7% higher than that of a planar counterpart. Moreover, effects of the LT structure on far-field radiation patterns, scattering cross-sections, multipoles’ contributions, and asymmetry parameters along with the incidence angle and polarization dependence are investigated. The present strategy could be applied to diverse applications, such as other ultrathin or semitransparent solar cells, absorbers and photodetectors.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Organic-inorganic hybrid perovskite semiconductors have gained significant amount of attention for their potential as an excellent light absorbing material in various research areas including solar cells, light-emitting diodes and photodetectors [18]. The perovskite materials feature promising optoelectronic properties such as large absorption coefficient and cross section, long charge carrier diffusion length, high carrier mobility and tunable band gaps [1,913]. Such compelling properties of the perovskite materials enable the efficiency of perovskite solar cells (PSCs) to rise rapidly from 3.8% in 2009 to 25.6% in 2021 [14,15]. Great effort is also being applied to develop semitransparent PSCs for building-integrated photovoltaics (BIPVs) and highly efficient tandem cells where the PSCs are integrated with the other solar cells [1620]. Moreover, the PSCs can be fabricated by using low-temperature solution-processing methods, which can make them especially appealing for low-cost, lightweight and flexible PV devices, thereby potentially extending the range of possible applications, such as consumer-oriented portable and wearable electronics, solar-powered aerial vehicles, and biomedical monitoring [2126].

To realize the aforementioned applications, reducing the thickness of an active region in the PSCs is essential for attaining high optical transparency in the semitransparent PSCs or high mechanical flexibility in the flexible and lightweight PSCs. However, the light absorption is generally proportional to the thickness of the photoactive layer so the cell efficiency is significantly limited by the reduced film thickness. Therefore, it is necessary to increase an optical path length where light travels in the photoactive layer combined with light-trapping (LT) schemes and thus increase the optical absorption associated with the photocurrent. Moreover, exploiting the LT allows manufacturing costs to be reduced for a given photoactive region thickness and open circuit voltage (Voc) to be improved since photogenerated charge carriers do not have to diffuse as far before the collection yielding reduced recombination losses. A variety of the LT approaches to enhance the performance of the PSCs have been demonstrated based on textured perovskite absorbers and substrates, graded-refractive-index materials, plasmonic nanoparticles, surface plasmon resonances in subwavelength gratings, dielectric nanospheres embedded into the mesoporous layer, and microlens and prism arrays [2739]. However, it is challenging to create such structures, and also directly structuring the photoactive layer increases both a surface roughness and a defect density, which can significantly degrade the electrical performance of the PSCs.

In this work, we investigate an effect of the Mie scattering by front-sided arrays of nanospheres on the absorption in the photoactive layer of the ultrathin PSCs. The results exhibit that markedly enhanced absorptions over a broad wavelength range can be achieved when the subwavelength array of high-index dielectric nanospheres is conformally coated with a low-index dielectric layer with the optimized diameter, spacing and thickness, resulting in the short-circuit current density (Jsc) increased from 14.2 mA/cm2 to 18.7 mA/cm2 for the PSCs with the 100 nm-thick perovskite photoactive layer. Physically thin but optically thick PSCs are enabled by an optical path length increase in the ultrathin photoactive layer contributing to the improved Jsc, which is confirmed by studying absorption distributions in the structure, far-field radiation patterns, scattering cross-sections, multipole resonance contributions, and asymmetry parameters. Lastly, we study how incident angles and polarizations affect the Jsc of the ultrathin PSCs. The presented LT structure can serve as a good encapsulation layer and can also be patterned at the final stage of a device fabrication minimizing charge carrier recombination and thus a degradation of the electrical performance. The described structural configuration can be easily adopted to improve the absorption property in various applications, such as other thin-film solar cells, photodiodes, sensors, and absorbers.

2. Results and discussion

Figure 1(a) shows a schematic diagram of a conventional planar PSC structure that is constructed from a front indium tin oxide (ITO, 100 nm) electrode, a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS, 40 nm) hole transport layer, an ultrathin methylammonium lead iodide (CH3NH3PBI3) perovskite (PVSK, 100 nm) photoactive layer, a phenyl-C61-butyric acid methyl ester (PCBM, 70 nm)/zinc oxide (ZnO, 50 nm) double electron transport layer, and an aluminum (Al, 100 nm) rear contact/mirror, which is a flat reference structure. Figure 1(b) depicts the schematic view of the conventional PSC structure integrated with the high-index dielectric nanosphere array (NSA) conformally coated with a thin low-index dielectric layer. The high-index dielectric NSA leads to the strong light scattering in the forward direction for an efficient LT effect without significant absorptions at visible frequencies, while the low-index conformal dielectric coating functions as an anti-reflection (AR) coating. Although metallic nanospheres can excite localized surface plasmon resonances that can remarkably boost the absorption efficiency in the photoactive layer, the absorption enhancement in the photoactive layer occurs in a narrow wavelength range and the absorption in the metallic nanospheres is not trivial particularly in the visible spectrum so the dielectric NSA is chosen for the LT in this study [40,41]. Titanium dioxide (TiO2) is selected as a material of the high-index NSA for the high scattering efficiency and silicon dioxide (SiO2) is chosen as the AR coating material. It is noted that the TiO2 NSA of the proposed LT structure can be created by a self-assembly process of the colloidal monolayer of the TiO2 nanoparticles or patterned by a nanoimprint lithography, and the conformal SiO2 layer can be deposited by using either sputtering or atomic layer deposition.

 figure: Fig. 1.

Fig. 1. Cross-sectional schematic diagrams of (a) a planar PSC structure and (b) the PSC structure incorporated with front-located TiO2 NSA overlayed with a thin SiO2 layer where the thickness of the PVSK photoactive layer is ultrathin (100 nm).

Download Full Size | PPT Slide | PDF

Three-dimensional (3D) simulations are carried out using the COMSOL Multiphysics software based on a finite element method to find the set of optimized geometrical parameters including a spacing (S), a diameter (D) of the TiO2 nanospheres, and a thickness (t) of the conformal SiO2 coating, which can contribute to the generation of the highest Jsc of the PSC structures with the ultrathin 100 nm-thick PVSK photoactive layer. The Jsc is regarded as a figure of merit to evaluate the performance of the LT effect from the TiO2 NSA conformally coated with the SiO2 AR coating (In the following, we refer to this LT structure as TiO2/SiO2 NSA).

Refractive index (n) and extinction coefficient (k) values for the PEDOT:PSS, PVSK, and PCBM, which are measured by using a spectroscopic ellipsometer (VASE, J. A. Woollam), are provided in Fig. 2, along with complex refractive indices of TiO2, SiO2, ITO, ZnO, and Al obtained from a website (https://refractiveindex.info).

 figure: Fig. 2.

Fig. 2. Refractive index (n) and extinction coefficient (k) spectra of (a) TiO2, (b) SiO2, (c) ITO, (d) PEDOT:PSS, (e) PVSK, (f) PCBM, (g) ZnO, and (h) Al.

