Abstract

A Mach-Zehnder interferometer system based on weak measurement was set up to determinate the concentration variation of molecule by measuring the phase difference change between the two optical paths. The spectrum of the light was recorded to monitor the concentration of trastuzumab (Herceptin), which is a humanised monoclonal antibody, targeted to human epidermal growth factor receptor 2 (HER2). The trastuzumab targeting to HER2 was real-time detected and continuously monitored, the HER2 numbers of COS7 cells on a coverslip was determined at pico-molar level. Our weak measurement enabled method proposes an alternative approach for the concentration detection of molecules, providing a promising functional tool for the quantification of HER2 in cancer cells, possibly promoting fields such as the diagnosis and treatment of cancer.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum weak measurement, which was first proposed in 1988 by Aharonov, Albert, and Vaidman [1], owns a great advantage of high precision of numerous detections. It was proven to be used for ultrasensitive detection of physical parameters, such as Spin Hall Effect of light [2], optical phase [3], speed [4], displacement [5] and et al. Moreover, weak measurement has been extended to many applications of bio-molecule detection [612]. Encouragingly, it was reported to be applicable in wave-based interference system by Salazar-Serrano L. J. and his colleagues [13], providing an effective way to expand the application of weak measurement in more fields. Based on the weak measurement in optical interferometer system, two orthogonal polarizations worked as the eigenstates in a two-level system, and propagated along two paths of the system. Another two polarizations, which approach to be perpendicular to each other, were prepared to be the pre- and post-selection respectively. To conduct the spectrum analysis in frequency domain, the probe was realized with a Gaussian spectrum, which would be reshaped with a new central wavelength after the projective measurement on the post-selection state. Hence, by appropriately selecting the pre- and post-selections, the phase difference between the two eigenstates was amplified, and an amplification factor was revealed in the central wavelength shift of output spectrum. With such a method, numerous high precision detections have been accomplished in recent decades [14,15]. Especially, benefiting from the high sensitivity of optical phase, the interferometer-based weak measurement exhibited a striking potential in the precise measurement of molecule concentration [16], further promoting real-time monitoring of biochemical reaction [17].

As a transmembrane receptor tyrosine kinase, human epidermal growth factor receptor 2 (HER2) is of paramount importance in growth and proliferation of cells [18]. HER2 was reported to be overexpressed in 20–30% of breast cancer, and also proved to be responsible for the poor prognosis [19]. Therefore, the quantification of HER2 is the crucial for the treat of HER2-positive cancer. Currently, there are two FDA-approved methods to assess the full HER2 status, including immunohistochemistry (IHC) [20] and fluorescence in situ hybridization (FISH) [21]. However, due to numerous factors, such as the low specificity of HercepTest [22] and warm/cold ischemic time [23], IHC to accurately determine the HER2 expression was greatly weakened. For FISH [24], the gene detection is expensive and time-consuming, thus limiting its applications. Therefore, the success rate of accurate HER2 detection is low in related population [25], which always requires multiple measurements while the immunohistochemistry reaction fails [26]. Due to these problems, the accurate and rapid assessments of the content and status of HER2 is becoming a plight in HER2-positive cancers treatments.

Actually, trastuzumab, which is an anti-HER2 monoclonal antibody with a high affinity to HER2 [27], has an antiproliferative effect on cells transformed by overexpression of HER2 [28]. It is an effective treatment for the HER2-positive cancer according to National Comprehensive Cancer Network (NCCN) [29]. However, trastuzumab is a long-range and expensive targeted molecule drug [30], and the overuse may lead cardiac toxic effects [31]. Hence, finding the most appropriate dose and regimen for individual patients with HER2 positive cancer to maximize therapeutic effect is particularly essential. The accurate monitoring of HER2 and the binding status of the trastuzumab greatly contribute to later diagnosis and treatment. Although increasing attentions have been paid and considerable effort has been made on the diagnosis of cancer bio-markers, effective and efficient technologies for clinical application have been continuously explored, whether about low molecular level [32,33] or high molecular weight [34,35]. A fast and accurate method to detect HER2 overexpression and monitor the binding processing of target drug is still desired to be realized.

In this work, we proposed a HER2 detection scheme with a weak measurement system based on Mach-Zehnder interferometer. By introducing an optical phase difference between two paths of the system, the conjunction of trastuzumab on the HER2 of COS7 cell could be calculated with the weak measurement signal. Depending on spectrum analysis, we detected the concentration of trastuzumab in the buffer, and monitored its binding process in real-time. Through concentration analysis, the HER2 numbers of COS7 cells on coverslip were quantified at pico-molar level.

2. Methods and materials

2.1 Weak value amplification

In the method of weak measurement, there are three essential elements, that are pre-selection $|{\psi _i}\rangle $, post-selection $|{\psi _f}\rangle $ and weak interaction. In optical weak measurement system, two eigenstates are represented with two orthogonal polarizations. Usually, horizontal polarization |$H\rangle $ and vertical polarization |$V\rangle $ are chosen as the eigenstates. The pre- and post-selection were realized with polarization. The phase change from the weak interaction could be detected with a probe after projection measurement on the post-selection. The state of the output probe will contain a weak value expressed as ${A_w} = \frac{{ < \phi |A|\psi > }}{{ < \phi |\psi > }}$, which is corresponding to the amplification factor. Here, A is the observable, which reveals the disturb capacity to two eigenstates of the substance under testing. Hence, while the pre-selection $|{\psi _i}\rangle $ and post-selection $|{\psi _f}\rangle $ approach to be orthogonal, an extraordinarily large weak value could be achieved.

In weak measurement system, the pre-selection and post-selection was prepared respectively, as Eq. (1) displays.

$$|{\psi _i}\rangle = \sin \alpha |H\rangle + \cos \alpha |V\rangle ,\; \; |{\psi _f}\rangle ={-} \cos ({\alpha + \beta } )|H\rangle + \textrm{sin}({\alpha + \beta } )\textrm{exp}[{i({\varphi + \pi /2 + x} )} ]|V\rangle $$

Here, α is the azimuth of pre-selected polarization, while β is the angle from post-selected polarimeter to the orientation perpendicular to the pre-selected polarimeter. The phase $\varphi $, which is actually the phase difference between |$H\rangle $ and |$V\rangle $, is the parameter to be detected induced by substance under testing. x is the initial inevitable phase difference. With a probe of Gaussian spectrum, the central wavelength of output spectrum could be calculated by Eq. (2) [16]:

$$\delta \lambda ={-} \frac{{4\pi {{(\Delta \lambda )}^2}}}{{{\lambda _0}}}{\mathop{\rm Im}\nolimits} {A_w} ={-} \frac{{4\pi {{(\Delta \lambda )}^2}\gamma \sin (\varphi + \frac{\pi }{2} + x)}}{{{\lambda _0}(1 + {\gamma ^2} - 2\gamma \cos (\varphi + \frac{\pi }{2} + x))}}$$

Here, γ =cosα sin (α+β)/sinα cos (α+β), ${\lambda _0}$ and $\Delta \mathrm{\lambda }$ is the wavelength and bandwidth of light source. Hence, with a spectrum analysis, the phase $\varphi $ could be obtained. Optical phase is determined by varied parameters, including the transmission length and refractive index, which is corresponding to the concentration of dilution. Thus, the method of weak measurement was applied for the bio-medical molecule detection with the advantage of high precision.

