Abstract

This work reports the real-time observation of the thermo-optical dynamics in silica microsphere resonators based on the dispersive time stretch technique. In general, the thermo-optical dynamics of silica microsphere resonators, including the thermal refraction and thermal expansion, can be characterized by the resonance wavelength shift, whose duration is at the millisecond timescale. However, this fast wavelength shift process cannot be directly captured by conventional spectroscopy, and only its transmission feature can be characterized by a fast-scanning laser and an intensity detector. With the advance of the time-stretch spectroscopy, whose temporal resolution is up to tens of nanoseconds, the thermo-optical dynamics can be observed in a more straight-forward way, by utilizing the pump-probe technology and mapping the resonance wavelength to the time domain. Here, the thermo-optical dynamics are explored as a function of the power and the scanning rate of the pump laser. Theoretical simulations reproduce the experimental results, revealing that the thermo-optical dynamics of silica microsphere resonators is dominated by the fast thermo-optical effect and the slow heat dissipation process to the surroundings, which leads to gradual regression of the resonance wavelength. This work provides an alternative solution for studying the thermo-optical dynamics in whispering gallery mode microresonators, which would be crucial for future applications of microresonator photonic systems.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Introduction

Ultrahigh quality factors (Q) and small mode volumes of whispering-gallery-mode (WGM) optical microresonators, with the capability of significantly enhancing the intro-cavity light energy density, make it an ideal platform for a wide range of applications, such as microlasers [1,2], optomechanical oscillators [35], microcombs [69], sensors [1014], and parity-symmetric systems [15,16]. Ultrahigh-Q microresonators with the ability to boost light-matter interaction provide an excellent platform for studying nonlinear optical phenomena [1721], such as the nonlinear thermo-optical dynamics [2224]. The absorption by the cavity material converts a small fraction of light into heat, which results in the resonance wavelength shift via the thermal refraction and expansion. Although it is conventionally considered as the detrimental feature, the thermo-optical dynamics can be exploited to determine the heat exchange rate between the microresonator and the external environment. By recording the resonance wavelength, it has successfully characterized the thickness of the adsorbed water layer and the desorption rate, and obtained the absolute values of thermal accommodation coefficients of different gases at low pressures [25,26]. Thermal induced change of the mode effective refractive index has been widely used as a resonance wavelength tuning method for WGM microresonators [27,28]. Also, the thermal self-locking method has been well applied to realize rare-earth [29] and Brillouin microlasers [30].

Conventional investigation of the thermo-optical dynamics is performed by monitoring the transmission feature of a WGM microresonator. By controlling the wavelength sweeping speed, the sweeping direction and the power of the scanning laser, different transmission features including thermo-optical linewidth broadening [31], linewidth compression [31] and oscillation [3236] have been reported. However, it cannot directly observe the fast resonance wavelength shift induced by the thermo-optical effect in real-time, which usually occurs at the millisecond timescale. There is an ultrafast spectroscopy technique proposed, called dispersive time-stretch [37]. This time-stretch method has been applied to study complex ultrafast nonlinear phenomena, such as soliton explosions [38,39], wavelength evolution dynamics [40] and dissipative soliton molecule dynamics [41,42] in ultrafast fiber lasers. By introducing the pump-probe technology and utilizing the temporal dispersion to perform the wavelength-to-time mapping, it can reveal the resonance wavelength shift with a temporal resolution up to tens of nanoseconds. Therefore, the dispersive time-stretch technique enables the exploration of the thermo-optical dynamics of the WGM microresonators in a more straight-forward way, which is inaccessible by conventional means.

In this work, we present an alternative approach that observes the thermo-optical dynamics in silica microsphere resonators based on the time-stretch spectroscopy. It can realize a straight-forward investigation of the thermo-optical effect, which induces the fast resonance wavelength shift process. Different thermo-optical processes have been experimentally observed as a function of the power and the scanning rate of the pump laser. A thermo-dynamic model, which considered both the fast thermo-optical effect and the slow heat dissipation process of the microsphere resonators, is established to simulate the thermo-optical dynamics. The theoretical results are consistent with the experimental results. This exploration could pave the way toward real-time observation of the thermo-optical dynamics in WGM microresonators, which would be crucial for future applications of microresonator photonic systems.

