Abstract

Metasurfaces, with artificially designed ultrathin and compact optical elements, enable versatile manipulation of the amplitude, phase, and polarization of light waves. While most of the metasurfaces are static and passive, here we propose a reprogrammable metasurface based on the state-of-art electromechanical nano-kirigami, which allows for independent manipulation of pixels at visible wavelengths through mechanical deformation of the nanostructures. By incorporating electrostatic forces between the top suspended gold nano-architectures and bottom silicon substrate, out-of-plane deformation of each pixel and the associated phase retardation are independently controlled by applying single voltage to variable pixels or exerting programmable voltage distribution on identical pixels. As a proof-of-concept demonstration, the metasurfaces are digitally controlled and a series of tunable metasurface holograms such as 3D dynamic display and ultrathin planar lenses are achieved at visible wavelengths. The proposed electromechanical metasurface provides a new methodology to explore versatile reconfigurable and programmable functionalities that may lead to advances in a variety of applications such as hologram, 3D displays, data storage, spatial light modulations, and information processing.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

On-chip reconfigurable manipulation of light at nanoscale is one of the most important challenges faced by urgent applications such as photonic metamaterials and metasurfaces. For example, by patterning subwavelength optical elements at the interface, metasurfaces [13] are able to control over the full characteristics of electromagnetic (EM) waves with versatile applications from flat lens and mirrors [46], polarization control [7,8], vortex light generation [9], detection [10], holograms displays [11,12] to surface wave couplings [13], communication system [14], quantum light control [15], etc. While most of the studied optical metasurfaces are passive and static, recent advances on dynamic/tunable metasurfaces have explored a new freedom of light manipulation by adopting reconfiguration schemes such as electrical bias [1620], mechanical strain [21], thermal effect [22], liquid crystals [23], phase-change materials [24], chemical and structural approaches [25,26], etc. Among these attempts, two types of strategies are recognized, i.e. the modulation of the refractive index of the involved media and the engineering of the physical boundaries of the structural interfaces. While the former one is limited to few material options, the latter strategy can be applied to broad material varieties by introducing dramatic spatial changes through mechanically displacing the structural unit, which is favorable for implementation in practical device applications. For instance, the recent integration of optical metasurfaces with microelectromechanical systems (MEMS) [27] and spatial light modulators (SLM) [28] devices has exhibited promising functionalities towards realistic applications. Nevertheless, the pixelated reconfiguration of metasurface itself without additional and complex combinations remains challenging.

Meanwhile, the state-of-the-art nano-kirigami/origami methods have been recently demonstrated as a facile method for the flexible fabrication of 3D micro-/nanostructures [2931], enabling novel optical characteristics such as giant optical chirality [32,33], elastic wide-angle gratings [34], stereo metasurfaces [35], etc. More importantly, the deformable configuration of nano-kirigami structures can be aroused by employing external stimuli such as pneumatic pressure [36], mechanical compression [37], electronic bias [38], etc., paving an avenue towards the development of tunable photonic metadevices. Especially, the use of electrical bias as the trigger in reconfigurable nano-kirigami metasurfaces has been proved capable to develop electromechanical metasurfaces at optical wavelengths [38], but the feasibility of pixelated operation remains unexplored.

In this article, we propose a scheme for electromechanically reprogrammable metasurfaces based on a nano-kirigami deformation principle. By incorporating electrostatic forces between the top suspended gold nano-architectures and bottom silicon substrate, out-of-plane structural deformation of each pixel and the associated phase retardation are independently controlled by applying single or addressable biased voltages across the Au/SiO2/Si chip. As a result, the metasurfaces are digitally controlled and a series of tunable metasurface holograms such as 3D dynamic display and ultrathin planar lenses are achieved at visible wavelengths. The proposed digitization of metasurfaces could build up a novel platform for versatile light manipulation and diverse tunable ultrathin metadevices at nanoscale.

2. Results and discussions

2.1 Proposal of electromechanically reconfigurable metasurfaces

The unit cell pattern of proposed electromechanically reprogrammable metasurfaces is composed of two combined Archimedean spirals in a gold nanofilm, and arranged in a square lattice with a separation of 2 µm, as schematically shown in Fig. 1(a). The Archimedean spiral curves can be described as r(θ) = 220 × θ, where r is the distance to the spiral center and θ is the azimuthal angle (from 2π to maximum 4.25π in this article, θ = 2π+Δθ, where Δθ is varied within [0, 1.76π] in Fig. 1(a)), respectively. To realize the electromechanical and pixelated out-of-plane deformations, a SiO2/Si substrate coated by a 60-nm-thick gold film is applied based on an on-chip and electromechanically reconfigurable nano-kirigami method [38], in which the predesigned 2D spirals can be patterned by electron-beam lithography (EBL) and subsequent ion-beam etching (IBE), followed by a wet-etching processes to suspend the top gold nanostructures. As shown in Fig. 1(b), the 2D nano-kirigami pattern suspended above SiO2 pillars can be deformed into 3D geometry by attractive electrostatic force when a proper voltage is applied. Such a transformation is reversible by switching on and off the voltage and can be utilized to dynamically modulate the optical properties of the metasurfaces, providing a simple scheme for reconfigurable spatial displacement. Since the reflection phase is dependent on the deformation height of the central plates (see below analysis), the induced shift in optical phase (Δϕ) can thus be controlled by the introduced electrostatic force. It should be noted that there is positive feedback between the attractive electrostatic force and the deformation of predesigned spiral patterns, i.e. the reduced gap between nanostructures and Si substrate in turn increases the attractive force when the suspended parts are pulled downward by the electrostatic force. Once the applied voltage exceeds the critical voltage (named pull-in voltage), the system becomes unstable and the deformation increases dramatically. Therefore, in following simulations, the applied voltage is controlled below the pull-in voltage.

 figure: Fig. 1.