2.2 Specific binding between trastuzumab and HER2

Trastuzumab, which was a humanized monoclonal antibody with recombinant DNA, could inhibit the growth, division and surviving of cancer cells by a high affinity binding with extracellular domain [36]. In this work, the binding process between trastuzumab and HER2 was built in a cuvette, which was installed in the measuring path of the weak measurement system. COS7 cells were cultured on coverslip with a diameter of 14 mm, as shown in Fig. 1. To avoid the release of cells from substrate, we fixed the cells with 4% of paraformaldehyde on the coverslips, which have been processed by covering with 0.1% of gelatin. To avoid the presence of other elements, which may cause unnecessary affection on the experiments, the COS7 cells have been blocked with 1% Bovine Serum Albumin (BSA) blocking solution. By neutralizing ion concentration/potential and removing the nonspecific binding sites, BSA could decrease non-specific signaling generated by non-specific binding of proteins or peptides, which were from molecules released by the cells or presented in culture medium, thus guarantying the specific binding between HER2 receptor and trastuzumab with a high affinity.

 figure: Fig. 1.

Fig. 1. (a) Micrograph of COS7 cells on the glass, (b) The binding process of trastuzumab on the HER2 of COS7 cell

Download Full Size | PPT Slide | PDF

In trastuzumab solution, the effective refractive index depends on the concentration of molecules. Through the binding of trastuzumab with HER2 on the cells, the concentration of trastuzumab continued to decrease until saturated in the solution. Compared with reference arm of weak measurement based Mach-Zehnder system, such a concentration change would cause a refractive index variation in the measuring arm, consequently introducing a phase difference, which could be determined through the weak value amplification.

2.3 Materials

In our study, the phosphate buffer saline (PBS) was bought from Beyotime Inc., the trastuzumab was provided by the First Affiliated Hospital of Zhejiang University School of Medicine. The COS7 cells were cultured by the affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine.

3. Experiment and results

Our weak measurement experimental system with Mach-Zehnder interferometer structure was built as Fig. 2 displayed.

 figure: Fig. 2.

Fig. 2. Weak measurement system with Mach-Zehnder interferometer structure. SLD, Super radiant light-emitting diodes. GF, Gaussian filter. P1 and P2, polarimeters. PBS, polarization splitting prism.

Download Full Size | PPT Slide | PDF

In this system, the light source was a SLD (Superradiant light-emitting diodes, Thorlabs Inc., SLD830S-A20), with the central wavelength at 830 nm, spectral bandwidth of 20 nm. A Gaussian filter (GF) was utilized to modify the spectral profile with a Gaussian peak, which is necessary for the weak measurement in frequency domain. Two polarimeters (P1 and P2) were located respectively with an angle of $\frac{\pi }{4}$ and $- \frac{\pi }{4}$ versus the vertical direction. After the beam passing through P1, it was prepared in the pre-selective state, which could be expressed with $|{\psi _i}\rangle = \frac{{\sqrt 2 }}{2}|H\rangle - \frac{{\sqrt 2 }}{2}|V\rangle $. Subsequently, the light beam as well as the polarization was split into two parts by the first polarization splitting prism (PBS1). The horizontally polarized light ($|H\rangle $) and vertically polarized light ($|V\rangle $) propagated along different paths, and then they were coupled by the second polarization splitting prism (PBS2). After a post-selection of $|{\psi _f}\rangle ={-} \frac{{\sqrt 2 }}{2}|H\rangle + \frac{{\sqrt 2 }}{2}|V\rangle $, output light was accepted by the spectrograph for the spectrum analysis with LabVIEW program. In this system, choose one of the two paths as measuring arm and the other one as a reference. Two same cuvettes were installed in the two arms for experiments.

Depending on the derivation result presented in Eq. (2), we fitted the central wavelength shift with respect to phase difference between the two paths, as shown in Fig. 3. For the central wavelength, the output spectrum were fitted for the gravity [37].

 figure: Fig. 3.

Fig. 3. The theoretical fitting about wavelength shift versus phase

Download Full Size | PPT Slide | PDF

As Fig. 3 indicated, with an increasing phase difference, the central wavelength of output spectrum shifted periodically with varied sensitivity, which could be represented by the slope of the curve. In order to sense the phase caused by the measuring substance, we prepared an appropriate working area. Apart from the sensitivity for detection, the stability should be taken into accounted. In the internal around 4.8 rad and 11 rad, the wavelength shift has a fast response to the phase. Here, the spectrum presents two peaks, which are difficult to stabilize due to phase disruption caused by measurement parameters and environmental factors.

3.1 Detection of trastuzumab

To investigate the ability of this system for trastuzumab detection, the concentration response through phase change was tested. 35 ml of 1× PBS solution was added in both cuvettes, whose liquid level heights were controlled to ensure that light energy can pass through the water. The integration period of the spectrograph was set to be 20 µs. The central wavelength of the output spectrum could be monitored in real time. When 1 ml of trastuzumab diluent with concentration of $1.44 \times {10^{ - 7}}$ M was added in the measuring arm, the central wavelength suddenly dropped by about 1 nm, as shown in Fig. 4. After the diluent mixed well, the central wavelength approach to be steady. Then, the same amount of trastuzumab was added into the cuvette of reference arm, and the central wavelength shift positively. Corresponding wavelength shift were annotated in Fig. 4 as $\Delta {\lambda _m}$ and $\Delta {\lambda _r}$.

 figure: Fig. 4.

Fig. 4. Experimental result of trastuzumab detection in both measuring and reference arm

Download Full Size | PPT Slide | PDF

The wavelength shift is believed to be caused by the concentration change of the solution in the two paths. Since optical phase could be expressed with $\varphi = \frac{{nl}}{\lambda }$, where n is the refractive index, l is the optical transmission length in substance, and λ is the wavelength of light. Such a change induced the refractive index variation, which brought in a different optical length corresponding to phase difference furtherly. Depending on Eq. (2), the central wavelength of the light is believed to shift along the concentration change.