Download Full Size | PPT Slide | PDF

Geometrical parameters of the LT structure need to be optimized to achieve a maximum Jsc, which is done through a parameter sweep. In Figs. 3(a) – (d), calculated 2D contour plots of the Jsc as a function of S and D with thicknesses of the conformal SiO2 coating of 0, 25, 50, and 75 nm are exhibited. By integrating the absorption spectrum in the PVSK photoactive layer, convoluted with the AM1.5 solar radiation spectrum, along the wavelength range from 300 nm to 900 nm, the Jsc can be calculated:

$${J_{SC}} = \mathop \smallint \nolimits_{300\; nm}^{900\; nm} \frac{{e\lambda }}{{hc}}QE(\lambda ){I_{AM1.5}}(\lambda )d\lambda $$
where e, λ, h, c, and IAM1.5(λ) are electron charge, wavelength, Plank constant, light velocity in free space, and solar power spectrum at AM1.5, respectively. An internal quantum efficiency is assumed to be equal to one, suggesting that the absorption spectrum in the photoactive layer directly corresponds to the quantum efficiency (QE(λ)). Maximum Jsc values of 16.5 mA/cm2 with S of 280 nm and D of 240 nm, 17.7 mA/cm2 with S of 240 nm and D of 220 nm, 18.5 mA/cm2 with S of 200 nm and D of 220 nm, and 18.7 mA/cm2 with S of 160 nm and D of 220 nm are achieved when t is equal to 0, 25, 50, 75 nm, respectively, implying that the maximum Jsc can be achieved when D is designed to be 220 nm regardless of t when applying the AR coating. It is noted that the Jsc value starts to decrease when t is greater than 75 nm from the calculation. Hence the optimized values of S of the TiO2 NSA and t of the conformal SiO2 coating can now be found by computing the Jsc with D of the TiO2 nanospheres fixed at 220 nm, which is given in Fig. 4(a) presenting that the maximal Jsc value (18.7 mA/cm2) can be attained from the LT structure with S of 160 nm, D of 220 nm, and t of 75 nm. In Fig. 4(b), simulated absorption spectra in the PVSK photoactive layer of the flat PSC structure (black), the PSC structure with the TiO2 NSA (blue), and the PSC structure with the TiO2/SiO2 NSA (red) are depicted. For the flat PSC structure, two peaks in the absorption spectrum appear at 395 nm and 620 nm, which are attributed to the Fabry-Perot resonances.

 figure: Fig. 3.

Fig. 3. Calculated 2D contour plots of the Jsc as a function of S of the TiO2 NSA and D of the TiO2 nanospheres with the conformal SiO2 coating thickness of (a) 0 nm, (b) 25 nm, (c) 50 nm, and (d) 75 nm.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. (a) Calculated 2D contour plot of the Jsc as a function of S of the TiO2 NSA and t of the conformal SiO2 coating with D of the TiO2 nanosphere fixed at 220 nm. (b) Simulated absorption spectra in the PVSK photoactive layer for the planar PSC structure (black) integrated with TiO2 NSA (blue) and TiO2/SiO2 NSA (red). (c) Calculated Jsc values as a function of the thickness of the PVSK photoactive layer for the planar PSC structure along with the Jsc obtained from the flat PSC structure with the 100 nm-thick PVSK layer after the integration of the TiO2 NSA (blue triangle) and TiO2/SiO2 NSA LT structures (blue circle).

Download Full Size | PPT Slide | PDF

The presence of the two peaks causes a deep valley in the absorption spectrum at 535 nm to occur between the two peaks, which significantly limits the performance of the PSC. By introducing the TiO2 NSA into the planar PSC structure, the optical path length in the photoactive layer is prolonged by the light scattering in the forward direction yielding a broadband absorption enhancement between the two peaks with the slightly mitigated absorption at 395 nm and 620 nm, which is observed in a previous report [42]. The maximum Jsc of 16.5 mA/cm2 is achieved from the TiO2-NSA-integrated PSC structure at S = 280 nm and D = 240 nm without the conformal dielectric coating, with the improvement of 16.2% as compared with 14.2 mA/cm2 attained from the planar PSC structure. Adding the conformal AR coating with the optimal thickness to the TiO2-NSA-integrated PSC structure further improves the absorption in the PVSK photoactive layer over a broad wavelength range by reducing the reflection loss, thus achieving the Jsc of 18.7 mA/cm2 corresponding to the enhancement of 31.7% compared to the planar PSC structure. Since the absorption of the TiO2 NSA and the front ITO contact in the wavelengths shorter than 400 nm is high, there is a trivial contribution to the Jsc in this wavelength regime. It is important to note that such absorption losses in the shorter wavelength region can indeed be beneficial for achieving the stable PSCs yielding the longer lifetime, which is attributed to the fact that the performance of the PSCs is noticeably degraded by the constant ultraviolet illumination. Figure 4(c) exhibits the Jsc of the flat PSC structure as a function of the thickness of the PVSK photoactive layer. The Jsc of the TiO2-NSA-integrated PSC structure with the 100 nm-thick PVSK layer is comparable to that of the flat PSC structure with the 200 nm-thick PVSK layer (16.4 mA/cm2), and the Jsc of TiO2/SiO2-NSA-integrated PSC structure with the 100 nm-thick PVSK layer is found to be similar to that of the flat PSC structure with the 250 nm-thick PVSK layer (18.3 mA/cm2). This implies that the thickness of the PVSK photoactive layer can be markedly reduced with the help of the LT effect by the integration of the TiO2/SiO2 NSA, which is greatly beneficial for the ultra-light and ultra-flexible or the semitransparent PSCs with high efficiency. Although we are mainly concerned with the optics rather than the electrical properties of the PSCs, the overall power conversion efficiency (PCE) can be roughly estimated by using 0.96 of Voc and 0.757 of FF in a previous work yielding 13.59% of PCE [43].

To explore a better coupling of light into the PVSK photoactive layer by the TiO2/SiO2 NSA, the absorption profiles in each layer of the PSC structures without and with the TiO2/SiO2 NSA at representative wavelengths of 550 nm and 705 nm are provided in Figs. 5(a) and (b). The absorption at a specific wavelength is calculated by carrying out a volume integral of the absorption density (pabs) corresponding to the absorbed power per unit volume (${P_{abs}} = \frac{1}{2}\omega \varepsilon ^{\prime\prime}{|E |^2}$ where $\omega $ is the angular frequency, $\varepsilon ^{\prime\prime}$ is the imaginary part of the permittivity of the material, and ${|E |^2}$ is the electric field intensity) normalized by the light source, which can be expressed as:

$$Absorption(\lambda )= \smallint {p_{abs}}(\lambda )dV$$

 figure: Fig. 5.

Fig. 5. Absorption distributions into the PSC structures without (left) and with (right) TiO2/SiO2 NSA at (a) 550 nm and (b) 705 nm.

Download Full Size | PPT Slide | PDF

As can be seen from Fig. 5(a), the absorption in the thin PVSK photoactive layer is significantly enhanced with the help of the TiO2/SiO2 NSA at 550 nm, whereas the absorption in the other layers is trivial compared to the photoactive layer.

Since the forward scattering dominantly occurs in all directions at 550 nm, the TiO2/SiO2 NSA functions as a lens to highly focus incident light into the transparent ITO layer and then defocus light in the ultrathin PVSK photoactive layer. This can increase the optical path length in the photoactive layer yielding the light absorption enhancement. Since the extinction coefficient of the PVSK material decreases with increasing the wavelength (see Fig. 2(e)), the absorption in the photoactive layer at 705 nm is highly limited as shown in the left of Fig. 5(b). Such reduced absorptions in the longer wavelength region can be remarkably improved by the excellent LT effect of the TiO2/SiO2 NSA that supports Mie resonances yielding the better light coupling into the photoactive layer. This is ascribed to the strong far-field forward-scattering arising from high optical density of states, leading to the increase in the optical path length in the photoactive layer by redirecting the normally incident light along more horizontal directions. In addition to the aforementioned strong forward-scattering of light from the resonant Mie scattering, the AR effect due to a better index matching and a graded refractive index profile contributes to the absorption enhancements in the photoactive layer. It is noteworthy that the scattering for the LT effect may be further improved by finding an optimized shape or a refractive index combination of the TiO2/SiO2 NSA, which is beyond the scope of this work. It is also worth mentioning that the total (direct + diffuse) transmission obtained from the planar PSC structure with the TiO2/SiO2 NSA is overall lower than that attained from the planar PSC structure without the TiO2/SiO2 NSA, when illuminated from the bottom portion of the cell. This suggests that the light reflected from the back Al contact is not guided forwardly to escape outside the cell through the TiO2/SiO2 NSA, which could be attributed to the fact that the TiO2/SiO2 NSA was optimally designed for the light illumination from the top side of the PSC structure. The conformal SiO2 layer can function as the efficient anti-reflection (AR) coating when illuminated from the air as the refractive index of SiO2 (n = 1.47) is close to the optimal index for the AR coating ($\sqrt {{n_{air}}{n_{TiO2}}} = \sqrt {1 \times 2.40} \approx 1.55$), but cannot function as the efficient AR coating when illuminated from the bottom side of the cell due to the index mismatch ($\sqrt {{n_{ITO}}{n_{TiO2}}} = \sqrt {1.81 \times 2.40} \approx 2.08$).