Fig. 1. Scheme for pixelated electromechanical nano-kirigami. (a) Top-view illustration of the 2D nano-kirigami precursor arranged in a square lattice with a separation of 2 µm. The spiral curves in the unit cell are defined by r(θ) = 220 × θ. (b) Front-view of (top) 2D and (bottom) calculated 3D deformed Archimedean spiral pattern in a 60-nm-thick gold layer, which is suspended by four SiO2 supporters with a thickness of 400 nm. (c, d) Side-view and front-view plots of three 3D deformed spiral patterns with increasing azimuth angle (Δθ = 1.76π, 2.08π, 2.25π) under the same bias voltage V=10.4 v. As a result, the deformation heights Δh are 33, 100, and 170 nm, respectively. (e, f) Schematic diagram of the electromechanically reconfigurable nano-kirigami metasurface with pixelated spiral design. The value of Δθ in each unit can be independently designed.

Download Full Size | PPT Slide | PDF

Furthermore, by varying structural parameters (for example the range of azimuthal angle Δθ) of the nano-kirigami pattern, nanostructures with different morphologies can reach different deformation height (Δh) under the same voltage, as shown in Fig. 1(c) and 1(d). For example, under the same voltage, spirals with small Δθ are more difficult to achieve large deformations for efficient phase modulation than the spirals with large Δθ. In such a case, the optical characteristics, especially the reflection optical phase, can be designed by varying the azimuthal angle of the spirals. Based on this characteristic, two strategies can be adopted to achieve the electromechanically reconfigurable metasurfaces. The first one is to construct metasurfaces with different pixels, in which the phase retardation Δϕ is controlled by the designed value of Δθ and the deformations are triggered by the same voltage. The second scheme employs the same unit cell in each pixel, in which different voltages are adopted to achieve pixelated phase retardation.

2.2 Electromechanically reconfigurable metasurfaces under single-voltage control

Figure 1(e) and 1(f) illustrate a reconfigurable nano-kirigami metasurface before and after the deformation by switching off and on a single voltage. Specifically, in Fig. 2(a), the deformation height of the central plate of the unit cell and corresponding phase shift at three wavelengths as a function of Δθ are plotted, which is calculated by using the finite element software COMSOL when a single voltage of 10.4 v is directly applied to the unit cell. It can be seen that the deformed height increases continuously with the azimuth angle. The maximum out-of-plane deformation height of the Archimedean spirals is about 230 nm when Δθ = 2.25π, and the phase shift compared with the undeformed region is Δϕ = 1.73π (as can be expected by Δϕ = 2πneffh/λ, where neff is the effective refractive index of the medium and λ is the operating wavelength 532 nm). It should be mentioned that the formula mentioned above does not count the influence from the suspended arms. Nevertheless, it can be simply utilized to efficiently construct the structural patterns, with which the deviation is negligible (see the following reconstructed hologram images). Importantly, the phase difference can change from 0 to nearly 2π at visible wavelength region, as shown in the right of Fig. 2(a), which is sufficient for the gradient phase control. To construct a metasurface, eight spiral antennas are selected to cover the 2π phase difference with eight steps (with eight different azimuth angles), as plotted in Fig. 2(b). Furthermore, the reflection efficiency keeps almost constant with the azimuthal angle, providing an ideal scheme for encoding a phase-only hologram. To this aim, Fig. 2(c) illustrates the sketch of a proposed dynamic holographic hologram with the Archimedean spirals of different azimuthal angles. For a brief demonstration, the metasurface is designed with 32 × 32 cells in a square lattice, resulting in an overall size of 64 µm × 64 µm. To obtain the corresponding phase profiles for reconstructed target objects, for example an Archimedean spiral pattern, a modified Gerchberg-Saxton (GS) algorithm [39] in the Fresnel diffraction range in a computer-generated hologram (CGH) is utilized. The wavelength in G-S algorithm here is 532 nm, and the reconstructed image from the simulated metahologram is an Archimedean spiral pattern under x-polarized incidence. During the simulations, perfectly matched layer absorbing boundary condition and periodic boundary condition are applied with Si substrate and the edges of the metasurface, respectively, with published material parameters (Gold-CRC, SiO2-Palik, and Silicon-Palik) [40]. During the hologram simulations, the whole arrays are simulated for the holographic images. Since the working wavelength (532 nm) is smaller than the size of modulation spirals, the presence of the multi-order diffraction and zero-order diffraction speckle are inevitable. Nevertheless, here we merely test the feasibility of the digitization of metasurfaces by electromechanical reconfiguration, although the signal noise ratio and the quality of the reconstructed image directly from the phase profiles of hologram might be unsatisfactory. In order to get clear hologram image, an additional phase shift along the y axis is encoded into the CGH to enable the CGH reconstruction component away from the zero-order diffraction. The phase shift introduces gradient phase change to the original CGH so that the reconstructed images will be projected with a reflection angle, which can suppress the feedback of the zero-order diffraction beam so as to improve the quality of the reconstructed image. As the numerical Fresnel reconstruction image of the metasurface, Fig. 2(d) plots the far-field intensity distribution at 1 mm away from the metasurface under a bias voltage of 10.4 v, showing well reconstructed images. It should be mentioned that here the holographic display is polarization insensitive since only the central plate of the spiral structures contributes to the phase construction, while the twisted arms are treated as a random noise in far-field imaging. At the same time, the resolution of the reconstructed images is determined by the pixel number of the metasurface according to the G-S algorithm, with which the quality of the images can be improved by increasing the unit number.