It is worthy to notice that the value of the two shifts were not the absolute same. We reasoned that it should be caused by the difference in the tilt angle versus the light direction in the two cuvettes, which would lead a varied optical path with the increasing concentration of solution. However, such a wavelength shift also well confirmed that the central wavelength of output spectrum is sensitive to the phase change corresponding to the varied concentration, verifying that it is suitable for concentration detection.

3.2 Concentration detection of trastuzumab

For the detection of trastuzumab diluent, two same cuvettes with the size of 10 mm×10 mm×30 mm were utilized in the measuring and referential arm respectively. In the measuring cuvette, 2.5 ml PBS was prepared, and 0.1 ml of $1.44 \times {10^{ - 9}}$ M was added into the solution. After it was mixed well, the same step was performed. As a reference, the cuvette in the reference arm was full of PBS solution for the phase compensation. The central wavelength was detected and saved in real time.

The concentration change of the solution caused by the addition of trastuzumab diluent led to an increasing refractive index, which further induced a phase difference between the two paths. Based on Eq. (2), the concentration variation was visualized with the wavelength shift, shown in Fig. 5(a). Immediately after the trastuzumab diluent was dropped, the output light was covered deliberately, for a distinction in the time axis. By averaging the value of central wavelength and comparing it with initial wavelength, the central wavelength shift could be acquired, as shown in Fig. 5(b). By repeating the experimental procedures 5 times with the same amount and concentration of reagent, we obtained the error bars of concentration detections via calculating the standard deviation of central wavelength shift. Through a line fitting, the slope of the concentration response curve, which revealed the sensitivity of the detection, was exhibited in Fig. 5(b) with a red line. In the inset of Fig. 5(b), corresponding parameters were listed, and the slop is about $9.04 \times {10^9}\; nm/M$ as an absolute value.

 figure: Fig. 5.

Fig. 5. (a) real-time monitoring the central wavelength with a varied concentration of trastuzumab. (b) the calibration curve for the concentration detection, the error bar shows the standard deviation of 5 replication experiments for the concentration detection of trastuzumab

Download Full Size | PPT Slide | PDF

3.3 Real-time monitoring of trastuzumab-HER2 binding

COS7 cells were prepared on a coverslip with the diameter of 14 mm. To ensure sufficient reaction, we assembled cuvettes with enlarged size at 40 mm × 40 mm × 40 mm. 44 ml of PBS was added into the both cuvettes in measuring and reference arm. In the measuring cuvette, 1 ml corresponding to $1.44 \times {10^{ - 10}}$ M of trastuzumab was dropped into and well mixed with the PBS, and then a prepared coverslip was put into the solution. The central wavelength was monitored in real time. Compared with the initial wavelength position, the real-time shift was recorded and exhibited in Fig. 6 as the black line. As a reference, without trastuzumab in the reaction solution, the central wavelength shift was also be detected after the COS7 cells coverslip was added into the measuring cuvette, as shown as the red line in Fig. 6.

 figure: Fig. 6.

Fig. 6. Real-time monitoring of trastuzumab-HER2 binding process. The black curve is the real-time monitoring about the binding of trastuzumab-HER2 positive cells, and the inset shows the spectrum in this working area. The red curve illustrated the control without trastuzumab in the reaction solution. The blue curve shows the real-time monitoring about the binding of trastuzumab-HER2 negative cells

Download Full Size | PPT Slide | PDF

By measuring and monitoring the response of central wavelength versus the concentration of trastuzumab, the binding of between trastuzumab and HER2 could be successively observed. The optical path corresponding to the phase caused by the concentration change of trastuzumab would reshape the output spectrum with a varied central wavelength, which could be recorded by fitting the center of gravity of the spectrum. Since the concentration of the trastuzumab in the binding process decreased continuously, the central wavelength keeps shifting with a monotone tendency until a saturation condition. As Fig. 6 denoted, an obvious wavelength shift was collected in the experimental group, which was represented by the black curve about the monitoring of the binding between trastuzumab and HER2 positive COS7 cells. However, in the control group, the wavelength shift was not obvious. In the group of the red curve, without trastuzumab in the solution, even if COS7 cells were brought into the trastuzumab solution, the concentration would not decrease. Thus, the central wavelength hardly changed without a consistent growth of phase difference. For a further exploration, the binding between trastuzumab and HER2 negative COS7 cells was accomplished. By immersing the HER2 positive COS7 cells on coverslip in the trastuzumab solution with a concentration of $6.87 \times {10^{ - 6}}$ M for 24 hours, and then washing the cells with PBS, we prepared the HER2 negative COS7 cells via occupying all the HER2 receptors with trastuzumab. The concentration detection with HER2 negative COS7 cells in trastuzumab solution was implemented following the procedure of experimental group. As the blue curve of Fig. 6 exhibits, there is no significant wavelength shift corresponding to the concentration change compared with the experimental group.

In this system, since $|\textrm{H}\rangle $ and $|\textrm{V}\rangle $ polarization propagated along two independent paths and went through different optical components, the phase difference between the two paths was sensitive to numerous facts, including mechanical vibration, airflow disturbances. Thus a fluctuation could be observed in the detection curve, even in the measuring cuvette without concentration changes, as shown in the red line of Fig. 6. In the monitoring of conjunction process, due to the spatial inhomogeneity caused by the decreased concentration of trastuzumab, the irregular phase oscillation was significantly amplified. This amplification can be observed from the experimental group, shown as the black line in Fig. 6, indicating a fluctuation with a large degree. That was because the working point moved to an ultra-sensitive range, as shown in the curve of Fig. 3 with a large slope at the phase around 4.5 rad. In this interval, the spectrum with two peaks, which was exhibited in the inset of Fig. 6, was more sensitive to the phase change induced by the uneven concentration in the reaction as well as environmental factors.

According to the concentration response curve in Fig. 5, which represented a calibration result, the central wavelength shifted versus trastuzumab concertation with a relationship of $\mathrm{\delta }\lambda ={-} 9.04 \times {10^9}\; \cdot C + 0.125$. Here, the unit of $\mathrm{\delta }\lambda $ and C was nm and mol/L, respectively. In this experiment, the length of cuvette was 3 times longer than that of cuvette in the concentration detection. Since the whole wavelength shift is about 6 nm as Fig. 6 reveals, the total concentration change could be calculated to be $1.625 \times {10^{ - 10}}$ M. With a volume of 45 ml, the amount of the trastuzumab, which was specifically adsorbed by HER2, should be 7.31 pM. It also implied that the number of the HER2 on one coverslip is $4.4 \times {10^{12}}$.

