Abstract

Most reported metasurfaces operate in single propagation direction mode (either transmissive mode or reflective mode), which hamper practical application. Here, we proposed a bi-directional operation coding metasurface based on a phase change material of a vanadium dioxide (VO2) assisted metasurface. It can realize a dynamically invertible switch between the transmissive mode or reflective mode in the terahertz regime by changing the external ambient temperature. The proposed structure consists of a silicon column, polyimide dielectric substrate layer, and VO2 film bottom layer. When VO2 is in dielectric state, the designed metasurface possesses the functions of transmission beam splitting and deflection and generates a transmission vortex beam. When VO2 is in metallic state, the proposed metasurface exhibits many functions such as reflection beam splitting, deflection, radar scattering surface (RCS) reduction and reflection vortex beam generation. The proposed metasurface can solve transmissive and reflective bi-direction terahertz encoding regulation. This scheme provides a new method to realize multi-function terahertz devices.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In 2014, Cui et al. [1] put forward the concept of coding metasurface, which can regulate microwave flexibly. Then, coding metasurfaces have attracted extensive attention and extended to optical and terahertz region [2,3]. Recently, some kinds of metasurface-based devices have been designed such as planar polarizer [4], lense [5], hologram [6], and vortice [7]. According to transmission direction of electromagnetic wave, metasurface-based devices include reflective-mode coding metasurfaces [812] and transmissive-mode coding metasurfaces [1316]. Recently, Wu et al. [17] has designed a transmission-type coding metasurface to steer two symmetrical beams in the frequency range of 8.1–12.5 GHz. In 2019, Shao et al. [18] proposed a dielectric 2-bit transmission-coding metasurface with multi-functionalities. In 2020, Fu et al. [9] verified a 1-bit reflection coding metasurface based on the polarization conversion. Fang et al. [19] demonstrated an all-dielectric encoding metasurface by using cylinder microstructure. In 2021, Pan et al. [20] and Chen et al. [21] presented a multi-functional reflective coding metasurface for vortex beam manipulation and focusing. Zhao et al. [22] reported a transmissive encoding metasurface with three-layers C-shaped structure. We can find that most reported metasurfaces operates either reflective mode or transmissive mode. However, these reflection-type or transmission-type coding metasurfaces, can only control the electromagnetic wave in a single transmission direction, which severely hinder their application in terahertz wave system. Therefore, devices that can bidirectionally control terahertz waves have become an ideal pursuit. So far, only a few literatures have come up with a single structure combining these two types functionalities [23,24].

Vanadium dioxide (VO2), as a phase transition material, is widely used in active controllable devices due to having fast response under the external optical pumping, thermal control and electric field [2531]. In this work, we propose a switchable bi-direction metasurface based on VO2. Transmission and reflection types bi-direction terahertz regulation are integrated in a single coding metasurface and freely switches according to phase-transition characteristics of VO2 under different external ambient temperature. When VO2 is in dielectric state, the proposed structure exhibits as a transmissive mode coding metasurface. It realizes 1-bit coding regulation of the transmissive mode beam splitting at the frequency of 1.16THz and 2-bit coding regulation of the transmissive mode terahertz deflection and vortex beam generation. When VO2 is in metal state, the designed structure becomes a reflective mode coding metasurface. It displays 1-bit coding regulation of reflective mode beam splitting at the frequency of 0.76THz. At the same time, we can also find that it emerges reflective mode terahertz beam deflection and 2-bit coding vortex beam regulation. Our work explores a new method to realize bidirectional terahertz coding metasurface devices. It has great potential applications in terahertz sensing, spectroscopy, and high bit rate wireless communications.

2. Device structure and theoretical analysis

Figure 1(a) shows a three-dimensional schematic diagram of the transmissive and reflective mode function under terahertz wave normal incidence. It is composed of silicon (ɛ=11.9) column, polyimide (ɛ=3.5) dielectric layer and bottom vanadium dioxide film layer. The hexagonal silicon column is arranged in a square lattice with period of P=100 µm on the polyimide dielectric substrate. To demonstrate the validity of bi-directional multifunction coding metasurface, we suppose a general square coding metasurface configuration, which contains M×N equal-period unit cells. Figures 1(b) and 1(c) depict the schematic diagram of the coding particle and geometrical parameters. The height of the silicon column is 160 µm. The thickness of the VO2 and the polyimide are set as 0.2 µm and 15 µm, respectively. Other parameters of coding particles are obtained by using the commercial software of CST Microwave Studio parametric scanning simulation, as listed in Table 1. The VO2 permittivity in terahertz frequency domain can be given by [32]

$$\varepsilon (\omega ) = {\varepsilon _\infty } - \omega _p^2\frac{\sigma }{{{\sigma _0}}}/({\omega ^2} + i{\omega _d}\omega )$$
where ɛ=12, ωp=1.40×1015s−1, ωd=5.57×1013s−1, σ0=300000s/m. The conductivity of VO2 in the insulating and all metal states is 200 s/m and 200000 s/m, respectively.

 figure: Fig. 1.

Fig. 1. (a) Three-dimensional schematic of the proposed transmission and reflection bi-direction terahertz coding metasurface in a single structure, (b) Schematic diagram of the cording particle, (c) Top view and geometrical parameters of the proposed coding particle.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Metasurface particles and phase response vs. geometric parameters.