 figure: Fig. 2.

Fig. 2. Electromechanically reconfigurable holographic design under single-voltage control. (a) (left) Height of the central plate and (right) corresponding phase distributions at the three wavelengths as a function of the azimuth angle Δθ under the same DC voltage. (b) Phase retardation and reflection efficiency of eight spiral units. The front-view schematics of the eight units are shown in the bottom of the chart (images are stretched by 300% in z-direction). (c) Schematic of the electromechanically reconfigurable nano-kirigami metasurface for holographic display under identical DC voltage control. (d) Numerically reconstructed holographic image of an Archimedean spiral pattern. Structural parameters: gold thickness t = 60 nm; lattice periodicity p = 2 µm; SiO2 thickness d = 400 nm.

Download Full Size | PPT Slide | PDF

Such a scheme can also be employed for dynamic beam steering, as schematically illustrated in Fig. 3(a). In this case, eight selected antennas in Fig. 2(b) are adopted to build up the phase profiles required for reflective beam focusing with focal length f = 800 µm at 532 nm with applied voltage of 10.4 v. Specifically, to focus an incident plane wave beam, the ultrathin metasurface is designed with spatially varied phase shift. The spatial phase profile along the radial direction can be calculated by

$$\varphi ={-} k\left( {\sqrt {{R^2} + {f^2}} - f} \right), $$
where k = 2π/λ is the free-space wave vector, R represents the distance between the unit cell and the center of the circular lens, f represents the focal length. The phase distribution of a designed metalens with 80 × 80 units in a square lattice and a sample interval of 2 µm is shown in Fig. 3(b), as a template to be filled with designed antennas to form the reconfigurable metalens after a phase discretization to eight steps.

 figure: Fig. 3.

Fig. 3. Electromechanically reconfigurable metalens. (a) Schematic of the metalens for dynamic light focusing, of which the reflection phase of incident plane wave is modulated by the applied DC voltage. (b) Ideal phase distribution in the metasurface plane for far-field focusing. The phase profile of the metalens is achieved by designing the azimuthal angle of the Archimedean spirals in each pixel. (c) Calculated phase profiles (cyan) and corresponding intensities (pink) of the metalens at z = 800 µm before and after applying certain voltage. The signal-to-noise ratio is greatly improved by increasing the DC voltage. (d) Intensity distribution of electric field in the xy plane (z = 800 µm). Images sizes: 80×80 µm2 (e) Calculated far-field electric-field intensity distribution of the metasurfaces under 10.4v. Images sizes: 80×500 µm2.

Download Full Size | PPT Slide | PDF

For a proof-of-concept demonstration, the designed metalens is built up by 80 × 80 pixels with a periodicity of 2 µm in x-y (z = 0) plane. As shown in Fig. 3(c), the calculated discrete phase profiles at z = 0 and corresponding intensity at z = 800 µm under three selected bias voltages are depicted, revealing that the light can be simply reflected or focused at the predetermined positions (here corresponding to f = 800 µm) before and after the voltages are applied. For example, due to the flat surface of 2D units before applying voltage, the metasurface can be treated as a reflective mirror at V = 0 v. With the gradual increase of the applied voltage, the deformation of the nanostructures occurs. As a result, the height of the central part and phase retardation are also increased, and the metasurface finally achieve the predesigned phase profiles for focusing function at the voltage of 10.4 v, as plotted in the bottom of Fig. 3(c).

The full-field theoretical intensity profiles of the light at a wavelength of 532 nm behind the metalens in the x-y and x-z plane are displayed in Fig. 3(d) and (e), showing the enhancement of focusing effect with the increase of the voltage and a bright spot in the focal plane at 800 µm under 10.4 v. As shown by the intensity profiles plotted in Fig. 3(c), the sidelobes around the focal point can be greatly suppressed by increasing the applied voltage, which can be further improved by the enhancement of space-bandwidth product though miniaturizing the unit size, as well as the increase of effective reflective area though increasing the ratio of deformable part in the unit cell (reducing the ineffective reflective area on the deformed arms). Therefore, the simulation results in Fig. 3(d) and (e) clearly prove the feasibility of dynamic switching between mirror reflecting and beam focusing, indicating that our scheme can be extended to realize reconfigurable switching between targeted optical functions.