4. Discussion

In this work, a weak measurement system based on Mach-Zehnder interferometer was built to investigate the HER2 numbers on COS7 cells. With appropriate pre- and post-selection produced by two polarimeters for the value amplification, the phase difference between $|\textrm{H}\rangle $ and $|\textrm{V}\rangle $ could be determined by the spectrum analysis on output light. The two paths of the system played a role of measuring and reference arm, in which two cuvettes were installed for concentration detection. Through a theoretical analysis about weak measurement, the relationship between central wavelength shift and concentration of measuring materials was deducted. In addition, relevant theoretical fitting was conducted for a further description. With this approach, the concentration of trastuzumab diluent was detected as a concentration calibration, and a sensitivity of $9.04 \times {10^9}$ nm/M was acquired. It shows a precision superiority of weak measurement for the detection of biomedical molecule. Further, Furtherly, the quantification of HER2 on COS7 cells was realized. By monitoring the central wavelength of output spectra, the specifically binding process was observed intuitively. And the adsorbing capacity of trastuzumab corresponding to HER2 were calculated to be 7.31 pM. Our weak measurement enabled method opens up an alternative approach for concentration detection of molecules, providing a promising functional tool for quantifying HER2 expression, possibly promoting patients’ treatment in oncology.

Funding

National Natural Science Foundation of China (61805213, 62005244, U20A20219); Zhejiang Provincial Natural Science Foundation of China (LGF20C050001, LQ19H160040, LQ21F050008).

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but maybe obtained from the authors upon reasonable request.

References

1. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988). [CrossRef]  

2. O. Hosten and P. Kwiat, “Observation of the Spin Hall Effect of Light via Weak Measurements,” Science 319(5864), 787–790 (2008). [CrossRef]  

3. C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011). [CrossRef]  

4. G. I. Viza, J. Martínez-Rincón, G. A. Howland, H. Frostig, I. Shomroni, B. Dayan, and J. C. Howell, “Weak-values technique for velocity measurements,” Opt. Lett. 38(16), 2949–2952 (2013). [CrossRef]  

5. P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett. 102(17), 173601 (2009). [CrossRef]  

6. Y. L. Zhang, D. M. Li, Y. H. He, Z. Y. Shen, and Q. H. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016). [CrossRef]  

7. L. Lan, X. D. Qiu, L. G. Xie, L. Xiong, Z. X. Li, Z. Y. Zhang, and J. L. Du, “Precision improvement of surface plasmon resonance sensors based on weak-value amplification,” Opt. Express 25(18), 21107–21114 (2017). [CrossRef]  

8. D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017). [CrossRef]  

9. M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express 19(17), 16508–16517 (2011). [CrossRef]  

10. X. D. Qiu, L. G. Xie, X. Liu, L. Luo, Z. Y. Zhang, and J. L. Du, “Estimation of optical rotation of chiral molecules with weak measurements,” Opt. Lett. 41(17), 4032–4035 (2016). [CrossRef]  

11. D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018). [CrossRef]  

12. G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018). [CrossRef]  

13. L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Observation of spectral interference for any path difference in an interferometer,” Opt. Lett. 39(15), 4478–4481 (2014). [CrossRef]  

14. L. J. Salazar-Serrano, D. Barrera, W. Amaya, S. Sales, V. Pruneri, and J. P. Torres, “Enhancement of the sensitivity of a temperature sensor based on Fiber\n Bragg Gratings via weak value amplification,” Opt. Lett. 40(17), 3962–3965 (2015). [CrossRef]  

15. Y. J. Li, H. J. Li, J. Z. Huang, C. Fang, M. Liu, Z. Huang, and G. H. Zeng, “High-precision temperature sensor based on weak measurement,” Opt. Express 27(15), 21455 (2019). [CrossRef]  

16. D. M. Li, Z. Y. Shen, Y. H. He, Y. L. Zhang, Z. L. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016). [CrossRef]  

17. D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017). [CrossRef]  

18. D. J. Slamon, “Studies of the HER-2/neu Proto-oncogene in Human Breast Cancer,” Cancer Invest. 8(2), 253–254 (1990). [CrossRef]  

19. S. Yong, L. Tao, Y. P. Zhang, and Q. W. Zhang, “Evaluation of Left Ventricular Ejection Fractions in Breast Cancer Patients Undergoing Long-Term Trastuzumab Treatment,” Med Sci Monit 22, 5035–5040 (2016). [CrossRef]  

20. A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007). [CrossRef]  

21. M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016). [CrossRef]  

22. T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999). [CrossRef]  

23. I. Z. Yildiz-Aktas, D. J. Dabbs, and R. Bhargava, “The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma,” Mod. Pathol. 25(8), 1098–1105 (2012). [CrossRef]  

24. D. Furrer, F. Sanschagrin, S. Jacob, and C. Diorio, “Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens,” Am. J. Clin. Pathol. 144(5), 686–703 (2015). [CrossRef]  

25. L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014). [CrossRef]  

26. X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011). [CrossRef]  

27. B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010). [CrossRef]  

28. R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989). [CrossRef]  

29. S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017). [CrossRef]  

30. E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015). [CrossRef]  

31. L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012). [CrossRef]  

32. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021). [CrossRef]  

33. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic etachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019). [CrossRef]  

34. M. S. Anderson, “The Detection of Long-Chain Bio-Markers Using Atomic Force Microscopy,” Appl. Sci. 9(7), 1280 (2019). [CrossRef]  

35. D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018). [CrossRef]  

36. C. A. Hudis, “Trastuzumab - mechanism of action and use in clinical practice,” N Engl J Med 357(1), 39–51 (2007). [CrossRef]  

37. D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019). [CrossRef]  

References

  • View by:

  1. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
    [Crossref]
  2. O. Hosten and P. Kwiat, “Observation of the Spin Hall Effect of Light via Weak Measurements,” Science 319(5864), 787–790 (2008).
    [Crossref]
  3. C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011).
    [Crossref]
  4. G. I. Viza, J. Martínez-Rincón, G. A. Howland, H. Frostig, I. Shomroni, B. Dayan, and J. C. Howell, “Weak-values technique for velocity measurements,” Opt. Lett. 38(16), 2949–2952 (2013).
    [Crossref]
  5. P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett. 102(17), 173601 (2009).
    [Crossref]
  6. Y. L. Zhang, D. M. Li, Y. H. He, Z. Y. Shen, and Q. H. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
    [Crossref]
  7. L. Lan, X. D. Qiu, L. G. Xie, L. Xiong, Z. X. Li, Z. Y. Zhang, and J. L. Du, “Precision improvement of surface plasmon resonance sensors based on weak-value amplification,” Opt. Express 25(18), 21107–21114 (2017).
    [Crossref]
  8. D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
    [Crossref]
  9. M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express 19(17), 16508–16517 (2011).
    [Crossref]
  10. X. D. Qiu, L. G. Xie, X. Liu, L. Luo, Z. Y. Zhang, and J. L. Du, “Estimation of optical rotation of chiral molecules with weak measurements,” Opt. Lett. 41(17), 4032–4035 (2016).
    [Crossref]
  11. D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
    [Crossref]
  12. G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
    [Crossref]
  13. L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Observation of spectral interference for any path difference in an interferometer,” Opt. Lett. 39(15), 4478–4481 (2014).
    [Crossref]
  14. L. J. Salazar-Serrano, D. Barrera, W. Amaya, S. Sales, V. Pruneri, and J. P. Torres, “Enhancement of the sensitivity of a temperature sensor based on Fiber\n Bragg Gratings via weak value amplification,” Opt. Lett. 40(17), 3962–3965 (2015).
    [Crossref]
  15. Y. J. Li, H. J. Li, J. Z. Huang, C. Fang, M. Liu, Z. Huang, and G. H. Zeng, “High-precision temperature sensor based on weak measurement,” Opt. Express 27(15), 21455 (2019).
    [Crossref]
  16. D. M. Li, Z. Y. Shen, Y. H. He, Y. L. Zhang, Z. L. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
    [Crossref]
  17. D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
    [Crossref]
  18. D. J. Slamon, “Studies of the HER-2/neu Proto-oncogene in Human Breast Cancer,” Cancer Invest. 8(2), 253–254 (1990).
    [Crossref]
  19. S. Yong, L. Tao, Y. P. Zhang, and Q. W. Zhang, “Evaluation of Left Ventricular Ejection Fractions in Breast Cancer Patients Undergoing Long-Term Trastuzumab Treatment,” Med Sci Monit 22, 5035–5040 (2016).
    [Crossref]
  20. A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
    [Crossref]
  21. M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016).
    [Crossref]
  22. T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999).
    [Crossref]
  23. I. Z. Yildiz-Aktas, D. J. Dabbs, and R. Bhargava, “The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma,” Mod. Pathol. 25(8), 1098–1105 (2012).
    [Crossref]
  24. D. Furrer, F. Sanschagrin, S. Jacob, and C. Diorio, “Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens,” Am. J. Clin. Pathol. 144(5), 686–703 (2015).
    [Crossref]
  25. L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
    [Crossref]
  26. X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
    [Crossref]
  27. B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
    [Crossref]
  28. R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
    [Crossref]
  29. S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017).
    [Crossref]
  30. E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
    [Crossref]
  31. L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
    [Crossref]
  32. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
    [Crossref]
  33. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic etachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
    [Crossref]
  34. M. S. Anderson, “The Detection of Long-Chain Bio-Markers Using Atomic Force Microscopy,” Appl. Sci. 9(7), 1280 (2019).
    [Crossref]
  35. D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018).
    [Crossref]
  36. C. A. Hudis, “Trastuzumab - mechanism of action and use in clinical practice,” N Engl J Med 357(1), 39–51 (2007).
    [Crossref]
  37. D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019).
    [Crossref]

2021 (1)

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
[Crossref]

2019 (4)

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic etachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

M. S. Anderson, “The Detection of Long-Chain Bio-Markers Using Atomic Force Microscopy,” Appl. Sci. 9(7), 1280 (2019).
[Crossref]

D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019).
[Crossref]

Y. J. Li, H. J. Li, J. Z. Huang, C. Fang, M. Liu, Z. Huang, and G. H. Zeng, “High-precision temperature sensor based on weak measurement,” Opt. Express 27(15), 21455 (2019).
[Crossref]

2018 (3)

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018).
[Crossref]

2017 (4)

S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017).
[Crossref]

D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref]

L. Lan, X. D. Qiu, L. G. Xie, L. Xiong, Z. X. Li, Z. Y. Zhang, and J. L. Du, “Precision improvement of surface plasmon resonance sensors based on weak-value amplification,” Opt. Express 25(18), 21107–21114 (2017).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

2016 (5)

Y. L. Zhang, D. M. Li, Y. H. He, Z. Y. Shen, and Q. H. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref]

D. M. Li, Z. Y. Shen, Y. H. He, Y. L. Zhang, Z. L. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
[Crossref]

X. D. Qiu, L. G. Xie, X. Liu, L. Luo, Z. Y. Zhang, and J. L. Du, “Estimation of optical rotation of chiral molecules with weak measurements,” Opt. Lett. 41(17), 4032–4035 (2016).
[Crossref]

S. Yong, L. Tao, Y. P. Zhang, and Q. W. Zhang, “Evaluation of Left Ventricular Ejection Fractions in Breast Cancer Patients Undergoing Long-Term Trastuzumab Treatment,” Med Sci Monit 22, 5035–5040 (2016).
[Crossref]

M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016).
[Crossref]

2015 (3)

D. Furrer, F. Sanschagrin, S. Jacob, and C. Diorio, “Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens,” Am. J. Clin. Pathol. 144(5), 686–703 (2015).
[Crossref]

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

L. J. Salazar-Serrano, D. Barrera, W. Amaya, S. Sales, V. Pruneri, and J. P. Torres, “Enhancement of the sensitivity of a temperature sensor based on Fiber\n Bragg Gratings via weak value amplification,” Opt. Lett. 40(17), 3962–3965 (2015).
[Crossref]

2014 (2)

L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Observation of spectral interference for any path difference in an interferometer,” Opt. Lett. 39(15), 4478–4481 (2014).
[Crossref]

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

2013 (1)

2012 (2)

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

I. Z. Yildiz-Aktas, D. J. Dabbs, and R. Bhargava, “The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma,” Mod. Pathol. 25(8), 1098–1105 (2012).
[Crossref]

2011 (3)

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011).
[Crossref]

M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express 19(17), 16508–16517 (2011).
[Crossref]

2010 (1)

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

2009 (1)

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett. 102(17), 173601 (2009).
[Crossref]

2008 (1)

O. Hosten and P. Kwiat, “Observation of the Spin Hall Effect of Light via Weak Measurements,” Science 319(5864), 787–790 (2008).
[Crossref]

2007 (2)

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

C. A. Hudis, “Trastuzumab - mechanism of action and use in clinical practice,” N Engl J Med 357(1), 39–51 (2007).
[Crossref]

1999 (1)

T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999).
[Crossref]

1990 (1)

D. J. Slamon, “Studies of the HER-2/neu Proto-oncogene in Human Breast Cancer,” Cancer Invest. 8(2), 253–254 (1990).
[Crossref]

1989 (1)

R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
[Crossref]

1988 (1)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref]

Aharonov, Y.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref]

Ahmadivand, A.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
[Crossref]

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic etachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

Albert, D. Z.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref]

Allred, D.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Alsina, M.