Figures 6(a) and (b) exhibit spectra of the scattering cross-section (${\sigma _{sca}}$) and the corresponding multipole decompositions calculated for the TiO2 nanosphere with D of 240 nm in air and for a core-shell nanosphere structure consisting of an inner TiO2 nanosphere (D = 220 nm) coated with the thin SiO2 layer (t = 75 nm), respectively. Since more light is scattered in the forward direction with increasing the size of the nanoparticle according to the Mie theory, adding a conformal dielectric layer to the original nanoparticle basically increases the size of the overall nanoparticle thus allowing more forward light scattering to occurs. In addition, the conformal coating layer refracts incident light, thus resulting in a large scattering cross-section as compared to the single nanoparticle as depicted in inset images in Figs. 6(a) and (b). Peaks of the electric dipole (ED), magnetic dipole (MD), electric quadrupole (EQ), and magnetic quadrupole (MQ) shift toward the longer wavelength region with increasing the diameter and the gap of the nanoparticles. It is well-known that the ED resonance is broadened and shifted toward the longer wavelength region while the shift in the MD resonance is trivial but the broadening still occurs when the spherical particles are surrounded by any materials as compared to the particles in vacuum according to the Mie theory. The strategy here is to exploit a relative sensitivity of the electric resonant modes with respect to the refractive index of the surrounding medium as compared to the magnetic resonances. The ED resonance shifts from 510 nm to 640 nm and the EQ resonance moves from 395 nm to 440 nm, whereas the position of the MD resonance is shifted from 605 nm to 640 nm and the MQ resonance shifts from 450 nm to 460 nm, after applying the conformal SiO2 coating to the TiO2 nanosphere. The ED (EQ) overlaps with the MD (MQ) leading to the enhanced scattering as revealed in Figs. 6(a) and (b).

 figure: Fig. 6.

Fig. 6. Scattering cross-sections and the corresponding multipoles’ contributions for (a) the TiO2 nanosphere with D of 240 nm in air and (b) the TiO2/SiO2 nanosphere with D of 220 nm and t of 75 nm in air. (c) Asymmetry parameters calculated for the TiO2 nanosphere (blue) and TiO2/SiO2 nanosphere (red).

Download Full Size | PPT Slide | PDF

Since the EQ resonance approaches the MQ resonance with the conformal 75 nm-thick SiO2 coating, a pronounced and broadened peak at 470 nm occurs in ${\sigma _{sca}}$, which significantly enhance the light scattering in the forward direction and thus the absorption in the PVSK photoactive layer as depicted in Fig. 4(b).

The strong scattering property at 640 nm is due to the combined ED and MD resonances, which is responsible for enhancing the absorption in the photoactive layer at the longer wavelength region. By choosing a proper thickness of the conformal SiO2 coating, ${\sigma _{sca}}$ of the TiO2 nanosphere is greatly enhanced over a broad wavelength range, which are highly beneficial for the efficient LT effect by the prominent light scattering property. The scattering cross-sections for the ED (${\sigma _{ED}}$), MD (${\sigma _{MD}}$), EQ (${\sigma _{EQ}}$), and MQ (${\sigma _{MQ}}$) are calculated by using the following equations:

$${\sigma _{ED}} = \frac{{k_{0}^{4}}}{{6\pi {\varepsilon _{0}^{2}}{E}_{0}^{2}}}\mathop \sum \nolimits_\alpha \; {|{{p_\alpha }} |^2}$$
$${\sigma _{MD}} = \frac{{k_{0}^{4}\varepsilon {\mu _0}}}{{6\pi {\varepsilon _{0}}E_{0}^{2}}}\mathop \sum \nolimits_\alpha \; {|{{m_\alpha }} |^2}$$
$${\sigma _{EQ}} = \frac{{k_{0}^{6}\varepsilon }}{{720\pi \; \varepsilon _{0}^{2} E_0^{2}}}\mathop \sum \nolimits_{\alpha \beta }\; {|{{Q_{\alpha \beta }}} |^2}$$
$${\sigma _{MQ}} = \frac{{k_{0}^{6}{\varepsilon ^{2}}{\mu _0}}}{{80\pi {\varepsilon _0}E_{0}^{2}}} \mathop \sum \nolimits_{\alpha \beta }\; {|{{M_{\alpha \beta }}} |^2}$$
where ${p_{\alpha} } = \mathop \smallint \nolimits_{{V}} \{ {j_{0}}({kr^{\prime}} ){P_{\alpha} }({r^{\prime}} )+ \frac{{3{k^{2}}{j_{2}}({kr^{\prime}} )}}{{2{{({kr^{\prime}} )}^2}}}\left[ {({\overrightarrow {r^{\prime}} , \overrightarrow {P({r^{\prime}} )} } )r_{\alpha}^{\prime} - \frac{1}{3}{r{^{\prime 2}}}{P_{\alpha} }} \right]\} dV$, ${m_\alpha } = \frac{{3\omega }}{{2i}}\mathop \smallint \nolimits_{{V}}\{ {\frac{{{j_{1}}({kr^{\prime}} )}}{{kr^{\prime}}}[{\overrightarrow {r^{\prime}}}}$ ${{\times \overrightarrow {P({\overrightarrow {r^{\prime}} } )} } ], \hat{\alpha }} \}dV$, ${Q_{\alpha \beta }} = 3\mathop \smallint \nolimits_{{V}} \{ {\frac{{{j_{1}}({kr^{\prime}} )}}{{kr^{\prime}}}[{3({r_{\alpha}^{\prime}{P_{\beta} }({r^{\prime}} )+ {P_{\alpha} }({r^{\prime}} )r_{\beta}^{\prime}} )- 2({\overrightarrow {r^{\prime}} , \overrightarrow {P({r^{\prime}} )} } ), {\delta_{\alpha \beta }}} ]}+ {\frac{{2{k^{2}}{j_{3}}({kr^{\prime}} )}}{{{{({kr^{\prime}} )}^3}}}}$ ${[{5r_\alpha^{\prime}r_\beta^{\prime}({\overrightarrow {r^{\prime}} , \overrightarrow {P({r^{\prime}} )} } )- ({r_\alpha^{\prime}{P_\beta }({r^{\prime}} )+}}}$ ${{{P_\alpha }({r^{\prime}} )r_\beta^{\prime}} ){r^{^{\prime}2}}- {r^{^{\prime}2}}({\overrightarrow {r^{\prime}} , \overrightarrow {P({r^{\prime}} )} } ){\delta_{\alpha \beta }}} ] \}dV$, and ${M_{\alpha \beta }} = \frac{{15\omega }}{i}\mathop \smallint \nolimits_{{V}} \{ {\frac{{{j_2}({kr^{\prime}} )}}{{{{({kr^{\prime}} )}^2}}}}$ ${[r_\alpha^{\prime}({\overrightarrow {r^{\prime}} \times \overrightarrow {P({r^{\prime}} )} } ), \hat{\beta } + r_\beta^{\prime}({\overrightarrow {r^{\prime}} \times \overrightarrow {P({r^{\prime}} )} } ), \hat{\alpha }]} \}dV$ represent the ED, MD, EQ, and MQ momenta, respectively, $\alpha \; \textrm{and}\; \beta $ denote x, y, z, ${j_l}({kr^{\prime}} )$ is the lth order spherical Bessel function, $\varepsilon $ is a permittivity of surrounding medium, k is a wave number in the surrounding medium, k0 is a wave number in vacuum, $\omega $ is an angular frequency of incident light, V and S represent a volume and a surface of a scatterer particle, $\overrightarrow {P({r^{\prime}} )} $ is the polarization induced by an external electromagnetic field and ${P_\alpha }$ is a polarization value of $\alpha $ direction [44,45]. It is worth noting that geometry cross-sections for the TiO2 nanosphere and the TiO2/SiO2 nanosphere are 0.045 $\mu {m^2}$ and 0.108 $\mu {m^2}$, respectively. We also investigate the asymmetry parameter ($g = \mathop \smallint \nolimits_S\; {I_{sca}}\cos \theta \; dS/\mathop \smallint \nolimits_S\; {I_{sca}}\; dS$, where Isca is the irradiance of scattered light by scatterer function of solid angle and $\cos \theta $ represents the angle between incident light direction and scattered light direction), which is used to quantify the directivity of the light scattering, thus implying that the direction of the scattered power [46]. Figure 6(c) presents the spectra of the asymmetry parameter (g) calculated for the TiO2 nanosphere (blue) and TiO2/SiO2 nanosphere (red), exhibiting that high g values greater than 0.55 are achieved from 450 nm to 700 nm with the TiO2/SiO2 nanosphere LT structure, which suggests that most of the incident energy is scattered in the forward direction. As is seen from the figure, g obtained from the TiO2/SiO2 nanosphere is higher than g attained from the TiO2 nanosphere over the entire visible solar spectrum, which validates the high and broad scattering cross-section achieved from the TiO2/SiO2 nanosphere as observed in Figs. 6(a) and (b). It is worth mentioning that the total ${\sigma _{sca}}$ calculated by using $\mathop \smallint \nolimits_S\; {I_{sca}}\; dS/{I_{inc}}$ where Iinc is the irradiance of incident light agrees well with the sum of the multipoles. The multipole resonant contributions of the different core-shell nanoparticle structures were investigated in previous works [47,48].