2.3 Programmable metasurfaces based on pixelated voltage control

As the second scheme of digitalized metasurfaces, identical unit cells are employed to construct the initial 2D patterns and the deformation of each pixel (together with the induced phase retardation) is independently controlled by the pixelated predesigned input voltage. Here, we apply the nanostructure in Fig. 1(a) as the unit cell of the coding metasurface and the azimuthal angle is kept constant in this platform. We choose θ = 4.25π to meet the design demand and the simulated deformation height of the nanopattern is shown in Fig. 4(a).

 figure: Fig. 4.

Fig. 4. Reprogrammable metasurface design based on pixelated nano-kirigami deformations. (a) (left) Height of the same central plate of the deformed nano-kirigami spiral structures and (right) corresponding phase retardations at three wavelengths versus predefined voltage. (b) Calculated phase retardation and reflection efficiency of eight unit cells formed by applying eight different voltages on the same spiral plate. (c) Pixelated voltage-controllable nano-kirigami patterns for holographic displays. A series of voltage distribution frames (1, 2, 3…) are digitally designed to dynamically generate the phase distribution, which is computed by using the modified GS algorithm. Every pixel consists of the same basic Archimedean spiral pattern but is applied with different programmed voltages. As a result, different reconstructed images (Frame 1, 2, 3…) can be instantly and dynamically generated (the three images are separated for clearness). (d) Corresponding voltage distributions of the coded metasurfaces for different holographic images, as well as the simulation results of reconstructed images at the imaging plane. The simulated holographic images of “smile”, “windmill”, “star” are obtained at the imaging plane of z = 1000 µm. Structural parameters: gold thickness t = 60 nm; lattice periodicity p = 2 µm; SiO2 thickness d = 400 nm.

Download Full Size | PPT Slide | PDF

When the applied voltage increases linearly from 0 to 10.5 v, the deformation height is exponentially increased from 0 to 256 nm, reaching a maximum of 256 nm and a phase retardation of −1.92π (532 nm) at 10.5 v. To construct the metasurfaces, eight values of bias voltage are selected to cover the 2π phase range with a step of π/4 under uniform reflection efficiency, as shown in Fig. 4(b). Note that the continuity of the input voltage makes it possible for continuous deformation and phase modulation of the nanostructure rather than discrete sampling. Figure 4(c) illustrates a sketch of the proposed dynamic holograph imaging with the reprogrammable metasurface under certain voltage distribution. In order to get the phase profile for holographic display, a phase-only off-axis CGH of a windmill-like nanopattern and other patterns (with pixel dimension of 2 µm × 2 µm and pixel number of 32 × 32) are designed according to the modified GS algorithm in Fresnel range, and additionally reconstructed beam steering is also encoded by imposing a gradient phase shift to separate the reconstruction beam from the zero order diffraction. Each unit element is encoded with the pre-calculated voltage with respect to each pixel on the metasurface interface, and the eight-level independent DC voltage distribution is used to deform the unit cell for to realized eight predesigned phase shift for the reconstruction of the holographic image. In such a case, by digitalizing the distribution of the voltage in a high speed, dynamic switching between different holographic images can be successfully visualized. To test this functionality, the phase profiles of several holograms for the reconstructed images are numerically calculated, and the corresponding voltage distribution are encoded, as plotted in the first column of Fig. 4(d). In the specific numerical simulations, the holograms are illuminated by a 532 nm normal incidence wave, and the holographic image is monitored at z = 1 mm. As shown in the second column of Fig. 4(d), three types of reconstructed images (“smile”, “windmill”, “star”) are clearly shown from the same metasurface by simply programing the applied voltage distributions. Such uniform design of the unit cell greatly simplifies the fabrication complexity and the flexibility of the digitalized voltage control with high-speed response makes electromechanical metasurface promising for other dynamic optical and photonic applications.

3. Conclusions

In summary, we have demonstrated an electromechanically reprogrammable nano-kirigami metasurface to achieve pixelated out-of-plane deformations towards digitalized phase control. The digital metasurfaces with independent manipulation function of addressable pixels at visible wavelengths have been proved to be able to achieve dynamic holographic display and beam steering by simply controlling the input DC voltage. Both strategies of variable pixel patterns controlled by a single voltage and identical pixel patterns controlled by programmable voltage distribution are successfully demonstrated. It should be mentioned that due to the complex 3D deformed geometries and to increase the simulation efficiency, we only employed 32 × 32 cells in the numerical simulations for image reconstruction, of which the principle can be applied to holograms with more pixels. For future experimental explorations, the pixelated voltage applied to each spiral unit could be achieved by utilizing the multi-line addressing method that has been successfully commercialized in pixel-level controlled OLED (Organic Light-Emitting Diode) displays. Such a platform enables diverse dynamic optical and photonic reconfiguration in the visible wavelength range, and is highly extendible to other configuration designs, material platforms and wavelength regions. This work may pave a new avenue for active metasurface and dynamic manipulation of light at nanoscale, which could lead to advanced device applications with multitasking and rewritable optical functionalities.