S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017).
[Crossref]

Amaya, W.

Anderson, M. S.

M. S. Anderson, “The Detection of Long-Chain Bio-Markers Using Atomic Force Microscopy,” Appl. Sci. 9(7), 1280 (2019).
[Crossref]

Atanackovic, D.

S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017).
[Crossref]

Barnes, M. J.

T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999).
[Crossref]

Barrera, D.

Bhargava, R.

I. Z. Yildiz-Aktas, D. J. Dabbs, and R. Bhargava, “The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma,” Mod. Pathol. 25(8), 1098–1105 (2012).
[Crossref]

Bianchi, G.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Blayney, D. W.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Buyse, M.

M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016).
[Crossref]

Callander, N. S.

S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017).
[Crossref]

Chen, W. Q.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Chen, Z. L.

Cote, R.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Cui, R.

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

Dabbs, D. J.

I. Z. Yildiz-Aktas, D. J. Dabbs, and R. Bhargava, “The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma,” Mod. Pathol. 25(8), 1098–1105 (2012).
[Crossref]

Dayan, B.

Diorio, C.

D. Furrer, F. Sanschagrin, S. Jacob, and C. Diorio, “Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens,” Am. J. Clin. Pathol. 144(5), 686–703 (2015).
[Crossref]

Dixon, P. B.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett. 102(17), 173601 (2009).
[Crossref]

Dowsett, M.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Du, J. L.

Edge, S. B.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Fan, L.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Fang, C.

Fendly, B. M.

R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
[Crossref]

Finkelstein, D. M.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Fischer, P.

Fitzgibbons, P.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Fourmanoir, H.

M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016).
[Crossref]

Frostig, H.

Furrer, D.

D. Furrer, F. Sanschagrin, S. Jacob, and C. Diorio, “Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens,” Am. J. Clin. Pathol. 144(5), 686–703 (2015).
[Crossref]

Gerislioglu, B.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
[Crossref]

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic etachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

Ghoreishi, S. A.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
[Crossref]

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic etachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

Gianni, L.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Goss, P. E.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Gown, A. M.

T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999).
[Crossref]

Guan, T.

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

Guo, G. C.

C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011).
[Crossref]

Guo, H. Z.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Guo, Y. J.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Haba-Rodriguez, J.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Hagerty, K.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Hammond, M.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Hanna, W.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

He, Q. H.

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref]

Y. L. Zhang, D. M. Li, Y. H. He, Z. Y. Shen, and Q. H. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref]

He, Y. H.

D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019).
[Crossref]

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref]

D. M. Li, Z. Y. Shen, Y. H. He, Y. L. Zhang, Z. L. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
[Crossref]

Y. L. Zhang, D. M. Li, Y. H. He, Z. Y. Shen, and Q. H. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the Spin Hall Effect of Light via Weak Measurements,” Science 319(5864), 787–790 (2008).
[Crossref]

Howell, J. C.

G. I. Viza, J. Martínez-Rincón, G. A. Howland, H. Frostig, I. Shomroni, B. Dayan, and J. C. Howell, “Weak-values technique for velocity measurements,” Opt. Lett. 38(16), 2949–2952 (2013).
[Crossref]

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett. 102(17), 173601 (2009).
[Crossref]

Howland, G. A.

Huang, J. Z.

Huang, Z.

Hudis, C. A.

C. A. Hudis, “Trastuzumab - mechanism of action and use in clinical practice,” N Engl J Med 357(1), 39–51 (2007).
[Crossref]

Hudziak, R. M.

R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
[Crossref]

Hughes, M. E.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Im, S. A.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Im, Y. H.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Jacob, S.

D. Furrer, F. Sanschagrin, S. Jacob, and C. Diorio, “Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens,” Am. J. Clin. Pathol. 144(5), 686–703 (2015).
[Crossref]

Jacobs, T. W.

T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999).
[Crossref]

Ji, Y. H.

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

Jordan, A. N.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett. 102(17), 173601 (2009).
[Crossref]

Kaushik, A.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
[Crossref]

Kong, K. V.

D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018).
[Crossref]

Kumar, R.

S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017).
[Crossref]

Kumar, S. K.

S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the Spin Hall Effect of Light via Weak Measurements,” Science 319(5864), 787–790 (2008).
[Crossref]

Lan, L.

Langer, A.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Lewis, G. D.

R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
[Crossref]

Li, B. H.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Li, C. F.

C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011).
[Crossref]

Li, D. M.

D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019).
[Crossref]

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref]

D. M. Li, Z. Y. Shen, Y. H. He, Y. L. Zhang, Z. L. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
[Crossref]

Y. L. Zhang, D. M. Li, Y. H. He, Z. Y. Shen, and Q. H. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref]

Li, H. J.

Li, J. F.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Li, J. J.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Li, K.

D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019).
[Crossref]

Li, Y. J.

Li, Z. X.

Lim, Q. F.

D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018).
[Crossref]

Lin, B. Y.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Lin, D.

D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018).
[Crossref]

Lin, Q.

D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019).
[Crossref]

Liu, F.

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

Liu, M.

Liu, M. C.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Liu, X.

Liu, Y. Q.

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

Lluch, A.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Louis, J. S.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Luo, L.

Ma, H.

Manickam, P.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
[Crossref]

Martínez-Rincón, J.

Morandi, P.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Niland, J. C.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Ottesen, R. A.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Ouyang, T.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Pan, K. F.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Pedrini, J. L.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Pfeifer, M.

Pienkowski, T.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Poirier, B.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Press, M. F.

M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016).
[Crossref]

Pruneri, V.

Qian, W. Z.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Qiao, Z.

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

Qiu, X. D.

Ramezani, Z.

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
[Crossref]

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic etachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

Ratnayake, J.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Roman, L.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Ross, G.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Salazar-Serrano, L. J.

Sales, S.

Sanschagrin, F.

D. Furrer, F. Sanschagrin, S. Jacob, and C. Diorio, “Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens,” Am. J. Clin. Pathol. 144(5), 686–703 (2015).
[Crossref]

Sauter, G.

M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016).
[Crossref]

Schnitt, S. J.

T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999).
[Crossref]

Schwartz, J.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Semiglazov, V.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Shao, Z. M.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Shen, Z. Y.

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref]

D. M. Li, Z. Y. Shen, Y. H. He, Y. L. Zhang, Z. L. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
[Crossref]

Y. L. Zhang, D. M. Li, Y. H. He, Z. Y. Shen, and Q. H. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref]

Shepard, H. M.