Figures 7(a) and (b) describe far-field radiation patterns of the TiO2 nanosphere and the TiO2/SiO2 nanosphere at 550 nm and 705 nm, respectively, revealing that the relative far-field irradiance of the TiO2/SiO2 nanosphere is about twice higher than that of the TiO2 nanosphere with a greater scattering angle. Such an increased angle of the light scattering in the forward direction provides the noticeable optical path length enhancement in the PVSK photoactive layer, thereby contributing to the generation of the higher Jsc. The radiation patterns are resulting from the optical interference effect between the fields generated by the dipole and quadrupole multipolar moments, which can determine the direction of the light scattering.

 figure: Fig. 7.

Fig. 7. Radiation patterns of the TiO2 nanosphere with D of 240 nm (blue) and the TiO2/SiO2 nanosphere with D of 220 nm and t of 75 nm (red) calculated at (a) 550 nm and (b) 705 nm.

Download Full Size | PPT Slide | PDF

In Figs. 8(a) and (b), incident-angle-dependent Jsc values generated by the planar PSC (black) and the PSCs with TiO2 NSA (blue) and with TiO2/SiO2 NSA (red) for TE and TM polarizations are depicted. The Jsc for the three cases decreases with increasing the incident angles for TE polarization, presenting that the Jsc of 14.5 mA/cm2 obtained from the PSC structure with the integration of the TiO2/SiO2 NSA at 70° is still higher than that of 14.2 mA/cm2 attained from the flat PSC at normal incidence. It is noticed that a small Jsc reduction for angles varying between 0° and 70° is observed after incorporating the TiO2/SiO2 NSA (77.5%) as compared to the flat PSC (56.3%) for TE polarization. For TM polarization, the Jsc generated by the PSC integrated with the TiO2/SiO2 NSA LT structure is higher than that obtained from the flat PSC structure for the incident angles up to 54°.

 figure: Fig. 8.

Fig. 8. Calculated Jsc values as a function of incident angles for (a) TE and (b) TM polarizations.

Download Full Size | PPT Slide | PDF

3. Conclusion

In summary, we have demonstrated the absorption enhancement in the ultrathin PSC structure by the incorporation of the TiO2/SiO2 NSA LT structure. Strong scattering combined with the AR coating effect of the TiO2/SiO2 NSA with the optimized featured parameters allows ${\sigma _{sca}}$ to be enhanced and broadened so that incident light can be significantly absorbed in the ultrathin PVSK photoactive layer over a broad spectral range, thereby achieving the Jsc of 18.7 mA/cm2. The scattering cross-sections, the spectral multipole resonances, the asymmetry parameters, and the far-field radiation patterns are investigated displaying the enhanced forward scattering with the reduced backward scattering over a broad range of the wavelengths, which is responsible for the significant improvement of the absorption in the ultrathin PVSK layer. The approach described in this work could potentially extend the range of possible applications.

Funding

National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (2019R1F1A1062380, 2021R1F1A1061304);Research Grant of Kwangwoon University in 2021, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A2C2010342, 2020R1A4A1017915); Korea Evaluation Institute of Industrial Technology (KEIT) grant (No. 20010459).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

Data availability

Simulation data underlying the results presented in this paper may be obtained from the authors upon reasonable request.

References

1. M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014). [CrossRef]  

2. J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020). [CrossRef]  

3. G. E. Eperon, M. T. Hörantner, and H. J. Snaith, “Metal halide perovskite tandem and multiple-junction photovoltaics,” Nat. Rev. Chem. 1(12), 0095 (2017). [CrossRef]  

4. S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotech. 10(5), 391–402 (2015). [CrossRef]  

5. G. Pacchioni, “Highly efficient perovskite LEDs,” Nat. Rev. Mater. 6(2), 108 (2021). [CrossRef]  

6. Q. Van Le, H. W. Jang, and S. Y. Kim, “Recent Advances toward High-Efficiency Halide Perovskite Light-Emitting Diodes: Review and Perspective,” Small Methods 2(10), 1700419 (2018). [CrossRef]  

7. H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017). [CrossRef]  

8. M. Ahmadi, T. Wu, and B. Hu, “A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics,” Adv. Mater. 29(41), 1605242 (2017). [CrossRef]  

9. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015). [CrossRef]  

10. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015). [CrossRef]  

11. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013). [CrossRef]  

12. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014). [CrossRef]  

13. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013). [CrossRef]  

14. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009). [CrossRef]  

15. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021). [CrossRef]  

16. B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020). [CrossRef]  

17. K.-T. Lee, L. J. Guo, and H. J. Park, “Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells,” Molecules 21(4), 475 (2016). [CrossRef]  

18. Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018). [CrossRef]  

19. H. Li and W. Zhang, “Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment,” Chem. Rev. 120(18), 9835–9950 (2020). [CrossRef]  

20. M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater. 10(26), 1904102 (2020). [CrossRef]  

21. Y. Bai, X. Meng, and S. Yang, “Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells,” Adv. Energy Mater. 8(5), 1701883 (2018). [CrossRef]  

22. M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006). [CrossRef]  

23. S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014). [CrossRef]  

24. H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017). [CrossRef]  

25. M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015). [CrossRef]  

26. H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021). [CrossRef]  

27. A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016). [CrossRef]  

28. L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014). [CrossRef]  

29. M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017). [CrossRef]  

30. A. Tooghi, D. Fathi, and M. Eskandari, “Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate,” Sci. Rep. 10(1), 18699 (2020). [CrossRef]  

31. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007). [CrossRef]  

32. C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011). [CrossRef]  

33. Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017). [CrossRef]  

34. R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017). [CrossRef]  

35. A. A. Mohsen, M. Zahran, S. E. D. Habib, and N. K. Allam, “Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells,” Sci. Rep. 10(1), 6732 (2020). [CrossRef]  

36. M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016). [CrossRef]  

37. Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018). [CrossRef]  

38. A. Peer, R. Biswas, J.-M. Park, R. Shinar, and J. Shinar, “Light management in perovskite solar cells and organic LEDs with microlens arrays,” Opt. Express 25(9), 10704–10709 (2017). [CrossRef]  