Funding

National Natural Science Foundation of China (61675227, 61975014, 61975016, 62035003); National Key Research and Development Program of China (2017YFA0303800); Science and Technology Planning Project of Guangdong Province (2020B010190001); Beijing Municipal Natural Science Foundation (1212013, Z190006).

Acknowledgments

The authors thank Analysis & Testing Center at Beijing Institute of Technology for assistance in FIB facilities and useful discussions.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). [CrossRef]  

2. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013). [CrossRef]  

3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014). [CrossRef]  

4. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018). [CrossRef]  

5. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012). [CrossRef]  

6. C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020). [CrossRef]  

7. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015). [CrossRef]  

8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef]  

9. P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019). [CrossRef]  

10. N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019). [CrossRef]  

11. H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020). [CrossRef]  

12. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015). [CrossRef]  

13. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012). [CrossRef]  

14. P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020). [CrossRef]  

15. T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018). [CrossRef]  

16. J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11(1), 3574 (2020). [CrossRef]  

17. B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018). [CrossRef]  

18. X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018). [CrossRef]  

19. L. Cong, P. Pitchappa, C. Lee, and R. Singh, “Active phase transition via loss engineering in a terahertz MEMS metamaterial,” Adv. Mater. 29(26), 1700733 (2017). [CrossRef]  

20. X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016). [CrossRef]  

21. S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017). [CrossRef]  

22. A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018). [CrossRef]  

23. C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019). [CrossRef]  

24. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021). [CrossRef]  

25. J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020). [CrossRef]  

26. J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018). [CrossRef]  

27. J. Rogers, Y. Huang, O. G. Schmidt, and D. H. Gracias, “Origami MEMS and NEMS,” MRS Bull. 41(2), 123–129 (2016). [CrossRef]  

28. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011). [CrossRef]  

29. M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015). [CrossRef]  

30. Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018). [CrossRef]  

31. J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: From art to photonics,” Nanophotonics 7(10), 1637–1650 (2018). [CrossRef]  

32. Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018). [CrossRef]  

33. W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019). [CrossRef]  

34. L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016). [CrossRef]  

35. Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017). [CrossRef]  

36. S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020). [CrossRef]  

37. Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020). [CrossRef]  

38. S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021). [CrossRef]  

39. R. W. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–250 (1971).

40. E. D. Palik, Handbook of optical constants of solids (Academic press, 1998), Vol. 3.

References

  • View by:

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  2. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref]
  3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref]
  4. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
    [Crossref]
  5. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref]
  6. C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
    [Crossref]
  7. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref]
  9. P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
    [Crossref]
  10. N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
    [Crossref]
  11. H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
    [Crossref]
  12. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref]
  13. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref]
  14. P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020).
    [Crossref]
  15. T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
    [Crossref]
  16. J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11(1), 3574 (2020).
    [Crossref]
  17. B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
    [Crossref]
  18. X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
    [Crossref]
  19. L. Cong, P. Pitchappa, C. Lee, and R. Singh, “Active phase transition via loss engineering in a terahertz MEMS metamaterial,” Adv. Mater. 29(26), 1700733 (2017).
    [Crossref]
  20. X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
    [Crossref]
  21. S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
    [Crossref]
  22. A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
    [Crossref]
  23. C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
    [Crossref]
  24. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
    [Crossref]
  25. J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020).
    [Crossref]
  26. J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
    [Crossref]
  27. J. Rogers, Y. Huang, O. G. Schmidt, and D. H. Gracias, “Origami MEMS and NEMS,” MRS Bull. 41(2), 123–129 (2016).
    [Crossref]
  28. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
    [Crossref]
  29. M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
    [Crossref]
  30. Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018).
    [Crossref]
  31. J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: From art to photonics,” Nanophotonics 7(10), 1637–1650 (2018).
    [Crossref]
  32. Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
    [Crossref]
  33. W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
    [Crossref]
  34. L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
    [Crossref]
  35. Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
    [Crossref]
  36. S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
    [Crossref]
  37. Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
    [Crossref]
  38. S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
    [Crossref]
  39. R. W. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–250 (1971).
  40. E. D. Palik, Handbook of optical constants of solids (Academic press, 1998), Vol. 3.

2021 (2)

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

2020 (7)

J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020).
[Crossref]

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020).
[Crossref]

J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11(1), 3574 (2020).
[Crossref]

2019 (4)

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
[Crossref]

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

2018 (9)

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018).
[Crossref]

J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: From art to photonics,” Nanophotonics 7(10), 1637–1650 (2018).
[Crossref]

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

2017 (3)

L. Cong, P. Pitchappa, C. Lee, and R. Singh, “Active phase transition via loss engineering in a terahertz MEMS metamaterial,” Adv. Mater. 29(26), 1700733 (2017).
[Crossref]

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref]

2016 (3)

J. Rogers, Y. Huang, O. G. Schmidt, and D. H. Gracias, “Origami MEMS and NEMS,” MRS Bull. 41(2), 123–129 (2016).
[Crossref]

L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

2015 (3)

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

2013 (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

2012 (2)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

1971 (1)

R. W. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–250 (1971).

Abdollahramezani, S.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Adibi, A.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Agarwal, R.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Averitt, R. D.