2. Device characterization and experimental setup

As shown in the inset of Fig. 1, a silica microsphere resonator with a diameter of about 25 μm is used in our experiments. The microsphere resonator possesses ultrahigh Q factors due to its smooth surface of the cavity, which helps suppress the scattering loss. As a result, for a specific mode with TE polarization, the microsphere resonator exhibits a loaded Q factor of 6×107 at the resonance wavelength around 1522.2 nm as shown in Fig. 1.

 

Fig. 1. Transmission spectrum of a specific mode at the resonance wavelength around 1522.2 nm. Inset: Optical microscope image of a microsphere with a diameter of 25 μm.

Download Full Size | PPT Slide | PDF

The experimental setup performing real-time observation of the thermo-optical dynamics of the microsphere resonator is shown in Fig. 2. In the upper branch, a tunable continuous-wave laser driven by an arbitrary waveform generator (AWG) is periodically scanning back and forth around 1522.2 nm in a jagged trajectory. This swept pump light is coupled into the microsphere resonator through a tapered fiber to excite the thermo-optical dynamics, with the coupling state carefully controlled by adjusting the gap between the microsphere and the microfiber. A digital storage oscilloscope with a 125-MHz photo-detector (PD1) is used to record the pump transmission. In the lower branch, a pulsed source with 20-MHz repetition rate and 14-nm spectral bandwidth acts as a spectral probe to show the thermo-optical dynamics of the microresonator. To enable real-time recording of transient resonance wavelength shifts, the probe pulses are stretched by a dispersion compensation fiber (DCF) with –2.31 ns/nm dispersion to perform wavelength-to-time mapping. The temporal resolution decided by the repetition rate of the pulsed source is 50 ns, which is fast enough for capturing the thermo-optical effect induced resonance wavelength shift. The spectral resolution limited by the group velocity dispersion of the dispersive element is 83.3 pm. The resolution of the wavelength drift measurement decided by the sampling rate and the dispersive element is 5.4 pm. A 0.1-nm-bandwidth optical notch filter at 1550 nm imparts a wavelength mark onto the probe spectrum as a reference. Obviously, the average power of the probe light fed into the microfiber should be low enough (∼6 μW) so that its thermal impact on the microsphere is negligible. The temporally mapped probe spectrum which contains multiple resonance wavelengths, is separated from the pump light by a wavelength division multiplexer, and subsequently captured by a 33-GHz photo-detector (PD2) and another channel of the oscilloscope.

 

Fig. 2. Schematic diagram of the experimental setup for the thermo-optical dynamics measurement. Optical fibers are indicated by black lines, and electrical wires are presented by blue lines. AWG, arbitrary waveform generator; PC, polarization controller; BSF, band-stop filter; DCF, dispersion compensation fiber; WDM, wavelength division multiplexer; PD, photo-detector; DSO, digital storage oscilloscope.

Download Full Size | PPT Slide | PDF

3. Theoretical analysis

As the pump wavelength scans from short wavelength to long wavelength, accumulated thermal effect in the microsphere leads to the increased temperature of silica. Since both the thermo-optical and thermal expansion coefficient are positive, the resonance wavelength of the microsphere resonator shows a red-shift, which means that the thermal nonlinear effect can be analyzed by the temperature variation of the cavity.

According to the formula of the N-th resonance wavelength (λr), we get the function of the resonance wavelength with respect to the cavity temperature:

$${\lambda _r}({\Delta T} )= \frac{{2\pi r\beta {n_0}({1 + \alpha \Delta T} )\left( {1 + \frac{\xi }{{{n_0}}}\Delta T} \right)}}{N}$$
where r is the cavity radius, β is the mode propagation constant, n0 is the refractive index (RI) of the cold cavity (at room temperature), α is the thermal expansion coefficient of silica and ξ=dn/dT is the thermo-optical coefficient of silica, ΔT is the temperature difference between the WGMs and the surroundings. Since both α and ξ/n0 are on the order of 10−6, α+ξ/n0 is much larger than α·ξ/n0, and thus the quadratic term of ΔT can be ignored. After simplification, we obtain the equation as follows:
$${\lambda _r}({\Delta T} )\cong {\lambda _0}\left[ {1 + \left( {\alpha + \frac{\xi }{{{n_0}}}} \right)\Delta T} \right]$$
where λ0 is the resonance wavelength of the cold cavity. For fused silica, α+ξ/n0 is calculated to be 6×10−6 [1/°C] [31]. This shows that, the resonance wavelength is linearly positively correlated with ΔT, thus the nonlinear shift of the resonance wavelength can be obtained by analyzing the change of ΔT.