39. D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016). [CrossRef]  

40. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef]  

41. A. Tooghi, D. Fathi, and M. Eskandari, “High-performance perovskite solar cell using photonic–plasmonic nanostructure,” Sci. Rep. 10(1), 11248 (2020). [CrossRef]  

42. M. Fukuda, K. T. Lee, J. Y. Lee, and L. J. Guo, “Optical Simulation of Periodic Surface Texturing on Ultrathin Amorphous Silicon Solar Cells,” IEEE J. Photovoltaics 4(6), 1337–1342 (2014). [CrossRef]  

43. C. Zuo and L. Ding, “Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells,” Adv. Energy Mater. 7(2), 1601193 (2017). [CrossRef]  

44. A. B. Evlyukhin and B. N. Chichkov, “Multipole decompositions for directional light scattering,” Phys. Rev. B 100(12), 125415 (2019). [CrossRef]  

45. R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018). [CrossRef]  

46. P. D. Terekhov, H. K. Shamkhi, E. A. Gurvitz, K. V. Baryshnikova, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Broadband forward scattering from dielectric cubic nanoantenna in lossless media,” Opt. Express 27(8), 10924–10935 (2019). [CrossRef]  

47. J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018). [CrossRef]  

48. R. Li, X. Zhou, M. Panmai, J. Xiang, H. Liu, M. Ouyang, H. Fan, Q. Dai, and Z. Wei, “Broadband zero backward scattering by all-dielectric core-shell nanoparticles,” Opt. Express 26(22), 28891–28901 (2018). [CrossRef]  

References

  • View by:

  1. M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
    [Crossref]
  2. J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020).
    [Crossref]
  3. G. E. Eperon, M. T. Hörantner, and H. J. Snaith, “Metal halide perovskite tandem and multiple-junction photovoltaics,” Nat. Rev. Chem. 1(12), 0095 (2017).
    [Crossref]
  4. S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotech. 10(5), 391–402 (2015).
    [Crossref]
  5. G. Pacchioni, “Highly efficient perovskite LEDs,” Nat. Rev. Mater. 6(2), 108 (2021).
    [Crossref]
  6. Q. Van Le, H. W. Jang, and S. Y. Kim, “Recent Advances toward High-Efficiency Halide Perovskite Light-Emitting Diodes: Review and Perspective,” Small Methods 2(10), 1700419 (2018).
    [Crossref]
  7. H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
    [Crossref]
  8. M. Ahmadi, T. Wu, and B. Hu, “A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics,” Adv. Mater. 29(41), 1605242 (2017).
    [Crossref]
  9. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
    [Crossref]
  10. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
    [Crossref]
  11. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
    [Crossref]
  12. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
    [Crossref]
  13. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013).
    [Crossref]
  14. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
    [Crossref]
  15. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
    [Crossref]
  16. B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020).
    [Crossref]
  17. K.-T. Lee, L. J. Guo, and H. J. Park, “Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells,” Molecules 21(4), 475 (2016).
    [Crossref]
  18. Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018).
    [Crossref]
  19. H. Li and W. Zhang, “Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment,” Chem. Rev. 120(18), 9835–9950 (2020).
    [Crossref]
  20. M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater. 10(26), 1904102 (2020).
    [Crossref]
  21. Y. Bai, X. Meng, and S. Yang, “Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells,” Adv. Energy Mater. 8(5), 1701883 (2018).
    [Crossref]
  22. M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
    [Crossref]
  23. S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
    [Crossref]
  24. H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
    [Crossref]
  25. M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
    [Crossref]
  26. H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
    [Crossref]
  27. A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
    [Crossref]
  28. L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
    [Crossref]
  29. M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
    [Crossref]
  30. A. Tooghi, D. Fathi, and M. Eskandari, “Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate,” Sci. Rep. 10(1), 18699 (2020).
    [Crossref]
  31. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
    [Crossref]
  32. C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
    [Crossref]
  33. Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
    [Crossref]
  34. R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
    [Crossref]
  35. A. A. Mohsen, M. Zahran, S. E. D. Habib, and N. K. Allam, “Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells,” Sci. Rep. 10(1), 6732 (2020).
    [Crossref]
  36. M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
    [Crossref]
  37. Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
    [Crossref]
  38. A. Peer, R. Biswas, J.-M. Park, R. Shinar, and J. Shinar, “Light management in perovskite solar cells and organic LEDs with microlens arrays,” Opt. Express 25(9), 10704–10709 (2017).
    [Crossref]
  39. D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
    [Crossref]
  40. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref]
  41. A. Tooghi, D. Fathi, and M. Eskandari, “High-performance perovskite solar cell using photonic–plasmonic nanostructure,” Sci. Rep. 10(1), 11248 (2020).
    [Crossref]
  42. M. Fukuda, K. T. Lee, J. Y. Lee, and L. J. Guo, “Optical Simulation of Periodic Surface Texturing on Ultrathin Amorphous Silicon Solar Cells,” IEEE J. Photovoltaics 4(6), 1337–1342 (2014).
    [Crossref]
  43. C. Zuo and L. Ding, “Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells,” Adv. Energy Mater. 7(2), 1601193 (2017).
    [Crossref]
  44. A. B. Evlyukhin and B. N. Chichkov, “Multipole decompositions for directional light scattering,” Phys. Rev. B 100(12), 125415 (2019).
    [Crossref]
  45. R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
    [Crossref]
  46. P. D. Terekhov, H. K. Shamkhi, E. A. Gurvitz, K. V. Baryshnikova, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Broadband forward scattering from dielectric cubic nanoantenna in lossless media,” Opt. Express 27(8), 10924–10935 (2019).
    [Crossref]
  47. J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
    [Crossref]
  48. R. Li, X. Zhou, M. Panmai, J. Xiang, H. Liu, M. Ouyang, H. Fan, Q. Dai, and Z. Wei, “Broadband zero backward scattering by all-dielectric core-shell nanoparticles,” Opt. Express 26(22), 28891–28901 (2018).
    [Crossref]

2021 (3)

G. Pacchioni, “Highly efficient perovskite LEDs,” Nat. Rev. Mater. 6(2), 108 (2021).
[Crossref]

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

2020 (7)

A. Tooghi, D. Fathi, and M. Eskandari, “Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate,” Sci. Rep. 10(1), 18699 (2020).
[Crossref]

A. A. Mohsen, M. Zahran, S. E. D. Habib, and N. K. Allam, “Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells,” Sci. Rep. 10(1), 6732 (2020).
[Crossref]

B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020).
[Crossref]

H. Li and W. Zhang, “Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment,” Chem. Rev. 120(18), 9835–9950 (2020).
[Crossref]

M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater. 10(26), 1904102 (2020).
[Crossref]

J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020).
[Crossref]

A. Tooghi, D. Fathi, and M. Eskandari, “High-performance perovskite solar cell using photonic–plasmonic nanostructure,” Sci. Rep. 10(1), 11248 (2020).
[Crossref]

2019 (2)

2018 (7)

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

R. Li, X. Zhou, M. Panmai, J. Xiang, H. Liu, M. Ouyang, H. Fan, Q. Dai, and Z. Wei, “Broadband zero backward scattering by all-dielectric core-shell nanoparticles,” Opt. Express 26(22), 28891–28901 (2018).
[Crossref]

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

Q. Van Le, H. W. Jang, and S. Y. Kim, “Recent Advances toward High-Efficiency Halide Perovskite Light-Emitting Diodes: Review and Perspective,” Small Methods 2(10), 1700419 (2018).
[Crossref]

Y. Bai, X. Meng, and S. Yang, “Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells,” Adv. Energy Mater. 8(5), 1701883 (2018).
[Crossref]

Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018).
[Crossref]

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

2017 (9)

A. Peer, R. Biswas, J.-M. Park, R. Shinar, and J. Shinar, “Light management in perovskite solar cells and organic LEDs with microlens arrays,” Opt. Express 25(9), 10704–10709 (2017).
[Crossref]