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Azad, A. K.

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Barnard, A. W.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Bin, Z.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

Blees, M. K.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Bohn, J.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Cai, W.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Capasso, F.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Chao, Q.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Chen, B. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Chen, H. T.

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Chen, M. K.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Chen, S.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

Chen, W. T.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

Chen, Y.

J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020).
[Crossref]

Chen, Y. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Cheng, G.

W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
[Crossref]

Chevalier, P.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

Choi, W. J.

W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
[Crossref]

Cong, L.

L. Cong, P. Pitchappa, C. Lee, and R. Singh, “Active phase transition via loss engineering in a terahertz MEMS metamaterial,” Adv. Mater. 29(26), 1700733 (2017).
[Crossref]

D’Aversa, G.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Deng, L.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Deshmukh, S.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Du, H.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
[Crossref]

Duan, G.

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Duan, H.

J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020).
[Crossref]

Ee, H. S.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref]

Eftekhar, A. A.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

El-Sayed, M. A.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Erping, L.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Faerman, A.

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

Fan, K.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Fan, T.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Fan, X.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Fang, N. X.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Fasold, S.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Feng, S.

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Gao, H.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–250 (1971).

Gracias, D. H.

J. Rogers, Y. Huang, O. G. Schmidt, and D. H. Gracias, “Origami MEMS and NEMS,” MRS Bull. 41(2), 123–129 (2016).
[Crossref]

Gu, C.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Guan, Y. S.

Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018).
[Crossref]

Guangming, W.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Guo, H.

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

Hasman, E.

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Hemmatyar, O.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Hirscher, M.

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Hong, M.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Hongsheng, C.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Hu, Y.

J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020).
[Crossref]

Huang, P. Y.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Huang, T. T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Huang, Y.

J. Rogers, Y. Huang, O. G. Schmidt, and D. H. Gracias, “Origami MEMS and NEMS,” MRS Bull. 41(2), 123–129 (2016).
[Crossref]

Huang, Z.

W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
[Crossref]

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Ji, C. Y.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

Jiao, B.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Kamin, S.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Keiser, G. R.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Kenney, M.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Kevek, J. W.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Kiarashinejad, Y.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Kim, Y.

L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
[Crossref]

Kivshar, Y. S.

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

Kleiner, V.

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

Kobrin, B.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Komar, A.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

Kotov, N. A.

W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
[Crossref]

L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
[Crossref]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Kuznetsov, A. I.

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Lee, C.

L. Cong, P. Pitchappa, C. Lee, and R. Singh, “Active phase transition via loss engineering in a terahertz MEMS metamaterial,” Adv. Mater. 29(26), 1700733 (2017).
[Crossref]

Li, G.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Li, H.-P.

P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020).
[Crossref]

Li, J.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020).
[Crossref]

J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11(1), 3574 (2020).
[Crossref]

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
[Crossref]

J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: From art to photonics,” Nanophotonics 7(10), 1637–1650 (2018).
[Crossref]

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Li, T.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Li, W.

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Li, X.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Li, Z. Y.

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
[Crossref]

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Lin, R. M.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Liu, N.

J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11(1), 3574 (2020).
[Crossref]

J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020).
[Crossref]

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

Liu, X.

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

Liu, Z.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: From art to photonics,” Nanophotonics 7(10), 1637–1650 (2018).
[Crossref]

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
[Crossref]

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Lu, L.

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
[Crossref]

Lyu, J.

L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
[Crossref]

Maguid, E.

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

Malek, S. C.

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

McEuen, P. L.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

McGill, K. L.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Miroshnichenko, A.

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

Mohite, A. D.

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Muhlenbernd, H.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Muller, D. A.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Murauski, A. A.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Muravsky, A. A.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Neshev, D.

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

Neshev, D. N.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Neubrech, F.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

Norris, T. B.

W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
[Crossref]

Oren, D.

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic press, 1998), Vol. 3.

Pan, R.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Paniagua-Domínguez, R.

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

Pertsch, T.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Pitchappa, P.

L. Cong, P. Pitchappa, C. Lee, and R. Singh, “Active phase transition via loss engineering in a terahertz MEMS metamaterial,” Adv. Mater. 29(26), 1700733 (2017).
[Crossref]

Pop, E.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Quan, B.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Ren, S.

Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Roberts, S. P.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Rogers, J.

J. Rogers, Y. Huang, O. G. Schmidt, and D. H. Gracias, “Origami MEMS and NEMS,” MRS Bull. 41(2), 123–129 (2016).
[Crossref]

Rose, P. A.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Rubin, N. A.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

Ruyack, A. R.

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Saxton, W.

R. W. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–250 (1971).

Schalch, J.

Schmidt, O. G.

J. Rogers, Y. Huang, O. G. Schmidt, and D. H. Gracias, “Origami MEMS and NEMS,” MRS Bull. 41(2), 123–129 (2016).
[Crossref]

Schutz, G.

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Segev, M.

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

Seren, H. R.