R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
[Crossref]

Shi, L. X.

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

Shomroni, I.

Slamon, D. J.

M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016).
[Crossref]

D. J. Slamon, “Studies of the HER-2/neu Proto-oncogene in Human Breast Cancer,” Cancer Invest. 8(2), 253–254 (1990).
[Crossref]

Song, M. Y.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Srimuninnimit, V.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Starling, D. J.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett. 102(17), 173601 (2009).
[Crossref]

Staroslawska, E.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Strasser-Weippl, K.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Szado, T.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Tamimi, R. M.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Tan, M. J.

D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018).
[Crossref]

Tang, J. S.

C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011).
[Crossref]

Tao, L.

S. Yong, L. Tao, Y. P. Zhang, and Q. W. Zhang, “Evaluation of Left Ventricular Ejection Fractions in Breast Cancer Patients Undergoing Long-Term Trastuzumab Treatment,” Med Sci Monit 22, 5035–5040 (2016).
[Crossref]

Theriault, R. L.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Tian, G.

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

Torres, J. P.

Tseng, C. Y.

D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018).
[Crossref]

Tseng, L. M.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Ullrich, A.

R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
[Crossref]

Vaidman, L.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref]

Valagussa, P.

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

Valencia, A.

Viza, G. I.

Wang, C.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Wang, H.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Wang, N.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Wang, X. N.

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

Warner, E. T.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Winer, E. P.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Winget, M.

R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
[Crossref]

Wolff, A.

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Wong, Y. N.

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

Wu, L.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Xie, L. G.

Xie, Y. T.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Xin, M. G.

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref]

Xiong, L.

Xu, J. S.

C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011).
[Crossref]

Xu, X. Y.

C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011).
[Crossref]

Xu, Y.

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

Yang, A. P.

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

Yang, L.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Yang, Y. X.

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

Yaziji, H.

T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999).
[Crossref]

Yi, R.

D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019).
[Crossref]

Yildiz-Aktas, I. Z.

I. Z. Yildiz-Aktas, D. J. Dabbs, and R. Bhargava, “The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma,” Mod. Pathol. 25(8), 1098–1105 (2012).
[Crossref]

Yong, S.

S. Yong, L. Tao, Y. P. Zhang, and Q. W. Zhang, “Evaluation of Left Ventricular Ejection Fractions in Breast Cancer Patients Undergoing Long-Term Trastuzumab Treatment,” Med Sci Monit 22, 5035–5040 (2016).
[Crossref]

You, W. C.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Yu, K. D.

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Yuan, X. M.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Zeng, G. H.

Zhang, L.

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

Zhang, Q. W.

S. Yong, L. Tao, Y. P. Zhang, and Q. W. Zhang, “Evaluation of Left Ventricular Ejection Fractions in Breast Cancer Patients Undergoing Long-Term Trastuzumab Treatment,” Med Sci Monit 22, 5035–5040 (2016).
[Crossref]

Zhang, X. M.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Zhang, Y. L.

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref]

D. M. Li, Z. Y. Shen, Y. H. He, Y. L. Zhang, Z. L. Chen, and H. Ma, “Application of quantum weak measurement for glucose concentration detection,” Appl. Opt. 55(7), 1697–1702 (2016).
[Crossref]

Y. L. Zhang, D. M. Li, Y. H. He, Z. Y. Shen, and Q. H. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41(22), 5409–5412 (2016).
[Crossref]

Zhang, Y. P.

S. Yong, L. Tao, Y. P. Zhang, and Q. W. Zhang, “Evaluation of Left Ventricular Ejection Fractions in Breast Cancer Patients Undergoing Long-Term Trastuzumab Treatment,” Med Sci Monit 22, 5035–5040 (2016).
[Crossref]

Zhang, Z. Y.

Zhao, L.

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

Am. J. Clin. Pathol. (1)

D. Furrer, F. Sanschagrin, S. Jacob, and C. Diorio, “Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens,” Am. J. Clin. Pathol. 144(5), 686–703 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. M. Li, T. Guan, F. Liu, A. P. Yang, Y. H. He, Q. H. He, Z. Y. Shen, and M. G. Xin, “Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain,” Appl. Phys. Lett. 112(21), 213701 (2018).
[Crossref]

Appl. Sci. (1)

M. S. Anderson, “The Detection of Long-Chain Bio-Markers Using Atomic Force Microscopy,” Appl. Sci. 9(7), 1280 (2019).
[Crossref]

Arch. Pathol. Lab. Med. (1)

A. Wolff, M. Hammond, J. Schwartz, K. Hagerty, D. Allred, R. Cote, M. Dowsett, P. Fitzgibbons, W. Hanna, and A. Langer, “American Society of Clinical Oncology, College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Arch. Pathol. Lab. Med. 131(1), 18–43 (2007).
[Crossref]

Biosens. Bioelectron. (2)

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, A. Kaushik, P. Manickam, and S. A. Ghoreishi, “Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins,” Biosens. Bioelectron. 177(42), 112971 (2021).
[Crossref]

D. M. Li, Q. H. He, Y. H. He, M. G. Xin, Y. L. Zhang, and Z. Y. Shen, “Molecular imprinting sensor based on quantum weak measurement,” Biosens. Bioelectron. 94, 328–334 (2017).
[Crossref]

Cancer Invest. (1)

D. J. Slamon, “Studies of the HER-2/neu Proto-oncogene in Human Breast Cancer,” Cancer Invest. 8(2), 253–254 (1990).
[Crossref]

Chin. J. Cancer Res. (1)

X. M. Yuan, N. Wang, T. Ouyang, L. Yang, M. Y. Song, B. Y. Lin, Y. T. Xie, J. F. Li, K. F. Pan, W. C. You, and L. Zhang, “Current Status of Diagnosis And Treatment of Primary Breast Cancer in Beijing, 2008,” Chin. J. Cancer Res. 23(1), 38–42 (2011).
[Crossref]

J Clin Oncol. (1)

T. W. Jacobs, A. M. Gown, H. Yaziji, M. J. Barnes, and S. J. Schnitt, “Specificity of HercepTest in Determining HER-2/neu Status of Breast Cancers Using the United States Food and Drug Administration–Approved Scoring System,” J Clin Oncol. 17(7), 1983 (1999).
[Crossref]

J Natl Compr Canc Netw (1)

S. K. Kumar, N. S. Callander, M. Alsina, D. Atanackovic, and R. Kumar, “Clinical practice guidelines in oncology,” J Natl Compr Canc Netw 15(2), 230–269 (2017).
[Crossref]