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
[Crossref]

M. Ahmadi, T. Wu, and B. Hu, “A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics,” Adv. Mater. 29(41), 1605242 (2017).
[Crossref]

G. E. Eperon, M. T. Hörantner, and H. J. Snaith, “Metal halide perovskite tandem and multiple-junction photovoltaics,” Nat. Rev. Chem. 1(12), 0095 (2017).
[Crossref]

C. Zuo and L. Ding, “Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells,” Adv. Energy Mater. 7(2), 1601193 (2017).
[Crossref]

2016 (4)

K.-T. Lee, L. J. Guo, and H. J. Park, “Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells,” Molecules 21(4), 475 (2016).
[Crossref]

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
[Crossref]

2015 (4)

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotech. 10(5), 391–402 (2015).
[Crossref]

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

2014 (5)

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
[Crossref]

M. Fukuda, K. T. Lee, J. Y. Lee, and L. J. Guo, “Optical Simulation of Periodic Surface Texturing on Ultrathin Amorphous Silicon Solar Cells,” IEEE J. Photovoltaics 4(6), 1337–1342 (2014).
[Crossref]

2013 (2)

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

2011 (1)

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

2009 (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

2007 (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

2006 (1)

M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
[Crossref]

Adam, G.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Adinolfi, V.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Ahlawat, P.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Ahmadi, M.

M. Ahmadi, T. Wu, and B. Hu, “A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics,” Adv. Mater. 29(41), 1605242 (2017).
[Crossref]

Alaee, R.

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

Alarousu, E.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Albrecht, S.

M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater. 10(26), 1904102 (2020).
[Crossref]

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Alcocer, M. J. P.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Allam, N. K.

A. A. Mohsen, M. Zahran, S. E. D. Habib, and N. K. Allam, “Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells,” Sci. Rep. 10(1), 6732 (2020).
[Crossref]

Apaydin, D. H.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Bach, U.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Bai, Y.

Y. Bai, X. Meng, and S. Yang, “Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells,” Adv. Energy Mater. 8(5), 1701883 (2018).
[Crossref]

Bakr, O. M.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Ballif, C.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Baryshnikova, K. V.

Battaglia, C.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Bauer, S.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Benesperi, I.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Biswas, R.

Buin, A.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Cao, L.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Charrière, M.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Chen, J.

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

Chen, L.

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Chen, P.

S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
[Crossref]

Chen, X.

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Chen, Y.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Chen, Z.

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Cheng, N.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

Cheng, Y.-B.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin and B. N. Chichkov, “Multipole decompositions for directional light scattering,” Phys. Rev. B 100(12), 125415 (2019).
[Crossref]

Choi, I. W.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Choi, S. J.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Chu, S.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Comin, R.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Cui, H.-J.

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
[Crossref]

Dai, Q.

Darwich, B. P.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Deng, J.

S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
[Crossref]

Deng, X.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Despeisse, M.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Ding, L.

C. Zuo and L. Ding, “Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells,” Adv. Energy Mater. 7(2), 1601193 (2017).
[Crossref]

Dong, Q.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Dowben, P. A.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Drack, M.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Duan, L.

B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020).
[Crossref]

Duffy, N. W.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Eickemeyer, F. T.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Elumalai, N. K.

Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018).
[Crossref]

Emsley, L.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Eperon, G. E.

G. E. Eperon, M. T. Hörantner, and H. J. Snaith, “Metal halide perovskite tandem and multiple-junction photovoltaics,” Nat. Rev. Chem. 1(12), 0095 (2017).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Escarré, J.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Eskandari, M.

A. Tooghi, D. Fathi, and M. Eskandari, “Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate,” Sci. Rep. 10(1), 18699 (2020).
[Crossref]

A. Tooghi, D. Fathi, and M. Eskandari, “High-performance perovskite solar cell using photonic–plasmonic nanostructure,” Sci. Rep. 10(1), 11248 (2020).
[Crossref]

Evlyukhin, A. B.

Fan, H.

Fang, Y.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Fathi, D.

A. Tooghi, D. Fathi, and M. Eskandari, “High-performance perovskite solar cell using photonic–plasmonic nanostructure,” Sci. Rep. 10(1), 11248 (2020).
[Crossref]

A. Tooghi, D. Fathi, and M. Eskandari, “Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate,” Sci. Rep. 10(1), 18699 (2020).
[Crossref]

Fernandez-Corbaton, I.

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

Fukuda, K.

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Fukuda, M.

M. Fukuda, K. T. Lee, J. Y. Lee, and L. J. Guo, “Optical Simulation of Periodic Surface Texturing on Ultrathin Amorphous Silicon Solar Cells,” IEEE J. Photovoltaics 4(6), 1337–1342 (2014).
[Crossref]

Ginting, R. T.

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

Glowacki, E. D.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Gong, Q.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Grätzel, M.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Green, M. A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Groiss, H.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Guo, L. J.

K.-T. Lee, L. J. Guo, and H. J. Park, “Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells,” Molecules 21(4), 475 (2016).
[Crossref]

M. Fukuda, K. T. Lee, J. Y. Lee, and L. J. Guo, “Optical Simulation of Periodic Surface Texturing on Ultrathin Amorphous Silicon Solar Cells,” IEEE J. Photovoltaics 4(6), 1337–1342 (2014).
[Crossref]

Gurvitz, E. A.

Habib, S. E. D.

A. A. Mohsen, M. Zahran, S. E. D. Habib, and N. K. Allam, “Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells,” Sci. Rep. 10(1), 6732 (2020).
[Crossref]

Hagfeldt, A.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Haug, F.-J.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Heo, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref]

Herz, L. M.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Ho-Baillie, A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Hoogland, ven-names>S.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Hope, M. A.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Hörantner, M. T.

G. E. Eperon, M. T. Hörantner, and H. J. Snaith, “Metal halide perovskite tandem and multiple-junction photovoltaics,” Nat. Rev. Chem. 1(12), 0095 (2017).
[Crossref]

Hou, G.-J.

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
[Crossref]

Hou, X.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Hu, B.

M. Ahmadi, T. Wu, and B. Hu, “A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics,” Adv. Mater. 29(41), 1605242 (2017).
[Crossref]

Huang, J.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Huang, S.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Huang, W.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Im, S. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref]

Iqbal, Y.

Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018).
[Crossref]

Jang, H. W.

Q. Van Le, H. W. Jang, and S. Y. Kim, “Recent Advances toward High-Efficiency Halide Perovskite Light-Emitting Diodes: Review and Perspective,” Small Methods 2(10), 1700419 (2018).
[Crossref]

Jay Guo, L.

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

Jeong, J.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Ji, C.

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

Jinno, H.

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Jo, Y.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Johnston, M. B.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref]

Jose, R.

Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018).
[Crossref]

Jošt, M.

M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater. 10(26), 1904102 (2020).
[Crossref]

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Jung, H. S.

J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020).
[Crossref]

Kaltenbrunner, M.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Kang, J.-W.

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

Karabchevsky, A.

Katsiev, K.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Kaur, S.

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

Kegelmann, L.

M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater. 10(26), 1904102 (2020).
[Crossref]

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Kim, D. H.

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
[Crossref]

Kim, D. S.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Kim, J. K.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Kim, J. Y.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020).
[Crossref]

Kim, J.-M.

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

Kim, M.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Kim, S. Y.

Q. Van Le, H. W. Jang, and S. Y. Kim, “Recent Advances toward High-Efficiency Halide Perovskite Light-Emitting Diodes: Review and Perspective,” Small Methods 2(10), 1700419 (2018).
[Crossref]

Koizumi, M.

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Kondamareddy, K. K.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

Kong, S.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

Korte, L.

M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater. 10(26), 1904102 (2020).
[Crossref]

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Krc, J.

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Lang, F.

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Lee, J. H.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

Lee, J. Y.