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Shang, C.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Shi, Z.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

Shiwei, T.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Shyu, T. C.

L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
[Crossref]

Singh, A.

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Singh, R.

L. Cong, P. Pitchappa, C. Lee, and R. Singh, “Active phase transition via loss engineering in a terahertz MEMS metamaterial,” Adv. Mater. 29(26), 1700733 (2017).
[Crossref]

Smith, D. R.

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Staude, I.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Stav, T.

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Taghinejad, H.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Taghinejad, M.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Tang, C.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Tang, Y.

Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018).
[Crossref]

Taylor, A. J.

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Tong, C.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Wang, G.-M.

P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020).
[Crossref]

Wang, J. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Wang, X.

L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
[Crossref]

Wang, Y.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Wang, Y.-W.

P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020).
[Crossref]

Wang, Z.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Wei, W.

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

Wenye, J.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Xia, J.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xie, P.

P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020).
[Crossref]

Xiong, W.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Xu, L.

L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xu, Y.

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

Yang, L.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Yao, Y.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Yin, J.

Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yu, P.

J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11(1), 3574 (2020).
[Crossref]

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

Yu, Y. F.

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

Zandehshahvar, M.

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

Zeng, B.

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Zeng, C.

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Zentgraf, T.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhang, J.

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Zhang, S.

J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11(1), 3574 (2020).
[Crossref]

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhang, X.

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Zhang, Z.

Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018).
[Crossref]

Zhao, X.

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Zheng, G.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Zong, B.

P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020).
[Crossref]

Zou, C.

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Zuojia, W.

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

ACS Nano (3)

P. Yu, J. Li, X. Li, G. Schutz, M. Hirscher, S. Zhang, and N. Liu, “Generation of Switchable Singular Beams with Dynamic Metasurfaces,” ACS Nano 13(6), 7100–7106 (2019).
[Crossref]

J. Li, Y. Chen, Y. Hu, H. Duan, and N. Liu, “Magnesium-Based Metasurfaces for Dual-Function Switching between Dynamic Holography and Dynamic Color Display,” ACS Nano 14(7), 7892–7898 (2020).
[Crossref]

L. Xu, X. Wang, Y. Kim, T. C. Shyu, J. Lyu, and N. A. Kotov, “Kirigami Nanocomposites as Wide-Angle Diffraction Gratings,” ACS Nano 10(6), 6156–6162 (2016).
[Crossref]

ACS Photonics (2)

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,” ACS Photonics 5(5), 1742–1748 (2018).
[Crossref]

C. Zou, A. Komar, S. Fasold, J. Bohn, A. A. Muravsky, A. A. Murauski, T. Pertsch, D. N. Neshev, and I. Staude, “Electrically Tunable Transparent Displays for Visible Light Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1533–1540 (2019).
[Crossref]

Adv. Mater. (3)

L. Cong, P. Pitchappa, C. Lee, and R. Singh, “Active phase transition via loss engineering in a terahertz MEMS metamaterial,” Adv. Mater. 29(26), 1700733 (2017).
[Crossref]

Y. S. Guan, Z. Zhang, Y. Tang, J. Yin, and S. Ren, “Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability,” Adv. Mater. 30(20), 1706390 (2018).
[Crossref]

Z. Liu, Y. Xu, C. Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces,” Adv. Mater. 32(8), 1907077 (2020).
[Crossref]

Adv. Photonics (1)

C. Tong, T. Shiwei, Z. Bin, W. Guangming, J. Wenye, Q. Chao, W. Zuojia, L. Erping, and C. Hongsheng, “Ultrawideband chromatic aberration-free meta-mirrors,” Adv. Photonics 3(1), 016001 (2020).
[Crossref]

Laser Photonics Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Light: Sci. Appl. (1)

B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Sci. Appl. 7(1), 51 (2018).
[Crossref]

Microsyst. Nanoeng. (1)

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

MRS Bull. (1)

J. Rogers, Y. Huang, O. G. Schmidt, and D. H. Gracias, “Origami MEMS and NEMS,” MRS Bull. 41(2), 123–129 (2016).
[Crossref]

Nano Lett. (3)

S. C. Malek, H. S. Ee, and R. Agarwal, “Strain Multiplexed Metasurface Holograms on a Stretchable Substrate,” Nano Lett. 17(6), 3641–3645 (2017).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, W. Cai, E. Pop, M. A. El-Sayed, and A. Adibi, “Dynamic Hybrid Metasurfaces,” Nano Lett. 21(3), 1238–1245 (2021).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref]

Nanophotonics (1)

J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: From art to photonics,” Nanophotonics 7(10), 1637–1650 (2018).
[Crossref]

Nat. Commun. (2)

S. Chen, Z. Liu, H. Du, C. Tang, C. Y. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, and J. Li, “Electromechanically reconfigurable optical nano-kirigami,” Nat. Commun. 12(1), 1299 (2021).
[Crossref]

J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11(1), 3574 (2020).
[Crossref]

Nat. Mater. (3)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

W. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, and N. A. Kotov, “Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators,” Nat. Mater. 18(8), 820–826 (2019).
[Crossref]

Nat. Nanotechnol. (3)

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Nature (1)