According to the law of conservation of energy, the net heat generated in the microsphere resonator is equal to the net heat inflow (qi) minus the net heat outflow (qo):

$${q_i} = {P_0}\frac{1}{{{{\left( {\frac{{{\lambda_p} - {\lambda_r}}}{{{{\delta \lambda } / 2}}}} \right)}^2} + 1}}$$
$${q_o} = K\Delta T(t )$$
where P0 is the power coupled into the microsphere resonator, which is influenced by the pump power Pp, the coupling efficiency η, the Q factor and the absorption loss, λp is the pump wavelength, λr is the resonance wavelength, δλ is the full width at half maximum of the resonance dip, Δλ is the wavelength detuning (Δλ = λp - λr), K is the thermal conductivity between the WGMs and the environment, which increases slightly with the increasing temperature. Since the temperature variation of the cavity is limited during the experiments, K is considered as a constant for simulations. From Eqs. (3) and (4), the net heat in the microresonator is as follows:
$${C_p}\Delta T(t )= {P_0}\frac{1}{{{{\left( {\frac{{\Delta \lambda }}{{{{\delta \lambda } / 2}}}} \right)}^2} + 1}} - K\Delta T(t )$$
where Cp is the heat capacity of the microsphere. With the scanning of the pump wavelength, iterative calculation of ΔT can simulate the variation of the temperature of the cavity with time.

As shown in Fig. 3(b), the red line is the pump wavelength as a function of time with a scanning speed of 0.031 nm/ms. The pump wavelength is firstly swept from short wavelength to long wavelength. When the pump wavelength is swept into the resonance dip of the cold cavity (λp = 1522.23 nm, t = 6.5 ms), there will accumulates a large power and thus a lot of heat in the microsphere resonator. The thermo-optical effect induced the change of the RI and cavity radius, leading to a red-shift of the resonance wavelength. The scanning direction of the pump wavelength is the same as the resonance wavelength shift induced by the thermo-optical effect, thus the pump wavelength needs longer time to match the resonance wavelength, which leads to an asymmetric and broadened transmission spectrum (blue line). In Fig. 3(c), the red line is the measured resonance wavelength shift of the microsphere resonator, and the black line is the thermal variation in the microsphere resonator calculated by Eqs. (2)–(5). The temperature of the microsphere resonator increases from t = 6.5 ms to t = 9 ms and the resonance wavelength has a red-shift of 80 pm. When t is larger than 9 ms, the pump wavelength exceeds the resonance dip, which leads to the decrease of the temperature of the cavity, and the resonance wavelength starts to present a blue-shift. The blue-shift process needs longer time (from 9 ms to 16 ms) than that of the red-shift process, because the microsphere used in our experiments has a small diameter of 25 μm. The small microsphere results in a slower heat dissipation process as the heat is dissipated into the environment through the cavity surface. In addition, the advantage of using a small microsphere is that it can achieve more pronounced thermal nonlinear effect at a low pump power and a clean mode excitation in the 30-GHz scan range, so that the thermal effect can dominate the resonance wavelength shift. For the case where the thermal effect is relatively weak, other high-order effects, such as Kerr effect and mode coupling, should be considered [43]. From Fig. 3(c), it can be seen that the simulation results agree well with the experimental results. The parameters used in the simulations are P0/Cp= 5.8×10−4 °C/ms, λ0 = 1522.23 nm, Q = 6×107, K/Cp= 2.8×10−5 s−1, and Pp = 0.6 mW.

 

Fig. 3. (a) Wavelength-to-time mapping relation of the probe light. (b) Scanned pump wavelength trace (red line) and pump transmission spectrum (blue line). (c) Measured and simulated resonance wavelength shifts and thermal variation of the microsphere resonator.