M. Fukuda, K. T. Lee, J. Y. Lee, and L. J. Guo, “Optical Simulation of Periodic Surface Texturing on Ultrathin Amorphous Silicon Solar Cells,” IEEE J. Photovoltaics 4(6), 1337–1342 (2014).
[Crossref]

Lee, J.-W.

J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020).
[Crossref]

Lee, K. T.

M. Fukuda, K. T. Lee, J. Y. Lee, and L. J. Guo, “Optical Simulation of Periodic Surface Texturing on Ultrathin Amorphous Silicon Solar Cells,” IEEE J. Photovoltaics 4(6), 1337–1342 (2014).
[Crossref]

Lee, K.-T.

K.-T. Lee, L. J. Guo, and H. J. Park, “Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells,” Molecules 21(4), 475 (2016).
[Crossref]

Lee, S. H.

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

Leijtens, T.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Leonat, L.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Li, H.

H. Li and W. Zhang, “Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment,” Chem. Rev. 120(18), 9835–9950 (2020).
[Crossref]

S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
[Crossref]

Li, R.

Li, W.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Li, Z.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Lim, D.-K.

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

Lin, S.-Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Lipovšek, B.

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Liu, H.

Liu, P.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

Liu, W.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Long, M.

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

Losovyj, Y.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Lu, H.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Luo, J.

B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020).
[Crossref]

Luo, Q.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Ma, Y.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Mandal, T. N.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref]

Menelaou, C.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Meng, X.

Y. Bai, X. Meng, and S. Yang, “Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells,” Adv. Energy Mater. 8(5), 1701883 (2018).
[Crossref]

Meyer, S.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Mishra, A.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Miyasaka, T.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Mohammed, O. F.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Mohsen, A. A.

A. A. Mohsen, M. Zahran, S. E. D. Habib, and N. K. Allam, “Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells,” Sci. Rep. 10(1), 6732 (2020).
[Crossref]

Mulligan, P.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Neher, D.

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Noh, J. H.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref]

Osaka, I.

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Ouyang, M.

Pacchioni, G.

G. Pacchioni, “Highly efficient perovskite LEDs,” Nat. Rev. Mater. 6(2), 108 (2021).
[Crossref]

Pan, S.

S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
[Crossref]

Panday, A.

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

Panmai, M.

Park, H. J.

K.-T. Lee, L. J. Guo, and H. J. Park, “Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells,” Molecules 21(4), 475 (2016).
[Crossref]

Park, J.-M.

Park, N.-G.

J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020).
[Crossref]

Park, S.

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Pascoe, A. R.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Peer, A.

Peng, H.

S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
[Crossref]

Petrozza, A.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Qi, F.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

Qiu, J.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Qiu, Y.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

Qu, B.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Rech, B.

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Rockstuhl, C.

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

Rothenberger, A.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Rothlisberger, U.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Saito, M.

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

Sargent, E. H.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Sariciftci, N. S.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Scharber, M. C.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Schubert, E. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Schubert, M. B.

M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
[Crossref]

Schubert, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Schwödiauer, R.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Seo, J.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Seok, S. I.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref]

Shalin, A. S.

Shamkhi, H. K.

Shao, Y.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Shi, B.

B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020).
[Crossref]

Shi, D.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Shin, H.

J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020).
[Crossref]

Shinar, J.

Shinar, R.

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Snaith, H. J.

G. E. Eperon, M. T. Hörantner, and H. J. Snaith, “Metal halide perovskite tandem and multiple-junction photovoltaics,” Nat. Rev. Chem. 1(12), 0095 (2017).
[Crossref]

S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotech. 10(5), 391–402 (2015).
[Crossref]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Söderström, K.

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Someya, T.

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Spiccia, L.

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Stranks, S. D.

S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotech. 10(5), 391–402 (2015).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Su, G.

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
[Crossref]

Suzuki, Y.

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Takimiya, K.

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Terekhov, P. D.

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Tooghi, A.

A. Tooghi, D. Fathi, and M. Eskandari, “High-performance perovskite solar cell using photonic–plasmonic nanostructure,” Sci. Rep. 10(1), 11248 (2020).
[Crossref]

A. Tooghi, D. Fathi, and M. Eskandari, “Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate,” Sci. Rep. 10(1), 18699 (2020).
[Crossref]

Topic, M.

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Uddin, A.

Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018).
[Crossref]

Van Le, Q.

Q. Van Le, H. W. Jang, and S. Y. Kim, “Recent Advances toward High-Efficiency Halide Perovskite Light-Emitting Diodes: Review and Perspective,” Small Methods 2(10), 1700419 (2018).
[Crossref]

Wali, Q.

Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018).
[Crossref]

Walker, B.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Wang, C.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

Wang, D.-L.

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
[Crossref]

Wang, H.

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
[Crossref]

Wang, S.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Wang, Z.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Wehrenfennig, C.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref]

Wei, Z.

Werner, J. H.

M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
[Crossref]

White, M. S.

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

Wolff, C. M.

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Wu, T.

M. Ahmadi, T. Wu, and B. Hu, “A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics,” Adv. Mater. 29(41), 1605242 (2017).
[Crossref]

Wu, Z.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Xiang, J.

Xiao, L.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Xiao, Y.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

Xu, J.

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

Xu, X.

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Xu, Y.

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

Yan, K.

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

Yan, Q.-B.

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
[Crossref]

Yang, S.

Y. Bai, X. Meng, and S. Yang, “Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells,” Adv. Energy Mater. 8(5), 1701883 (2018).
[Crossref]

Yang, Y.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Yang, Z.

S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
[Crossref]

Yokota, T.

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Yoon, Y. J.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Yuan, M.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Yukita, W.

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

Zahran, M.

A. A. Mohsen, M. Zahran, S. E. D. Habib, and N. K. Allam, “Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells,” Sci. Rep. 10(1), 6732 (2020).
[Crossref]

Zakeeruddin, S. M.

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Zeng, X.

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

Zhang, C.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Zhang, T.

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

Zhang, W.

H. Li and W. Zhang, “Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment,” Chem. Rev. 120(18), 9835–9950 (2020).
[Crossref]

Zhang, X.

B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

Zhao, X.-Z.

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

Zhao, Y.

B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020).
[Crossref]

Zheng, L.

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

Zhou, J.

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

Zhou, X.

Zhu, H.

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

Zhu, Z.-G.

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
[Crossref]

Zuo, C.

C. Zuo and L. Ding, “Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells,” Adv. Energy Mater. 7(2), 1601193 (2017).
[Crossref]

ACS Appl. Energy Mater. (1)

Y. Xiao, C. Wang, K. K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, and X.-Z. Zhao, “Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells,” ACS Appl. Energy Mater. 1, 5453–5462 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (2)

Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, and S. Huang, “Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(40), 34821–34832 (2017).
[Crossref]

R. T. Ginting, S. Kaur, D.-K. Lim, J.-M. Kim, J. H. Lee, S. H. Lee, and J.-W. Kang, “Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 9(41), 36111–36118 (2017).
[Crossref]

ACS Photonics (1)

M. Jošt, S. Albrecht, L. Kegelmann, C. M. Wolff, F. Lang, B. Lipovšek, J. Krč, L. Korte, D. Neher, B. Rech, and M. Topič, “Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells,” ACS Photonics 4(5), 1232–1239 (2017).
[Crossref]

Adv. Energy Mater. (3)

M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, “Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency,” Adv. Energy Mater. 10(26), 1904102 (2020).
[Crossref]

Y. Bai, X. Meng, and S. Yang, “Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells,” Adv. Energy Mater. 8(5), 1701883 (2018).
[Crossref]

C. Zuo and L. Ding, “Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells,” Adv. Energy Mater. 7(2), 1601193 (2017).
[Crossref]

Adv. Func. Mater. (1)

A. R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N. W. Duffy, L. Spiccia, U. Bach, and Y.-B. Cheng, “Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphology,” Adv. Func. Mater. 26(8), 1278–1285 (2016).
[Crossref]

Adv. Mater. (3)