Figure 2 illustrates the transmissive mode and reflective mode curves of the coding metasurface unit cells. From Figs. 2(a) and 2(b), one can see that the terahertz wave transmission amplitude exceeds 0.8 and the phase difference between adjacent unit cells maintains 90° at frequency of 1.08 THz (see the pink color line in Fig. 2). Similarly, from Figs. 2(c) and 2(d), it can be found that the reflection amplitude is above 0.9 and the phase difference between adjacent unit cells also keeps 90° at 0.76 THz (see the pink color line in Fig. 2). The designed coding unit cells meet the conditions of reflective mode and transmissive mode for bi-direction terahertz encoding regulation. In addition, due to centrosymmetric coding particle, the proposed metasurface is polarization insensitive. We assume that polyimide layer with the thickness of 15 µm can be fabricated on 160 µm silicon wafer through spin coating. Then, a VO2 layer of 0.2 µm is deposited on polyimide, and finally process patterns on silicon by electron beam etching.

 figure: Fig. 2.

Fig. 2. (a)Transmission amplitude vs. frequency. (b) Transmission phase vs. frequency. (c) Reflection amplitude vs. frequency. (d) Reflection phase vs. frequency of the four kinds of digital coding particles under the normal incidence of terahertz wave.

Download Full Size | PPT Slide | PDF

According to the scattering theory, the far-field scattering function of the proposed digital metasurface can be expressed as [1,20]

$$f(\theta ,\varphi ) = {f_e}(\theta ,\varphi )\sum\limits_{m = 1}^M {_{}} \sum\limits_{n = 1}^N {\textrm{exp} \{ - i\{ \varphi (m,n) + K{D_x}\sin \theta (m - 1/2)\cos \varphi + K{D_y}(n - 1/2)\cos \varphi \sin \varphi \} \} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} }$$
where K is the propagation constant, θ and φ denote elevation and azimuth angles of an arbitrary direction, respectively. Encoding metasurface is composed of M×N coding particles. φ (m, n) is the transmission phase in the coding metasurface, Dx and Dy represent the length and width of the grid “0” or “1” coding particles, respectively. fe (θ, φ) is the direction function of the grid. Since the phase difference between “0” and “1” coding particles is π, the scattering characteristics of two adjacent coding elements offsets each other and the radiation characteristics of fe (θ, φ) equals to 0. Then, Eq. (2) can be simplified as
$$f(\theta ,\varphi ) = \sum\limits_{m = 1}^M {\textrm{exp} - i(K{D_x}(m - 1/2)\sin \theta \cos \theta + m\pi )} \sum\limits_{n = 1}^N {\textrm{exp} - i(K{D_y}(n - 1/2) + n\pi ){\kern 1pt} {\kern 1pt} }$$
According to Eq. (3), the maximum value of f (θ, φ) can be obtained as $\varphi \textrm{ = } \pm \arctan {D_x}/{D_y}\,\,\textrm{and}\,\,\varphi = \pi \pm \arctan {D_x}/{D_y}$, $\theta = \arcsin (\mathrm{\lambda }/{\Gamma })$, where λ is the corresponding wavelength of the terahertz operating frequency in free space, Γ is the gradient period length of the encoding metasurface.

3. Results and discussion

3.1 transmissive mode terahertz wave encoding regulation

At room temperature, VO2 is in dielectric state and the designed coding metasurface structure behaves for the terahertz transmissive mode manipulation. Firstly, “00” and “10” coding unit cells in Table 1 are used as “0” and “1” for 1-bit digital coding. The coding sequence “000111…” (see the insets in Fig. 3(a)) arranges periodically along x-axis direction and eight cycles in y-axis direction. The coding metasurface structure is composed of 24×24 unit cells with the encoding period Γ=600µm. Under the terahertz wave normal incidence, the designed coding metasurface realize the transmissive mode beam splitting, as shown in Fig. 3(a). Figure 3(b) depicts the normalized amplitude curve of transmissive beam splitting at the frequency of 1.08THz. It can be seen that the pitch angles of the two transmissive mode peaks are of 152° and 208° respectively. The deflection angle is of 28°, which is good consistent with the theoretical calculation result of θ= arcsin(λ/Γ) = 27.58°.

 figure: Fig. 3.

Fig. 3. (a) Three-dimensional far-field scattering patterns of the proposed 1-bit coding metasurface with the periodic digital code sequence “000111……” along x-axis direction under terahertz wave normal incidence at 1.08 THz. (b) Normalized transmitted energy amplitude diagram corresponding to (a) along x direction at the azimuth angle of 90° in the cartesian coordinate system.

Download Full Size | PPT Slide | PDF

Furthermore, a 1-bit chessboard arrangement coding metasurface structure is distributed periodically with the digital sequence of “000111…” in both x-axis and y-axis directions. Figures 4(a) and 4(b) present the three-dimensional far field and the normalized transmission amplitude curve of the coding metasurface, respectively. It can be observed that a terahertz wave normal incidence is divided four predominantly symmetrical transmissive mode terahertz beams at frequency of 1.08 THz. The deflection angles of the four transmission peaks equals 41°, which is in good agreement with the theoretical prediction result of θ=arcsin(λ/Γ) = 40.9°.

 figure: Fig. 4.

Fig. 4. (a) Three-dimensional far-field scattering patterns of the proposed 1-bit coding metasurface with chessboard array under normal incidence of x-polarized wave at 1.08THz. (b) Normalized transmitted intensity energy amplitude diagram corresponding to (a) in the x direction at the azimuth angle of 90° in the cartesian coordinate system.