Download Full Size | PPT Slide | PDF

4. Experimental results and discussion

The probe spectrum that contains multiple resonance wavelengths of the cold cavity (without pump light) was firstly measured by an optical spectrum analyzer and the dispersive time stretch technique. As shown in Fig. 3(a), the measured optical spectrum (red line) is well mapped to the temporal waveform (blue line). The wavelength-to-time mapping relation calculated from Fig. 3(a) is –2.3 ns/nm, which matches the dispersion value (–2.31 ns/nm) of the DCF. After calibrating the wavelength-to-time mapping factor, the drift amount of the resonance wavelength (e.g., resonance wavelength A at 1554.37 nm) can be obtained from the temporal spectra by measuring the time shift off the reference notch, which has a fixed wavelength λref. Figure 3(b) presents the scanning pump wavelength variation (red line) and the transmission feature (blue line) when the pump laser is swept at 62.5 Hz under 0.6-mW output power. With the ultrafast spectral measurement performance of the time-stretch technique, we can track the real-time drifting of the resonance wavelength, as shown in Fig. 3(c). It can be seen that as the pump wavelength approaches the resonance dip (t = 6.5 ms), the microsphere resonator starts to be heated up so that the resonance wavelength shifts away from the initial resonance wavelength of the cold cavity (from 6.5 ms to 9 ms). As long as the pump wavelength is on the blue side of the resonance dip, heating continues. When the pump wavelength exceeds the resonance dip, the cavity comes off the resonance, and cooling starts. While in the down scan process, the resonance wavelength does not shift upward because of the scan rate across the cavity lineshape is sufficiently fast to prevent the accumulation of the heat. Therefore, the triangular resonance wavelength response in the up scan of the heat generation and the subsequent heat dissipation process, both of which constitute the key features of the thermo-optical dynamics in microsphere resonators.

To further characterize the thermo-optical dynamics of the microsphere resonator under different conditions, we explore the influences of the pump power and the wavelength scan rate on the resonance wavelength shift. Figures 4(a)–4(e) show the measured thermo-optical dynamics of the microsphere resonator at different pump powers and the corresponding simulation results. Comparing the thermo-optical dynamics shown in Figs. 4(a)–4(e), significant thermal variation can be observed when the pump power was further increased to 0.5 mW while keeping the wavelength scan rate of 100 Hz unchanged. The duration for the resonance wavelength shift returning back to the initial resonance wavelength becomes longer as the pump power increases. This is because more pump light is converted to a larger temperature variation in the cavity, and subsequently brings a larger resonance wavelength shift to the microsphere resonator. Moreover, it can be seen that a set of corresponding simulation results reproduce the experimental results.

 

Fig. 4. Resonance wavelength shift of the microsphere resonator for different pump powers. The wavelength scan rate of the tunable laser is 100 Hz and the resonance wavelength of the cold resonator is around 1554.37 nm. Solid blue line: experimentally recorded results, dashed red line: theoretically simulated results based on Eq. (5).

Download Full Size | PPT Slide | PDF

Figure 5 shows the similar results for different wavelength scan rates while keeping a fixed 1 mW pump power. As seen from Figs. 5(a)–5(h), when the scan rate gradually decreased, the resonance wavelength shift and thermal variation increased significantly. For example, at a lower scan rate (50 Hz), the thermo-optical dynamics becomes even more prominent, and the maximum resonance wavelength shift can reach 70 pm. In Figs. 6(a) and 6(b), the measured resonance wavelength shift as a function of the pump power and wavelength scan rate are presented. Each experimental point has been measured with the same accuracy, which is presented by the error indicator. It can be seen from Fig. 6(a) that a definitive resonance wavelength shift can be stably detected starting from a power of 0.1 mW. In addition, in the same figure we show the second set of measured datas for a scan rate of 50 Hz. It is clear that for the lower scan rate the cavity gets the greater shift which means the higher temperature of the cavity. Figure 6(b) shows that as the scan rate increase, the measurement results for different pump powers present the same decreasing trend.

 

Fig. 5. Resonance wavelength shift of the microsphere resonator for different wavelength scan rates. The pump power is 1 mW and the resonance wavelength of the cold resonator is about 1554.37 nm. Solid blue line: experimentally recorded results, dashed red line: theoretically simulated results based on Eq. (5).

Download Full Size | PPT Slide | PDF

 

Fig. 6. (a) Resonance wavelength shift of the microsphere resonator depending on the pump power. Dashed red line with empty circle: the wavelength scan rate of 50 Hz, solid black line with full circle: the wavelength scan rate of 100 Hz. (b) Resonance wavelength shift of the microsphere resonator depending on the wavelength scan rate. Dashed red line with empty circle: the pump power of 1 mW, solid black line with full circle: the pump power of 0.5 mW.

Download Full Size | PPT Slide | PDF

Similar thermo-optical dynamics is observed on other resonance wavelengths, regardless of their polarizations and mode orders. One example is evident in a resonance wavelength nearby, (e.g., resonance wavelength B at 1548.98 nm), indicated on Fig. 3(a), which also exhibits the fast thermo-optical effect and the slow heat dissipation process when the pump scans across the microsphere resonator. These observations indicate the universal feature of the thermo-optical dynamics in microsphere resonators.