M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, “Graphene kirigami,” Nature 524(7564), 204–207 (2015).
[Crossref]

Optica (1)

Optik (1)

R. W. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–250 (1971).

Photonics Res. (1)

S. Chen, W. Wei, Z. Liu, X. Liu, S. Feng, H. Guo, and J. Li, “Reconfigurable nano-kirigami metasurfaces by pneumatic pressure,” Photonics Res. 8(7), 1177–1182 (2020).
[Crossref]

Prog. Electromagn. Res. (1)

P. Xie, G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, “Wideband RCS Reduction of High Gain Fabry-Perot Antenna Employing a Receiver-Transmitter Metasurface,” Prog. Electromagn. Res. 169, 103–115 (2020).
[Crossref]

Sci. Adv. (3)

H. Gao, Y. Wang, X. Fan, B. Jiao, T. Li, C. Shang, C. Zeng, L. Deng, W. Xiong, J. Xia, and M. Hong, “Dynamic 3D meta-holography in visible range with large frame number and high frame rate,” Sci. Adv. 6(28), eaba8595 (2020).
[Crossref]

Z. Liu, H. Du, J. Li, L. Lu, Z. Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4(7), eaat4436 (2018).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4(6), eaar6768 (2018).
[Crossref]

Sci. Rep. (1)

Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z. Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Science (5)

T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361(6407), 1101–1104 (2018).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Other (1)

E. D. Palik, Handbook of optical constants of solids (Academic press, 1998), Vol. 3.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Scheme for pixelated electromechanical nano-kirigami. (a) Top-view illustration of the 2D nano-kirigami precursor arranged in a square lattice with a separation of 2 µm. The spiral curves in the unit cell are defined by r(θ) = 220 × θ. (b) Front-view of (top) 2D and (bottom) calculated 3D deformed Archimedean spiral pattern in a 60-nm-thick gold layer, which is suspended by four SiO2 supporters with a thickness of 400 nm. (c, d) Side-view and front-view plots of three 3D deformed spiral patterns with increasing azimuth angle (Δθ = 1.76π, 2.08π, 2.25π) under the same bias voltage V=10.4 v. As a result, the deformation heights Δh are 33, 100, and 170 nm, respectively. (e, f) Schematic diagram of the electromechanically reconfigurable nano-kirigami metasurface with pixelated spiral design. The value of Δθ in each unit can be independently designed.
Fig. 2.
Fig. 2. Electromechanically reconfigurable holographic design under single-voltage control. (a) (left) Height of the central plate and (right) corresponding phase distributions at the three wavelengths as a function of the azimuth angle Δθ under the same DC voltage. (b) Phase retardation and reflection efficiency of eight spiral units. The front-view schematics of the eight units are shown in the bottom of the chart (images are stretched by 300% in z-direction). (c) Schematic of the electromechanically reconfigurable nano-kirigami metasurface for holographic display under identical DC voltage control. (d) Numerically reconstructed holographic image of an Archimedean spiral pattern. Structural parameters: gold thickness t = 60 nm; lattice periodicity p = 2 µm; SiO2 thickness d = 400 nm.
Fig. 3.
Fig. 3. Electromechanically reconfigurable metalens. (a) Schematic of the metalens for dynamic light focusing, of which the reflection phase of incident plane wave is modulated by the applied DC voltage. (b) Ideal phase distribution in the metasurface plane for far-field focusing. The phase profile of the metalens is achieved by designing the azimuthal angle of the Archimedean spirals in each pixel. (c) Calculated phase profiles (cyan) and corresponding intensities (pink) of the metalens at z = 800 µm before and after applying certain voltage. The signal-to-noise ratio is greatly improved by increasing the DC voltage. (d) Intensity distribution of electric field in the xy plane (z = 800 µm). Images sizes: 80×80 µm2 (e) Calculated far-field electric-field intensity distribution of the metasurfaces under 10.4v. Images sizes: 80×500 µm2.
Fig. 4.
Fig. 4. Reprogrammable metasurface design based on pixelated nano-kirigami deformations. (a) (left) Height of the same central plate of the deformed nano-kirigami spiral structures and (right) corresponding phase retardations at three wavelengths versus predefined voltage. (b) Calculated phase retardation and reflection efficiency of eight unit cells formed by applying eight different voltages on the same spiral plate. (c) Pixelated voltage-controllable nano-kirigami patterns for holographic displays. A series of voltage distribution frames (1, 2, 3…) are digitally designed to dynamically generate the phase distribution, which is computed by using the modified GS algorithm. Every pixel consists of the same basic Archimedean spiral pattern but is applied with different programmed voltages. As a result, different reconstructed images (Frame 1, 2, 3…) can be instantly and dynamically generated (the three images are separated for clearness). (d) Corresponding voltage distributions of the coded metasurfaces for different holographic images, as well as the simulation results of reconstructed images at the imaging plane. The simulated holographic images of “smile”, “windmill”, “star” are obtained at the imaging plane of z = 1000 µm. Structural parameters: gold thickness t = 60 nm; lattice periodicity p = 2 µm; SiO2 thickness d = 400 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ = k ( R 2 + f 2 f ) ,

Metrics