Download Full Size | PPT Slide | PDF

In addition, 2-bit coding metasurface is designed to control the transmissive mode terahertz deflection at 1.08THz. The 2-bit coding metasurface with the predesigned coding sequence “000000-010101-101010-111111…” (see the insets in Fig. 5(a)) is periodically distributed along x-axis direction with period of Γ = 1200 µm and arranged along y-axis direction with eight periods. The transmissive mode terahertz wave three-dimensional far field diagram and corresponding normalized amplitude curve are shown in Figs. 5(a) and 5(b), respectively. The deflection angle of the transmitted beam can be calculated as θ=arcsin(λ/Γ) = 13.39°, which is consistent with that of the simulation (13.3°). Similarly, the other 2-bit coding metasurface with the predesigned coding sequence “00000000-01010101-10101010-111111111…” (see the insets in Fig. 5(c)) is periodically distributed along x-axis direction with period of Γ = 1600 µm. The coding sequence is periodically distributed along y-axis direction for eight periods. Figure 5(c) and 5(d) display three-dimensional far-field of the transmissive mode terahertz wave scattering main lobe and corresponding normalized amplitude at 1.08THz. It can be seen that the angle between the transmitted beam and -z-axis is 9.99°, which is consistent with the calculation result of 9.99°. It demonstrates that the coding metasurface has good beam splitting function for transmissive mode terahertz wave. In order to verify the transmissive mode vortex beam generator function of the proposed coding metasurface, two vortex generators based on the proposed structure are designed. The coding metasurface pattern for vortex beam with topological charge l = 1 is arranged as shown in Fig. 6(a). Similarly, Fig. 6(b) illustrates the coding metasurfaces are divided into eight equal segments with phase difference of Δφ= π/2 for generating a vortex beam of l = 2. Figures 6(c) and 6(d) show the phase diagram of the transmissive mode vortex beam under terahertz wave normal incidence with topological charges l = 1 and l = 2 at frequency of 1.08 THz, respectively.

 figure: Fig. 5.

Fig. 5. (a) and (c) are three-dimensional far-field scattering patterns of 2-bit coding metasurface, (b) and (d) the normalized scattering intensity of 2-bit coding metasurface.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. (a) and (b) are the metasurface arrangements with topological charge of l = 1 and l = 2, (c) and (d) are phase of transmission vortex beams with topological charge l = 1 and l = 2 at 1.08THz.

Download Full Size | PPT Slide | PDF

3.2 Reflective mode terahertz wave encoding regulation

At 68 °C, VO2 is in metallic state, the proposed metasurface serves as the reflective-mode terahertz wave regulation. Coding particles “00” and “10” are used as “0” and “1” coding unit cells of 1-bit reflective mode coding metasurface. The proposed metasurface with the coding sequence of “000111…” is periodically arranged in x-axis direction at period of Γ = 600µm. The coding metasurface consists of 24×24 coding unit cells. Figures 7(a) and 7(b) show the reflective-mode three-dimensional far field at 0.76 THz and 0.9 THz, respectively. The corresponding reflective mode normalized amplitude is shown in Fig. 7(c). It can be seen that the incidence terahertz wave is divided into two symmetrical reflected terahertz beams alsong x direction at frequency of 0.76THz, and the deflection angle is 40° relative to the positive direction of z axis. The calculated deflection angle is of θ= arcsin(λ/Γ) = 41°. The simulation results are consistent with those of the theoretical calculation. For 0.9THz, the coding metasurface generates a vertical reflected terahertz wave beam. The orther coding metasurface with the gradient period sequence “0000000011111111… / 1111111100000000…” is periodically arranged in x-axis direction with a period of Γ = 715µm. Figures. 7(d) and 7(e) give the reflective mode three-dimensional far field at 0.76 THz and 0.9 THz, respectively. The corresponding normalized reflection amplitude is illustrated in Fig. 7(f). One can see that the reflected terahertz wave is divided into four symmetrical beams in x direction with a deflection angle of 33° relative to the positive direction of z axis at frequency of 0.76THz. The calculated reflective deflection angle is of θ=arcsin(λ/Γ) = 33.48°. But, for 0.9THz normal incidence terahertz wave, only a single vertically reflected terahertz wave beam generates along the z-axis direction.

 figure: Fig. 7.

Fig. 7. Three-dimensional far-field scattering patterns and normalized reflected intensity amplitude under terahertz wave normal incidence, (a) and (b) are 3D far-field scattering patterns of the designed metasurface with the sequence “000111……” periodically distributed along x-axis direction at 0.76 THz and 0.9 THz, respectively. (c) Normalized reflected intensity amplitude of the designed metasurface with the sequence “000111……” periodically distributed along x-axis direction. (d) and (e) are 3D far-field scattering patterns of the designed metasurface with the sequence 0000000011111111 periodically distributed along x-axis direction and with the sequence 00001111 periodically distributed along y-axis direction at 0.76 THz and 0.9 THz, respectively. (f) Normalized reflected intensity amplitude of the designed metasurface with the sequence 0000000011111111 periodically distributed along x-axis direction and with the sequence 00001111 periodically distributed along y-axis direction.

Download Full Size | PPT Slide | PDF

We designed a 2-bit gradient phase metasurface with the coding sequence of “000000-010101-101010-111111…” when the encoding period is Γ=1200µm. The far-field scattering and normalized reflective amplitude curves at 0.76THz are shown in Figs. 8(a) and 8(b), respectively. It can be seen from Fig. 8(b) that the scattering angle of the deflected main lobe is about 18°, which are in good agreement with the theoretical calculation result of θ= arcsin(λ/Γ) = 18.2°. Similarly, we arranged a 2-bit gradient phase coding metasurface with a coding sequence of “00000000-01010101-10101010-11111111…” for period of Γ=1600µm. The far-field scattering and normalized reflection amplitude curves at frequency 0.76THz are depicted in Figs. 8(c) and 8(d), respectively. Figure 8(d) shows the scattering angle of the deflected main lobe of 14°, which is consistent with the calculated prediction of θ= arcsin(λ/Γ) = 13.86°. One can found that the terahertz wave deflection angle can be controlled by gradient phase coding with different periods.

 figure: Fig. 8.