5. Conclusion

In conclusion, we have performed real-time observations of the thermo-optical dynamics in silica microsphere resonators based on the dispersive time stretch technique. By introducing the pump-probe technology and mapping the resonance wavelength to the time domain, we provide a more straight-forward way to observe the thermo-optical effect induced resonance wavelength shift, whose duration is at the millisecond timescale. The drift amount of the resonance wavelength can be obtained from the temporal spectra by measuring the time shift of the temporal resonance wavelength. The thermo-optical dynamics was dominated by the power and scanning rate of the pump laser. Simulated results from the theoretical model considering both the fast thermo-optical effect and the slow heat dissipation process of the microsphere resonator agree well with the experimental results. We believe that this ultrafast spectroscopy technique could become an alternative approach for studying the thermo-optical dynamics in WGM microresonators with huge applications in sensing, metrology, and coherent light generation.

Funding

National Natural Science Foundation of China (11774110, 61505060, 61631166003, 61675081, 61735006, 61927817, 91850115); State Key Laboratory of Information Photonics and Optical Communications (IPOC2019A012); Fundamental Research Funds for the Central Universities (2019kfyRCPY092, 2019kfyXKJC036).

Disclosures

The authors declare no conflicts of interest.

References

1. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef]  

2. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003). [CrossRef]  

3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014). [CrossRef]  

4. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef]  

5. Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016). [CrossRef]  

6. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015). [CrossRef]  

7. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007). [CrossRef]  

8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef]  

9. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018). [CrossRef]  

10. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015). [CrossRef]  

11. T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011). [CrossRef]  

12. Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017). [CrossRef]  

13. W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017). [CrossRef]  

14. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014). [CrossRef]  

15. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014). [CrossRef]  

16. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014). [CrossRef]  

17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef]  

18. J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019). [CrossRef]  

19. D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014). [CrossRef]  

20. X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019). [CrossRef]  

21. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009). [CrossRef]  

22. X. F. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light: Sci. Appl. 9(1), 24 (2020). [CrossRef]  

23. Y. Liu, X. Jiang, C. Wang, and L. Yang, “Optothermally induced mechanical oscillation in a silk fibroin coated high-Q microsphere,” Appl. Phys. Lett. 116(20), 201104 (2020). [CrossRef]  

24. C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019). [CrossRef]  

25. D. Ganta, E. B. Dale, and A. T. Rosenberger, “Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused silica whispering-gallery microresonator,” Meas. Sci. Technol. 25(5), 055206 (2014). [CrossRef]  

26. D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135(8), 084313 (2011). [CrossRef]  

27. S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018). [CrossRef]  

28. S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019). [CrossRef]  

29. G. Lin, Y. Candela, O. Tillement, Z. Cai, V. Lefèvre-Seguin, and J. Hare, “Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers,” Opt. Lett. 37(24), 5193–5195 (2012). [CrossRef]  

30. S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019). [CrossRef]  

31. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004). [CrossRef]  

32. Q. Wang, Y. Wang, Z. Guo, J. Wu, and Y. Wu, “Thermal oscillatory behavior analysis and dynamic modulation of refractive index in microsphere,” Opt. Lett. 40(7), 1607–1610 (2015). [CrossRef]  

33. S. Diallo, G. Lin, and Y. K. Chembo, “Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators,” Opt. Lett. 40(16), 3834–3837 (2015). [CrossRef]  

34. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012). [CrossRef]  

35. L. He, Y. F. Xiao, J. Zhu, Ş. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009). [CrossRef]  

36. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004). [CrossRef]  

37. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]  

38. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36 (2015). [CrossRef]  

39. M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016). [CrossRef]  

40. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016). [CrossRef]  