J. Biol. Chem. (1)

B. H. Li, L. Zhao, C. Wang, H. Z. Guo, L. Wu, X. M. Zhang, W. Z. Qian, H. Wang, and Y. J. Guo, “The Protein-Protein Interface Evolution Acts in a Similar Way to Antibody Affinity Maturation,” J. Biol. Chem. 285(6), 3865–3871 (2010).
[Crossref]

J. Clin. Oncol. (2)

E. T. Warner, R. M. Tamimi, M. E. Hughes, R. A. Ottesen, Y. N. Wong, S. B. Edge, R. L. Theriault, D. W. Blayney, J. C. Niland, and E. P. Winer, “Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors,” J. Clin. Oncol. 33(20), 2254–2261 (2015).
[Crossref]

M. F. Press, G. Sauter, M. Buyse, H. Fourmanoir, and D. J. Slamon, “HER2 Gene Amplification Testing by Fluorescent In Situ Hybridization (FISH): Comparison of the ASCO-College of American Pathologists Guidelines With FISH Scores Used for Enrollment in Breast Cancer International Research Group Clinical Trials,” J. Clin. Oncol. 34(29), 3518–3528 (2016).
[Crossref]

J. Mater. Chem. B (1)

D. Lin, C. Y. Tseng, Q. F. Lim, M. J. Tan, and K. V. Kong, “A rapid and highly sensitive strain-effect graphene-based bio-sensor for the detection of stroke and cancer bio-markers,” J. Mater. Chem. B 6(17), 2536–2540 (2018).
[Crossref]

J. Phys. D: Appl. Phys. (2)

D. M. Li, T. Guan, Y. H. He, Q. H. He, Y. L. Zhang, X. N. Wang, Z. Y. Shen, Y. X. Yang, Z. Qiao, and Y. H. Ji, “A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection,” J. Phys. D: Appl. Phys. 50(49), 49LT01 (2017).
[Crossref]

D. M. Li, Y. H. He, R. Yi, Q. Lin, and K. Li, “Spectrum demodulating polarimeter based on weak measurement with a phase modulation,” J. Phys. D: Appl. Phys. 52(47), 475401 (2019).
[Crossref]

Lancet Oncol. (2)

L. Gianni, T. Pienkowski, Y. H. Im, L. Roman, L. M. Tseng, M. C. Liu, A. Lluch, E. Staroslawska, J. Haba-Rodriguez, S. A. Im, J. L. Pedrini, B. Poirier, P. Morandi, V. Semiglazov, V. Srimuninnimit, G. Bianchi, T. Szado, J. Ratnayake, G. Ross, and P. Valagussa, “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (Neo Sphere): a randomised multicentre, open-label, phase 2 trial,” Lancet Oncol. 13(1), 25–32 (2012).
[Crossref]

L. Fan, K. Strasser-Weippl, J. J. Li, J. S. Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss, “Breast cancer in China,” Lancet Oncol. 15(7), e279–e289 (2014).
[Crossref]

Med Sci Monit (1)

S. Yong, L. Tao, Y. P. Zhang, and Q. W. Zhang, “Evaluation of Left Ventricular Ejection Fractions in Breast Cancer Patients Undergoing Long-Term Trastuzumab Treatment,” Med Sci Monit 22, 5035–5040 (2016).
[Crossref]

Mod. Pathol. (1)

I. Z. Yildiz-Aktas, D. J. Dabbs, and R. Bhargava, “The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma,” Mod. Pathol. 25(8), 1098–1105 (2012).
[Crossref]

Mol. Cell. Biol. (1)

R. M. Hudziak, G. D. Lewis, M. Winget, B. M. Fendly, H. M. Shepard, and A. Ullrich, “p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor,” Mol. Cell. Biol. 9(3), 1165–1172 (1989).
[Crossref]

N Engl J Med (1)

C. A. Hudis, “Trastuzumab - mechanism of action and use in clinical practice,” N Engl J Med 357(1), 39–51 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (1)

C. F. Li, X. Y. Xu, J. S. Tang, J. S. Xu, and G. C. Guo, “Ultra-sensitive phase estimation with white light,” Phys. Rev. A 83(4), 044102 (2011).
[Crossref]

Phys. Rev. Appl. (1)

A. Ahmadivand, B. Gerislioglu, Z. Ramezani, and S. A. Ghoreishi, “Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic etachip technology,” Phys. Rev. Appl. 12(3), 034018 (2019).
[Crossref]

Phys. Rev. Lett. (2)

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett. 102(17), 173601 (2009).
[Crossref]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60(14), 1351–1354 (1988).
[Crossref]

Science (1)

O. Hosten and P. Kwiat, “Observation of the Spin Hall Effect of Light via Weak Measurements,” Science 319(5864), 787–790 (2008).
[Crossref]

Sensors (1)

G. Tian, X. N. Wang, D. M. Li, Y. L. Zhang, Y. H. He, L. X. Shi, Y. Q. Liu, Y. X. Yang, Y. Xu, and R. Cui, “Determination of Tumor Marker Carcinoembryonic Antigen with Biosensor Based on Optical Quantum Weak Measurements,” Sensors 18(5), 1550 (2018).
[Crossref]

Data availability

Data underlying the results presented in this paper are not publicly available at this time but maybe obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Micrograph of COS7 cells on the glass, (b) The binding process of trastuzumab on the HER2 of COS7 cell
Fig. 2.
Fig. 2. Weak measurement system with Mach-Zehnder interferometer structure. SLD, Super radiant light-emitting diodes. GF, Gaussian filter. P1 and P2, polarimeters. PBS, polarization splitting prism.
Fig. 3.
Fig. 3. The theoretical fitting about wavelength shift versus phase
Fig. 4.
Fig. 4. Experimental result of trastuzumab detection in both measuring and reference arm
Fig. 5.
Fig. 5. (a) real-time monitoring the central wavelength with a varied concentration of trastuzumab. (b) the calibration curve for the concentration detection, the error bar shows the standard deviation of 5 replication experiments for the concentration detection of trastuzumab
Fig. 6.
Fig. 6. Real-time monitoring of trastuzumab-HER2 binding process. The black curve is the real-time monitoring about the binding of trastuzumab-HER2 positive cells, and the inset shows the spectrum in this working area. The red curve illustrated the control without trastuzumab in the reaction solution. The blue curve shows the real-time monitoring about the binding of trastuzumab-HER2 negative cells

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| ψ i = sin α | H + cos α | V , | ψ f = cos ( α + β ) | H + sin ( α + β ) exp [ i ( φ + π / 2 + x ) ] | V
δ λ = 4 π ( Δ λ ) 2 λ 0 Im A w = 4 π ( Δ λ ) 2 γ sin ( φ + π 2 + x ) λ 0 ( 1 + γ 2 2 γ cos ( φ + π 2 + x ) )