Fig. 8. (a) and (b) are far field scattering patterns and normalized scattering intensity of 2-bit coding metasurface with the gradient coding sequence “000000-010101-101010-111111…” in x-direction, respectively. (c) and (d) are far field scattering patterns and normalized scattering intensity of 2-bit coding metasurface with the gradient coding sequence “00000000-01010101-10101010-11111111…” in x-direction at the frequency of 0.76 THz, respectively.

Download Full Size | PPT Slide | PDF

To investigate RCS reduction property, we construct 1-bit and 2-bit random digital coding metasurfaces, which are composed of 32×32 coding particles. The same size metal plate and the designed random digital coding metasurface are used to analyze the RCS attenuation characteristics of at 0.76THz, as shown in Figs. 9(a) and 9(b), respectively. According to Fig. 9, one sees that the RCS value of bare metal plate is −22 dB, while the RCS value of 1-bit and 2-bit random digital coding metasurface are −37 dB and −43 dB, respectively. One see obviously that the RCS value of the designed random digital coding metasurface is less than that of metallic counterpart. The peak RCS reduction value is over −21 dB at 0.76 THz. In addition, we designed two reflective mode vortex generators based on the proposed coding metasurface patterns (see Figs. 6(a) and 6(b)). Figures 10(a) and 10(b) illustate the 3D far-field patterns of the reflective mode terahertz vortex beams for l=1 and l=2 at 0.76 THz, respectively. It can be noted that the two kinds of coding metasurface patterns achieve perfect vortex beam.

 figure: Fig. 9.

Fig. 9. RCS reduction curves, (a) 1-bit random encoding metasurface and qual-size metal plane, (b) 2-bit random encoding metasurface and qual-size metal plane at 0.76 THz under normal incident terahertz wave

Download Full Size | PPT Slide | PDF

 figure: Fig. 10.

Fig. 10. Three-dimensional far-field scattering pattern of terahertz vortex beams with (a) l=1, (b) l=2.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we proposed a bi-direction encoding metasurface for achieving the transmissive mode and reflective mode terahertz wave manipulation in a single structure. The transmissive mode and reflective mode terahertz wavefronts can be independently regulated by switching phase transition of VO2. Highly efficient beam splitting, deflection, vortex beam generation and RCS reduction of the transmissive mode and reflective mode terahertz wave have been numerically demonstrated by using the designed 1-bit and 2-bit encoding metasurfaces. The adjustable metasurface structure provides a simple method to develop multi-functional high-efficiency terahertz wave devices.

Funding

National Natural Science Foundation of China (61831012, 61871355); Zhejiang Key R & D Project of China (2021C03153); Research Funds for the Provincial Universities of Zhejiang (2020YW20); Zhejiang Lab (2019LC0AB03).

Disclosures

The authors declare no conflicts of interest.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014). [CrossRef]  

2. L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015). [CrossRef]  

3. Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020). [CrossRef]  

4. B. Ren, Y. Feng, S. Tang, L. Wang, H. Jiang, and Y. Jiang, “Dynamic control of THz polarization modulation and multi-channel beam generation using a programmable metasurface,” Opt. Express 29(11), 17258 (2021). [CrossRef]  

5. K. Katare, S. Chandravanshi, A. Biswas, and M. Akhtar, “Realization of split beam antenna using transmission-type coding metasurface and planar Lens,” IEEE Trans. Antennas Propagat. 67(4), 2074–2084 (2019). [CrossRef]  

6. Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020). [CrossRef]  

7. S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021). [CrossRef]  

8. C. Zhou, X. Peng, and J. Li, “Graphene-embedded coding metasurface for dynamic terahertz manipulation,” Optik 216, 164937 (2020). [CrossRef]  

9. C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020). [CrossRef]  

10. X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020). [CrossRef]  

11. J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020). [CrossRef]  

12. J. Li and C. Zhou, “Multi-functional terahertz wave regulation based on a silicon medium metasurface,” Opt. Mater. Express 11(2), 310–318 (2021). [CrossRef]  

13. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011). [CrossRef]  

14. Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020). [CrossRef]  

15. Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021). [CrossRef]  

16. K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018). [CrossRef]  

17. R. Wu, L. Bao, L. Wu, and T. Cui, “Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning,” Sci. China Phys. Mech. Astron. 63(8), 284211 (2020). [CrossRef]  

18. L. Shao, W. Zhu, M. Yu, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J,” Appl. Phys. 125(20), 203101 (2019). [CrossRef]  

19. B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020). [CrossRef]  

20. W. Pan and J. Li, “Diversified functions for a terahertz metasurface with a simple structure,” Opt. Express 29(9), 12918 (2021). [CrossRef]  

21. D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020). [CrossRef]  

22. T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021). [CrossRef]  

23. M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020). [CrossRef]  

24. J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017). [CrossRef]  

25. S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020). [CrossRef]  

26. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021). [CrossRef]  

27. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

28. O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

29. Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase change materials,” Nano Lett. 17(8), 4881–4885 (2017). [CrossRef]  

30. M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021). [CrossRef]  

31. Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021). [CrossRef]  

32. L. Zhang, S. Liu, and T. Cui, “Theory and application of coding metamaterials,” Chinese optics 10(1), 1–12 (2017). [CrossRef]  

References

  • View by:

  1. T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  2. L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
    [Crossref]
  3. Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020).
    [Crossref]
  4. B. Ren, Y. Feng, S. Tang, L. Wang, H. Jiang, and Y. Jiang, “Dynamic control of THz polarization modulation and multi-channel beam generation using a programmable metasurface,” Opt. Express 29(11), 17258 (2021).
    [Crossref]
  5. K. Katare, S. Chandravanshi, A. Biswas, and M. Akhtar, “Realization of split beam antenna using transmission-type coding metasurface and planar Lens,” IEEE Trans. Antennas Propagat. 67(4), 2074–2084 (2019).
    [Crossref]
  6. Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020).
    [Crossref]
  7. S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
    [Crossref]
  8. C. Zhou, X. Peng, and J. Li, “Graphene-embedded coding metasurface for dynamic terahertz manipulation,” Optik 216, 164937 (2020).
    [Crossref]
  9. C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020).
    [Crossref]
  10. X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
    [Crossref]
  11. J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
    [Crossref]
  12. J. Li and C. Zhou, “Multi-functional terahertz wave regulation based on a silicon medium metasurface,” Opt. Mater. Express 11(2), 310–318 (2021).
    [Crossref]
  13. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  14. Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
    [Crossref]
  15. Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
    [Crossref]
  16. K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
    [Crossref]
  17. R. Wu, L. Bao, L. Wu, and T. Cui, “Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning,” Sci. China Phys. Mech. Astron. 63(8), 284211 (2020).
    [Crossref]
  18. L. Shao, W. Zhu, M. Yu, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J,” Appl. Phys. 125(20), 203101 (2019).
    [Crossref]
  19. B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
    [Crossref]
  20. W. Pan and J. Li, “Diversified functions for a terahertz metasurface with a simple structure,” Opt. Express 29(9), 12918 (2021).
    [Crossref]
  21. D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020).
    [Crossref]
  22. T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
    [Crossref]
  23. M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020).
    [Crossref]
  24. J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
    [Crossref]
  25. S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
    [Crossref]
  26. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
    [Crossref]
  27. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)
  28. O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)
  29. Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase change materials,” Nano Lett. 17(8), 4881–4885 (2017).
    [Crossref]
  30. M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
    [Crossref]
  31. Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
    [Crossref]
  32. L. Zhang, S. Liu, and T. Cui, “Theory and application of coding metamaterials,” Chinese optics 10(1), 1–12 (2017).
    [Crossref]

2021 (9)

B. Ren, Y. Feng, S. Tang, L. Wang, H. Jiang, and Y. Jiang, “Dynamic control of THz polarization modulation and multi-channel beam generation using a programmable metasurface,” Opt. Express 29(11), 17258 (2021).
[Crossref]

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

J. Li and C. Zhou, “Multi-functional terahertz wave regulation based on a silicon medium metasurface,” Opt. Mater. Express 11(2), 310–318 (2021).
[Crossref]

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

W. Pan and J. Li, “Diversified functions for a terahertz metasurface with a simple structure,” Opt. Express 29(9), 12918 (2021).
[Crossref]

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

2020 (12)

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020).
[Crossref]

D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020).
[Crossref]

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

R. Wu, L. Bao, L. Wu, and T. Cui, “Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning,” Sci. China Phys. Mech. Astron. 63(8), 284211 (2020).
[Crossref]

Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020).
[Crossref]

Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020).
[Crossref]

C. Zhou, X. Peng, and J. Li, “Graphene-embedded coding metasurface for dynamic terahertz manipulation,” Optik 216, 164937 (2020).
[Crossref]

C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020).
[Crossref]

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

2019 (2)

K. Katare, S. Chandravanshi, A. Biswas, and M. Akhtar, “Realization of split beam antenna using transmission-type coding metasurface and planar Lens,” IEEE Trans. Antennas Propagat. 67(4), 2074–2084 (2019).
[Crossref]

L. Shao, W. Zhu, M. Yu, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J,” Appl. Phys. 125(20), 203101 (2019).
[Crossref]

2018 (1)

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

2017 (3)

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref]

L. Zhang, S. Liu, and T. Cui, “Theory and application of coding metamaterials,” Chinese optics 10(1), 1–12 (2017).
[Crossref]

2015 (1)

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

2014 (1)

T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Abdolali, A.

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

Abdollahramezani, S.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Adibi, A.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Agarwal, A.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Akhtar, M.

K. Katare, S. Chandravanshi, A. Biswas, and M. Akhtar, “Realization of split beam antenna using transmission-type coding metasurface and planar Lens,” IEEE Trans. Antennas Propagat. 67(4), 2074–2084 (2019).
[Crossref]

Akram, M.

M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020).
[Crossref]

Alu, A.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Alù, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

An, S.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Azhar, B.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Bao, L.

R. Wu, L. Bao, L. Wu, and T. Cui, “Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning,” Sci. China Phys. Mech. Astron. 63(8), 284211 (2020).
[Crossref]

Bie, X.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

Biswas, A.

K. Katare, S. Chandravanshi, A. Biswas, and M. Akhtar, “Realization of split beam antenna using transmission-type coding metasurface and planar Lens,” IEEE Trans. Antennas Propagat. 67(4), 2074–2084 (2019).
[Crossref]

Brown, T.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Burokur, S.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

Cai, W.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Cao, L.

Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Chandravanshi, S.

K. Katare, S. Chandravanshi, A. Biswas, and M. Akhtar, “Realization of split beam antenna using transmission-type coding metasurface and planar Lens,” IEEE Trans. Antennas Propagat. 67(4), 2074–2084 (2019).
[Crossref]

Chang, Y.

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

Chen, D.

D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020).
[Crossref]

Chen, H.