41. G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017). [CrossRef]  

42. K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017). [CrossRef]  

43. A. Rasoloniaina, V. Huet, M. Thual, S. Balac, P. Féron, and Y. Dumeige, “Analysis of third-order nonlinearity effects in very high-Q WGM resonator cavity ringdown spectroscopy,” J. Opt. Soc. Am. B 32(3), 370–378 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [Crossref]
  2. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
    [Crossref]
  3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [Crossref]
  5. Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
    [Crossref]
  6. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
    [Crossref]
  7. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref]
  8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref]
  9. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
    [Crossref]
  10. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref]
  11. T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
    [Crossref]
  12. Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
    [Crossref]
  13. W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
    [Crossref]
  14. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref]
  15. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
    [Crossref]
  16. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
    [Crossref]
  17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref]
  18. J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
    [Crossref]
  19. D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
    [Crossref]
  20. X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
    [Crossref]
  21. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
    [Crossref]
  22. X. F. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light: Sci. Appl. 9(1), 24 (2020).
    [Crossref]
  23. Y. Liu, X. Jiang, C. Wang, and L. Yang, “Optothermally induced mechanical oscillation in a silk fibroin coated high-Q microsphere,” Appl. Phys. Lett. 116(20), 201104 (2020).
    [Crossref]
  24. C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019).
    [Crossref]
  25. D. Ganta, E. B. Dale, and A. T. Rosenberger, “Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused silica whispering-gallery microresonator,” Meas. Sci. Technol. 25(5), 055206 (2014).
    [Crossref]
  26. D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135(8), 084313 (2011).
    [Crossref]
  27. S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
    [Crossref]
  28. S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
    [Crossref]
  29. G. Lin, Y. Candela, O. Tillement, Z. Cai, V. Lefèvre-Seguin, and J. Hare, “Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers,” Opt. Lett. 37(24), 5193–5195 (2012).
    [Crossref]
  30. S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019).
    [Crossref]
  31. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref]
  32. Q. Wang, Y. Wang, Z. Guo, J. Wu, and Y. Wu, “Thermal oscillatory behavior analysis and dynamic modulation of refractive index in microsphere,” Opt. Lett. 40(7), 1607–1610 (2015).
    [Crossref]
  33. S. Diallo, G. Lin, and Y. K. Chembo, “Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators,” Opt. Lett. 40(16), 3834–3837 (2015).
    [Crossref]
  34. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
    [Crossref]
  35. L. He, Y. F. Xiao, J. Zhu, Ş. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
    [Crossref]
  36. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
    [Crossref]
  37. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [Crossref]
  38. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36 (2015).
    [Crossref]
  39. M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
    [Crossref]
  40. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
    [Crossref]
  41. G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
    [Crossref]
  42. K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
    [Crossref]
  43. A. Rasoloniaina, V. Huet, M. Thual, S. Balac, P. Féron, and Y. Dumeige, “Analysis of third-order nonlinearity effects in very high-Q WGM resonator cavity ringdown spectroscopy,” J. Opt. Soc. Am. B 32(3), 370–378 (2015).
    [Crossref]

2020 (2)

X. F. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light: Sci. Appl. 9(1), 24 (2020).
[Crossref]

Y. Liu, X. Jiang, C. Wang, and L. Yang, “Optothermally induced mechanical oscillation in a silk fibroin coated high-Q microsphere,” Appl. Phys. Lett. 116(20), 201104 (2020).
[Crossref]

2019 (5)

C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019).
[Crossref]

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019).
[Crossref]

J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
[Crossref]

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

2018 (2)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

2017 (4)

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref]

W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref]

2016 (3)

M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

2015 (6)

2014 (6)

D. Ganta, E. B. Dale, and A. T. Rosenberger, “Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused silica whispering-gallery microresonator,” Meas. Sci. Technol. 25(5), 055206 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

2012 (2)

2011 (3)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135(8), 084313 (2011).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

2009 (2)

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, Ş. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
[Crossref]

2008 (2)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

2004 (3)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

2003 (1)

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Andral, U.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Baker, C.

Balac, S.

Barucci, A.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Bender, C. M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Berneschi, S.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Broderick, N. G. R.

Cai, Z.

Candela, Y.

Cao, Q.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
[Crossref]

Carmon, T.

Chai, C.

C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019).
[Crossref]

Chang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Chembo, Y. K.

Chen, J.

J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
[Crossref]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Chen, W.

W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Chen, Y.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Cui, H.

Dale, E. B.

D. Ganta, E. B. Dale, and A. T. Rosenberger, “Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused silica whispering-gallery microresonator,” Meas. Sci. Technol. 25(5), 055206 (2014).
[Crossref]

D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135(8), 084313 (2011).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Diallo, S.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Dong, C.

C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019).
[Crossref]

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Ducci, S.

Dumeige, Y.

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Erkintalo, M.

Fan, S.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Fan, X.

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Farnesi, D.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Favero, I.

Féron, P.

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Gaeta, A. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Ganta, D.