M. Ahmadi, T. Wu, and B. Hu, “A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics,” Adv. Mater. 29(41), 1605242 (2017).
[Crossref]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref]

B. Shi, L. Duan, Y. Zhao, J. Luo, and X. Zhang, “Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications,” Adv. Mater. 32(3), 1806474 (2020).
[Crossref]

Angew. Chem. Int. Ed. (1)

S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, and H. Peng, “Wearable Solar Cells by Stacking Textile Electrodes,” Angew. Chem. Int. Ed. 53(24), 6110–6114 (2014).
[Crossref]

Chem. Rev. (2)

H. Li and W. Zhang, “Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment,” Chem. Rev. 120(18), 9835–9950 (2020).
[Crossref]

J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chem. Rev. 120(15), 7867–7918 (2020).
[Crossref]

Chem. Soc. Rev. (1)

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46(17), 5204–5236 (2017).
[Crossref]

IEEE J. Photovoltaics (1)

M. Fukuda, K. T. Lee, J. Y. Lee, and L. J. Guo, “Optical Simulation of Periodic Surface Texturing on Ultrathin Amorphous Silicon Solar Cells,” IEEE J. Photovoltaics 4(6), 1337–1342 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Mater. Today (1)

M. B. Schubert and J. H. Werner, “Flexible solar cells for clothing,” Mater. Today 9(6), 42–50 (2006).
[Crossref]

Molecules (1)

K.-T. Lee, L. J. Guo, and H. J. Park, “Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells,” Molecules 21(4), 475 (2016).
[Crossref]

Nano Lett. (1)

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref]

Nanoscale (2)

L. Zheng, Y. Ma, S. Chu, S. Wang, B. Qu, L. Xiao, Z. Chen, Q. Gong, Z. Wu, and X. Hou, “Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition,” Nanoscale 6(14), 8171–8176 (2014).
[Crossref]

M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan, and J. Xu, “Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection,” Nanoscale 8(12), 6290–6299 (2016).
[Crossref]

Nat Energy (1)

H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, and T. Someya, “Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications,” Nat Energy 2, 780–785 (2017).
[Crossref]

Nat. Commun. (1)

H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, and T. Someya, “Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes,” Nat. Commun. 12(1), 2234 (2021).
[Crossref]

Nat. Mater. (2)

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air,” Nat. Mater. 14(10), 1032–1039 (2015).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Nat. Nanotech. (1)

S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotech. 10(5), 391–402 (2015).
[Crossref]

Nat. Photonics (3)

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

C. Battaglia, J. Escarré, K. Söderström, M. Charrière, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics 5(9), 535–538 (2011).
[Crossref]

Nat. Rev. Chem. (1)

G. E. Eperon, M. T. Hörantner, and H. J. Snaith, “Metal halide perovskite tandem and multiple-junction photovoltaics,” Nat. Rev. Chem. 1(12), 0095 (2017).
[Crossref]

Nat. Rev. Mater. (1)

G. Pacchioni, “Highly efficient perovskite LEDs,” Nat. Rev. Mater. 6(2), 108 (2021).
[Crossref]

Nature (1)

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,” Nature 592(7854), 381–385 (2021).
[Crossref]

Opt. Commun. (1)

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

A. B. Evlyukhin and B. N. Chichkov, “Multipole decompositions for directional light scattering,” Phys. Rev. B 100(12), 125415 (2019).
[Crossref]

Phys. Rev. Lett. (1)

J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji, and L. Jay Guo, “Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles,” Phys. Rev. Lett. 120(25), 253902 (2018).
[Crossref]

Renew. Sustainable Energy Rev. (1)

Q. Wali, N. K. Elumalai, Y. Iqbal, A. Uddin, and R. Jose, “Tandem perovskite solar cells,” Renew. Sustainable Energy Rev. 84, 89–110 (2018).
[Crossref]

Sci. Rep. (4)

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Sci. Rep. 6(1), 18922 (2016).
[Crossref]

A. A. Mohsen, M. Zahran, S. E. D. Habib, and N. K. Allam, “Refractory plasmonics enabling 20% efficient lead-free perovskite solar cells,” Sci. Rep. 10(1), 6732 (2020).
[Crossref]

A. Tooghi, D. Fathi, and M. Eskandari, “Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate,” Sci. Rep. 10(1), 18699 (2020).
[Crossref]

A. Tooghi, D. Fathi, and M. Eskandari, “High-performance perovskite solar cell using photonic–plasmonic nanostructure,” Sci. Rep. 10(1), 11248 (2020).
[Crossref]

Science (3)

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, ven-names>S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science 347(6221), 519–522 (2015).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref]

Small Methods (1)

Q. Van Le, H. W. Jang, and S. Y. Kim, “Recent Advances toward High-Efficiency Halide Perovskite Light-Emitting Diodes: Review and Perspective,” Small Methods 2(10), 1700419 (2018).
[Crossref]

Data availability

Simulation data underlying the results presented in this paper may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Cross-sectional schematic diagrams of (a) a planar PSC structure and (b) the PSC structure incorporated with front-located TiO2 NSA overlayed with a thin SiO2 layer where the thickness of the PVSK photoactive layer is ultrathin (100 nm).
Fig. 2.
Fig. 2. Refractive index (n) and extinction coefficient (k) spectra of (a) TiO2, (b) SiO2, (c) ITO, (d) PEDOT:PSS, (e) PVSK, (f) PCBM, (g) ZnO, and (h) Al.
Fig. 3.
Fig. 3. Calculated 2D contour plots of the Jsc as a function of S of the TiO2 NSA and D of the TiO2 nanospheres with the conformal SiO2 coating thickness of (a) 0 nm, (b) 25 nm, (c) 50 nm, and (d) 75 nm.
Fig. 4.
Fig. 4. (a) Calculated 2D contour plot of the Jsc as a function of S of the TiO2 NSA and t of the conformal SiO2 coating with D of the TiO2 nanosphere fixed at 220 nm. (b) Simulated absorption spectra in the PVSK photoactive layer for the planar PSC structure (black) integrated with TiO2 NSA (blue) and TiO2/SiO2 NSA (red). (c) Calculated Jsc values as a function of the thickness of the PVSK photoactive layer for the planar PSC structure along with the Jsc obtained from the flat PSC structure with the 100 nm-thick PVSK layer after the integration of the TiO2 NSA (blue triangle) and TiO2/SiO2 NSA LT structures (blue circle).
Fig. 5.
Fig. 5. Absorption distributions into the PSC structures without (left) and with (right) TiO2/SiO2 NSA at (a) 550 nm and (b) 705 nm.
Fig. 6.
Fig. 6. Scattering cross-sections and the corresponding multipoles’ contributions for (a) the TiO2 nanosphere with D of 240 nm in air and (b) the TiO2/SiO2 nanosphere with D of 220 nm and t of 75 nm in air. (c) Asymmetry parameters calculated for the TiO2 nanosphere (blue) and TiO2/SiO2 nanosphere (red).
Fig. 7.
Fig. 7. Radiation patterns of the TiO2 nanosphere with D of 240 nm (blue) and the TiO2/SiO2 nanosphere with D of 220 nm and t of 75 nm (red) calculated at (a) 550 nm and (b) 705 nm.
Fig. 8.
Fig. 8. Calculated Jsc values as a function of incident angles for (a) TE and (b) TM polarizations.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J S C = 300 n m 900 n m e λ h c Q E ( λ ) I A M 1.5 ( λ ) d λ
A b s o r p t i o n ( λ ) = p a b s ( λ ) d V
σ E D = k 0 4 6 π ε 0 2 E 0 2 α | p α | 2
σ M D = k 0 4 ε μ 0 6 π ε 0 E 0 2 α | m α | 2
σ E Q = k 0 6 ε 720 π ε 0 2 E 0 2 α β | Q α β | 2
σ M Q = k 0 6 ε 2 μ 0 80 π ε 0 E 0 2 α β | M α β | 2