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Chen, K.

M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020).
[Crossref]

Chen, M.

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

Chen, S.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Cheng, H.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Cheng, Q.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cheng, X.

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

Chou, J.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Cui, T.

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020).
[Crossref]

R. Wu, L. Bao, L. Wu, and T. Cui, “Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning,” Sci. China Phys. Mech. Astron. 63(8), 284211 (2020).
[Crossref]

L. Zhang, S. Liu, and T. Cui, “Theory and application of coding metamaterials,” Chinese optics 10(1), 1–12 (2017).
[Crossref]

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Deckoff-Jones, S.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Deshmukh, S.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Ding, G.

M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020).
[Crossref]

Ding, X.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

Du, Q.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Eftekhar, A.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

El-Sayed, M.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Evans, P.

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref]

Fan, J.

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

Fan, T.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Fang, B.

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

Fang, D.

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

Feng, Y.

B. Ren, Y. Feng, S. Tang, L. Wang, H. Jiang, and Y. Jiang, “Dynamic control of THz polarization modulation and multi-channel beam generation using a programmable metasurface,” Opt. Express 29(11), 17258 (2021).
[Crossref]

M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020).
[Crossref]

Fowler, C.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Fu, C.

C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gan, H.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

Gao, L.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Genevet, P.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gu, T.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Haglund, R.

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref]

Han, L.

C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020).
[Crossref]

Han, X.

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

He, Q.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

He, Y.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

He, Z.

Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020).
[Crossref]

Hemmatyar, O.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Hewak, D.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Hong, Z.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

Hu, J.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Huang, J.

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

Huang, L.

Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020).
[Crossref]

Iqbal, S.

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

Jiang, H.

Jiang, J.

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

Jiang, Q.

Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020).
[Crossref]

Jiang, W.

Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020).
[Crossref]

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jiang, Y.

Jin, B.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jin, G.

Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020).
[Crossref]

Jing, X.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

Kang, M.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Katare, K.

K. Katare, S. Chandravanshi, A. Biswas, and M. Akhtar, “Realization of split beam antenna using transmission-type coding metasurface and planar Lens,” IEEE Trans. Antennas Propagat. 67(4), 2074–2084 (2019).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Khan, A.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Kiarashinejad, Y.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

Krasnok, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Lepeshov, S.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Li, C.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

Li, J.

W. Pan and J. Li, “Diversified functions for a terahertz metasurface with a simple structure,” Opt. Express 29(9), 12918 (2021).
[Crossref]

J. Li and C. Zhou, “Multi-functional terahertz wave regulation based on a silicon medium metasurface,” Opt. Mater. Express 11(2), 310–318 (2021).
[Crossref]

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

C. Zhou, X. Peng, and J. Li, “Graphene-embedded coding metasurface for dynamic terahertz manipulation,” Optik 216, 164937 (2020).
[Crossref]

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Lia, Y.

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

Liang, J.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Liang, L.

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liberman, V.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Lin, M.

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

Liu, C.

C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020).
[Crossref]

Liu, S.

L. Zhang, S. Liu, and T. Cui, “Theory and application of coding metamaterials,” Chinese optics 10(1), 1–12 (2017).
[Crossref]

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, W.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Lu, X.

C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020).
[Crossref]

Luo, J.

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

Luo, T.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

Ma, C.

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

Ma, H.

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Ma, Q.

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

Ma, S.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Ma, Z.

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

Muskens, O.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Neilson, K.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Nisar, M.

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

Pan, W.

Peng, X.

C. Zhou, X. Peng, and J. Li, “Graphene-embedded coding metasurface for dynamic terahertz manipulation,” Optik 216, 164937 (2020).
[Crossref]

Pop, E.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Qi, C.

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

Qi, M.

T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qu, S.

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

Rajabalipanah, H.

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

Ratni, B.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

Ren, B.

Richardson, K.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Rios, C.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Ríos, C.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Rivero-Baleine, C.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Roberts, C.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Rukhlenko, I. D.

L. Shao, W. Zhu, M. Yu, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J,” Appl. Phys. 125(20), 203101 (2019).
[Crossref]

Shalaginov, M.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Shao, L.

L. Shao, W. Zhu, M. Yu, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J,” Appl. Phys. 125(20), 203101 (2019).
[Crossref]

Song, Q.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

Song, W.

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

Su, P.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Sun, Y.

Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020).
[Crossref]

Sun, Z.

C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020).
[Crossref]

Taghinejad, H.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Taghinejad, M.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Tang, C.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Tang, S.

Tang, X.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

Teichrib, C.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Tetienne, J.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tian, J.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Valentine, J.

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref]

Wan, X.

T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, J.

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

Wang, L.

Wei, Q.

D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020).
[Crossref]

Wei, X.

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

Wen, Q.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wu, D.

D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020).
[Crossref]

Wu, L.

R. Wu, L. Bao, L. Wu, and T. Cui, “Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning,” Sci. China Phys. Mech. Astron. 63(8), 284211 (2020).
[Crossref]

Wu, P.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wu, Q.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

Wu, R.

R. Wu, L. Bao, L. Wu, and T. Cui, “Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning,” Sci. China Phys. Mech. Astron. 63(8), 284211 (2020).
[Crossref]

Wu, X.

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

Wuttig, M.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

Xu, H.

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

Yan, Z.

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

Yang, F.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Yang, J.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yang, Y.

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

Yao, J.

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020).
[Crossref]

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yu, M.

L. Shao, W. Zhu, M. Yu, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J,” Appl. Phys. 125(20), 203101 (2019).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yu, P.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Yu, Q.

Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020).
[Crossref]

Yuan, Q.