D. Ganta, E. B. Dale, and A. T. Rosenberger, “Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused silica whispering-gallery microresonator,” Meas. Sci. Technol. 25(5), 055206 (2014).
[Crossref]

D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135(8), 084313 (2011).
[Crossref]

Gianfreda, M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Gong, Q.

J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
[Crossref]

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref]

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Grelu, P.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref]

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref]

Guo, G.

C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019).
[Crossref]

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Guo, Z.

Hare, J.

He, L.

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Herink, G.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Hu, S.

Hu, X.

C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019).
[Crossref]

Hua, S.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Huet, V.

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Jalali, B.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Jiang, B.

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019).
[Crossref]

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

Jiang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Jiang, X.

Y. Liu, X. Jiang, C. Wang, and L. Yang, “Optothermally induced mechanical oscillation in a silk fibroin coated high-Q microsphere,” Appl. Phys. Lett. 116(20), 201104 (2020).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Jiang, X. F.

X. F. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light: Sci. Appl. 9(1), 24 (2020).
[Crossref]

Kim, J. H.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Krupa, K.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref]

Kurtz, F.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref]

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Lefèvre-Seguin, V.

Lei, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Leo, G.

Li, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Lin, G.

Lipson, M.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Liu, M.

Liu, Y.

Y. Liu, X. Jiang, C. Wang, and L. Yang, “Optothermally induced mechanical oscillation in a silk fibroin coated high-Q microsphere,” Appl. Phys. Lett. 116(20), 201104 (2020).
[Crossref]

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Liu, Y. C.

Long, G. L.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Luo, A. P.

Luo, Z. C.

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Monifi, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Nithyanandan, K.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref]

Nori, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Nunzi Conti, G.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Ozdemir, S. K.

W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Özdemir, S. K.

Parrain, D.

Peng, B.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Qiu, C.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Rasoloniaina, A.

Ren, L.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

Rezac, J. P.

D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135(8), 084313 (2011).
[Crossref]

Righini, G. C.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Ropers, C.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Rosenberger, A. T.

D. Ganta, E. B. Dale, and A. T. Rosenberger, “Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused silica whispering-gallery microresonator,” Meas. Sci. Technol. 25(5), 055206 (2014).
[Crossref]

D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135(8), 084313 (2011).
[Crossref]

Runge, A. F. J.

Savchenkov, A. A.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Shen, X.

J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
[Crossref]

Shen, Z.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Shi, L.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Solli, D. R.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Soria, S.

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Stapfner, S.

Sun, F.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

Tang, S.

J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
[Crossref]

Tchofo-Dinda, P.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref]

Thual, M.

Tillement, O.

Vahala, K. J.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Wang, C.

Y. Liu, X. Jiang, C. Wang, and L. Yang, “Optothermally induced mechanical oscillation in a silk fibroin coated high-Q microsphere,” Appl. Phys. Lett. 116(20), 201104 (2020).
[Crossref]

Wang, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Wang, Q.

Wang, Y.

Wang, Z.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Weig, E. M.

Wen, J.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Wiersig, J.

W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Wu, J.

Wu, Y.

Xiao, B.

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019).
[Crossref]

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Xiao, M.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Xiao, Y.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
[Crossref]

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref]

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Xiao, Y. F.

Xu, W. C.

Yan, Y. R.

Yang, C.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Yang, L.

Y. Liu, X. Jiang, C. Wang, and L. Yang, “Optothermally induced mechanical oscillation in a silk fibroin coated high-Q microsphere,” Appl. Phys. Lett. 116(20), 201104 (2020).
[Crossref]

X. F. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light: Sci. Appl. 9(1), 24 (2020).
[Crossref]

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

L. He, Y. F. Xiao, J. Zhu, Ş. K. Özdemir, and L. Yang, “Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators,” Opt. Express 17(12), 9571–9581 (2009).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[Crossref]

Yu, X.

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref]

Zhang, X.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Zhang, Y.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Zhao, G.

W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Zhao, Y.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

Zhi, Y.

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref]

Zhu, J.

Zhu, S.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Zou, C.

C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019).
[Crossref]

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Zou, X.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

ACS Photonics (1)

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q Erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Adv. Mater. (1)

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

Appl. Phys. Lett. (2)

Y. Liu, X. Jiang, C. Wang, and L. Yang, “Optothermally induced mechanical oscillation in a silk fibroin coated high-Q microsphere,” Appl. Phys. Lett. 116(20), 201104 (2020).
[Crossref]

C. Chai, X. Hu, C. Zou, G. Guo, and C. Dong, “Thermal bistability of magnon in yttrium iron garnet microspheres,” Appl. Phys. Lett. 114(2), 021101 (2019).
[Crossref]

J. Chem. Phys. (1)

D. Ganta, E. B. Dale, J. P. Rezac, and A. T. Rosenberger, “Optical method for measuring thermal accommodation coefficients using a whispering-gallery microresonator,” J. Chem. Phys. 135(8), 084313 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

X. F. Jiang and L. Yang, “Optothermal dynamics in whispering-gallery microresonators,” Light: Sci. Appl. 9(1), 24 (2020).
[Crossref]

Meas. Sci. Technol. (1)

D. Ganta, E. B. Dale, and A. T. Rosenberger, “Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused silica whispering-gallery microresonator,” Meas. Sci. Technol. 25(5), 055206 (2014).
[Crossref]

Nanophotonics (2)

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, “Tunable Brillouin and Raman microlasers using hybrid microbottle resonators,” Nanophotonics 8(5), 931–940 (2019).
[Crossref]

Nat. Commun. (1)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6(1), 7957 (2015).
[Crossref]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Nat. Photonics (5)

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Nat. Phys. (1)

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Nature (3)

W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Optica (1)

Phys. Rev. A (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70(5), 051804 (2004).
[Crossref]

Phys. Rev. Lett. (5)

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102(4), 043902 (2009).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

J. Chen, X. Shen, S. Tang, Q. Cao, Q. Gong, and Y. Xiao, “Microcavity nonlinear optics with an organically functionalized surface,” Phys. Rev. Lett. 123(17), 173902 (2019).
[Crossref]

D. Farnesi, A. Barucci, G. C. Righini, S. Berneschi, S. Soria, and G. Nunzi Conti, “Optical frequency conversion in silica-whispering-gallery-mode microspheres,” Phys. Rev. Lett. 112(9), 093901 (2014).
[Crossref]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A. 108(15), 5976–5979 (2011).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Science (4)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Transmission spectrum of a specific mode at the resonance wavelength around 1522.2 nm. Inset: Optical microscope image of a microsphere with a diameter of 25 μm.
Fig. 2.
Fig. 2. Schematic diagram of the experimental setup for the thermo-optical dynamics measurement. Optical fibers are indicated by black lines, and electrical wires are presented by blue lines. AWG, arbitrary waveform generator; PC, polarization controller; BSF, band-stop filter; DCF, dispersion compensation fiber; WDM, wavelength division multiplexer; PD, photo-detector; DSO, digital storage oscilloscope.
Fig. 3.
Fig. 3. (a) Wavelength-to-time mapping relation of the probe light. (b) Scanned pump wavelength trace (red line) and pump transmission spectrum (blue line). (c) Measured and simulated resonance wavelength shifts and thermal variation of the microsphere resonator.
Fig. 4.
Fig. 4. Resonance wavelength shift of the microsphere resonator for different pump powers. The wavelength scan rate of the tunable laser is 100 Hz and the resonance wavelength of the cold resonator is around 1554.37 nm. Solid blue line: experimentally recorded results, dashed red line: theoretically simulated results based on Eq. (5).
Fig. 5.
Fig. 5. Resonance wavelength shift of the microsphere resonator for different wavelength scan rates. The pump power is 1 mW and the resonance wavelength of the cold resonator is about 1554.37 nm. Solid blue line: experimentally recorded results, dashed red line: theoretically simulated results based on Eq. (5).
Fig. 6.
Fig. 6. (a) Resonance wavelength shift of the microsphere resonator depending on the pump power. Dashed red line with empty circle: the wavelength scan rate of 50 Hz, solid black line with full circle: the wavelength scan rate of 100 Hz. (b) Resonance wavelength shift of the microsphere resonator depending on the wavelength scan rate. Dashed red line with empty circle: the pump power of 1 mW, solid black line with full circle: the pump power of 0.5 mW.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ r ( Δ T ) = 2 π r β n 0 ( 1 + α Δ T ) ( 1 + ξ n 0 Δ T ) N
λ r ( Δ T ) λ 0 [ 1 + ( α + ξ n 0 ) Δ T ]
q i = P 0 1 ( λ p λ r δ λ / 2 ) 2 + 1
q o = K Δ T ( t )
C p Δ T ( t ) = P 0 1 ( Δ λ δ λ / 2 ) 2 + 1 K Δ T ( t )

Metrics