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

Yuan, Y.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

Yuan, Z.

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

Zandehshahvar, M.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

Zeimpekis, I.

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Zhang, H.

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Zhang, K.

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

Zhang, L.

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

L. Zhang, S. Liu, and T. Cui, “Theory and application of coding metamaterials,” Chinese optics 10(1), 1–12 (2017).
[Crossref]

Zhang, X.

Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020).
[Crossref]

Zhang, Y.

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

Zhang, Z.

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

Zhao, J.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, S.

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

Zhao, T.

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

Zhou, C.

J. Li and C. Zhou, “Multi-functional terahertz wave regulation based on a silicon medium metasurface,” Opt. Mater. Express 11(2), 310–318 (2021).
[Crossref]

C. Zhou, X. Peng, and J. Li, “Graphene-embedded coding metasurface for dynamic terahertz manipulation,” Optik 216, 164937 (2020).
[Crossref]

Zhou, L.

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Zhu, W.

M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020).
[Crossref]

L. Shao, W. Zhu, M. Yu, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J,” Appl. Phys. 125(20), 203101 (2019).
[Crossref]

Zhu, X.

D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020).
[Crossref]

Zhu, Z.

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K. Zhang, X. Cheng, Y. Zhang, M. Chen, H. Chen, Y. Yang, W. Song, and D. Fang, “Weather-manipulated smart broadband electromagnetic metamaterials,” ACS Appl. Mater. Interfaces 10(47), 40815–40823 (2018).
[Crossref]

Adv. Mater. (1)

M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, “Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection,” Adv. Mater. 32(12), 1907308 (2020).
[Crossref]

Adv. Opt. Mater. (1)

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Appl. Phys. (1)

L. Shao, W. Zhu, M. Yu, and I. D. Rukhlenko, “Dielectric 2-bit coding metasurface for electromagnetic wave manipulation,” J,” Appl. Phys. 125(20), 203101 (2019).
[Crossref]

Chinese optics (1)

L. Zhang, S. Liu, and T. Cui, “Theory and application of coding metamaterials,” Chinese optics 10(1), 1–12 (2017).
[Crossref]

IEEE Trans. Antennas Propagat. (1)

K. Katare, S. Chandravanshi, A. Biswas, and M. Akhtar, “Realization of split beam antenna using transmission-type coding metasurface and planar Lens,” IEEE Trans. Antennas Propagat. 67(4), 2074–2084 (2019).
[Crossref]

J. Alloys Compd. (1)

Q. Yuan, H. Ma, J. Jiang, J. Wang, Y. Lia, S. Zhao, and S. Qu, “Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation,” J. Alloys Compd. 854, 157168 (2021).
[Crossref]

J. Phys. D: Appl. Phys. (3)

D. Chen, X. Zhu, Q. Wei, J. Yao, and D. Wu, “Broadband tunable focusing lenses by acoustic coding metasurfaces,” J. Phys. D: Appl. Phys. 53(25), 255501 (2020).
[Crossref]

C. Fu, L. Han, C. Liu, X. Lu, and Z. Sun, “Reflection-type 1-bit coding metasurface for RCS reduction combined diffusion and reflection,” J. Phys. D: Appl. Phys. 53(44), 445107 (2020).
[Crossref]

S. Iqbal, J. Luo, Q. Ma, H. Rajabalipanah, M. Nisar, L. Zhang, A. Abdolali, and T. Cui, “Power modulation of vortex beams using phase/amplitude adjustable transmissive coding metasurfaces,” J. Phys. D: Appl. Phys. 54(3), 035305 (2021).
[Crossref]

Journal of Engineering (1)

X. Han, H. Xu, Y. Chang, M. Lin, Z. Yuan, X. Wu, and X. Wei, “Multiple diffuse coding metasurface of independent polarization for RCS reduction,” Journal of Engineering 8, 162313 (2020).
[Crossref]

Light: Sci. Appl. (2)

T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

L. Gao, Q. Cheng, J. Yang, S. Ma, J. Zhao, S. Liu, H. Chen, Q. He, W. Jiang, H. Ma, Q. Wen, L. Liang, B. Jin, W. Liu, L. Zhou, J. Yao, P. Wu, and T. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Nano Lett. (2)

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. Eftekhar, W. Cai, E. Pop, M. El-Sayed, and A. Adibi, “Dynamic hybrid metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Z. Zhu, P. Evans, R. Haglund, and J. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref]

Nanophotonics (1)

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” Nanophotonics 9(5), 1189–1241 (2020).
[Crossref]

Nanoscale (1)

Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, “A complex-amplitude hologram using an ultrathin dielectric metasurface,” Nanoscale 12(47), 24162–24168 (2020).
[Crossref]

Nat. Commun. (2)

Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. Burokur, and P. Genevet, “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces,” Nat. Commun. 11(1), 4186 (2020).
[Crossref]

M. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. Chou, C. Roberts, M. Kang, C. Rios, Q. Du, C. Fowler, A. Agarwal, K. Richardson, C. Rivero-Baleine, H. Zhang, J. Hu, and T. Gu, “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12(1), 1225 (2021).
[Crossref]

Nat. Nanotechnol. (1)

Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Shalaginov, S. Deckoff-Jones, S. An, J. Chou, C. Roberts, V. Liberman, M. Kang, C. Ríos, K. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021).
[Crossref]

Opt. Commun. (2)

B. Fang, Z. Yan, J. Fan, C. Qi, H. Gan, Y. He, C. Li, Z. Hong, and X. Jing, “Highly efficient beam control of transmitted terahertz wave based on all dielectric encoding metasurface,” Opt. Commun. 458, 124720 (2020).
[Crossref]

J. Li, Y. Zhang, J. Li, J. Li, Y. Yang, J. Huang, C. Ma, Z. Ma, Z. Zhang, L. Liang, and J. Yao, “Frequency-switchable VO2-based coding metasurfaces at the terahertz band,” Opt. Commun. 458, 124744 (2020).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Optics and Lasers in Engineering (1)

T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, and Z. Hong, “Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface,” Optics and Lasers in Engineering 141, 106556 (2021).
[Crossref]

Optik (1)

C. Zhou, X. Peng, and J. Li, “Graphene-embedded coding metasurface for dynamic terahertz manipulation,” Optik 216, 164937 (2020).
[Crossref]

Sci. Bull. (1)

Y. Sun, X. Zhang, Q. Yu, W. Jiang, and T. Cui, “Infrared-controlled programmable metasurface,” Sci. Bull. 65(11), 883–888 (2020).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

R. Wu, L. Bao, L. Wu, and T. Cui, “Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning,” Sci. China Phys. Mech. Astron. 63(8), 284211 (2020).
[Crossref]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Other (2)

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, W. Cai, and A. Adibi, “Electrically driven programmable phase-change meta-switch reaching 80% efficiency,” arXiv preprint arXiv:2104.10381 (2021)

O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A. Khan, K. Neilson, C. Teichrib, T. Brown, E. Pop, D. Hewak, M. Wuttig, A. Alu, O. Muskens, and A. Adibi, “Enhanced meta-displays using advanced phase-change materials,” arXiv preprint arXiv:2107.12159 (2021)

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Three-dimensional schematic of the proposed transmission and reflection bi-direction terahertz coding metasurface in a single structure, (b) Schematic diagram of the cording particle, (c) Top view and geometrical parameters of the proposed coding particle.
Fig. 2.
Fig. 2. (a)Transmission amplitude vs. frequency. (b) Transmission phase vs. frequency. (c) Reflection amplitude vs. frequency. (d) Reflection phase vs. frequency of the four kinds of digital coding particles under the normal incidence of terahertz wave.
Fig. 3.
Fig. 3. (a) Three-dimensional far-field scattering patterns of the proposed 1-bit coding metasurface with the periodic digital code sequence “000111……” along x-axis direction under terahertz wave normal incidence at 1.08 THz. (b) Normalized transmitted energy amplitude diagram corresponding to (a) along x direction at the azimuth angle of 90° in the cartesian coordinate system.
Fig. 4.
Fig. 4. (a) Three-dimensional far-field scattering patterns of the proposed 1-bit coding metasurface with chessboard array under normal incidence of x-polarized wave at 1.08THz. (b) Normalized transmitted intensity energy amplitude diagram corresponding to (a) in the x direction at the azimuth angle of 90° in the cartesian coordinate system.
Fig. 5.
Fig. 5. (a) and (c) are three-dimensional far-field scattering patterns of 2-bit coding metasurface, (b) and (d) the normalized scattering intensity of 2-bit coding metasurface.
Fig. 6.
Fig. 6. (a) and (b) are the metasurface arrangements with topological charge of l = 1 and l = 2, (c) and (d) are phase of transmission vortex beams with topological charge l = 1 and l = 2 at 1.08THz.
Fig. 7.
Fig. 7. Three-dimensional far-field scattering patterns and normalized reflected intensity amplitude under terahertz wave normal incidence, (a) and (b) are 3D far-field scattering patterns of the designed metasurface with the sequence “000111……” periodically distributed along x-axis direction at 0.76 THz and 0.9 THz, respectively. (c) Normalized reflected intensity amplitude of the designed metasurface with the sequence “000111……” periodically distributed along x-axis direction. (d) and (e) are 3D far-field scattering patterns of the designed metasurface with the sequence 0000000011111111 periodically distributed along x-axis direction and with the sequence 00001111 periodically distributed along y-axis direction at 0.76 THz and 0.9 THz, respectively. (f) Normalized reflected intensity amplitude of the designed metasurface with the sequence 0000000011111111 periodically distributed along x-axis direction and with the sequence 00001111 periodically distributed along y-axis direction.
Fig. 8.
Fig. 8. (a) and (b) are far field scattering patterns and normalized scattering intensity of 2-bit coding metasurface with the gradient coding sequence “000000-010101-101010-111111…” in x-direction, respectively. (c) and (d) are far field scattering patterns and normalized scattering intensity of 2-bit coding metasurface with the gradient coding sequence “00000000-01010101-10101010-11111111…” in x-direction at the frequency of 0.76 THz, respectively.
Fig. 9.
Fig. 9. RCS reduction curves, (a) 1-bit random encoding metasurface and qual-size metal plane, (b) 2-bit random encoding metasurface and qual-size metal plane at 0.76 THz under normal incident terahertz wave
Fig. 10.
Fig. 10. Three-dimensional far-field scattering pattern of terahertz vortex beams with (a) l=1, (b) l=2.

Tables (1)

Tables Icon

Table 1. Metasurface particles and phase response vs. geometric parameters.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε ω p 2 σ σ 0 / ( ω 2 + i ω d ω )
f ( θ , φ ) = f e ( θ , φ ) m = 1 M n = 1 N exp { i { φ ( m , n ) + K D x sin θ ( m 1 / 2 ) cos φ + K D y ( n 1 / 2 ) cos φ sin φ } }
f ( θ , φ ) = m = 1 M exp i ( K D x ( m 1 / 2 ) sin θ cos θ + m π ) n = 1 N exp i ( K D y ( n 1 / 2 ) + n π )

Metrics