Abstract

Dynamically reconfigurable structural colors are promising materials for new smart optical systems. However, improved reflected color quality (e.g., saturation, optical contrast, angular invariance) and larger tuning range/sensitivity are needed. Here, we demonstrate a vibrant, actively tunable system which meets these needs via coupling broadband plasmonic resonators to a responsive polymer film. Our structure consists of near-percolation gold nanoislands deposited on a poly[methyl methacrylate] (PMMA) spacer above a gold mirror, forming a Fabry–Pérot nanocavity. Broadband absorption in this system creates vivid reflected colors, while the polymer spacer enables continuous tuning over a wide color space. By exploiting swelling effects in PMMA, we show fast, reversible color switching in response to organic vapors. Our sensitive optical structure amplifies small vapor-induced changes in the spacer thickness, enabling naked-eye detection of changes as small as 10 nm. Additionally, optical absorption >99% yields modulation contrasts up to 80:1, opening the door to ultra-sensitive on-chip signal measurements, complementing the visual colorimetric readout. This structure has immediate implications for colorimetric bio/chemical sensing and may also find application to reflective displays and flexible/adaptive optical coatings.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Structural coloration underpins many emerging applications ranging from spectrometer-free biosensing to information encryption. Vivid/nonfading colors, durability, ultra-high resolution, environmental friendliness, and potential for smart/adaptive coloration are among the many benefits over dyes and pigments [1,2]. Often taking inspiration from nature [3], engineered structural colors are realized by exploiting different physical phenomena, including near-field coupling between adjacent nanoparticles [4], far-field diffraction [58], and Fabry–Pérot (FP) cavity resonances [2,911], while dynamic color tuning is achieved by altering the spacing and/or optical properties of the constituent elements [9,1214].

High quality reflective colors are especially desirable, as they may enable a wide range of practical applications, including low-power reflective displays, colorimetric sensors, and stimuli-responsive coatings [2]. To effectively meet the expected performance standards in these emerging application areas, the structural colors should have high color purity, wide tuning range, and angle-independence; and they should be compatible with inexpensive, scalable fabrication methods [1,2].

Broadband optical absorbers based on FP nanocavities offer a promising approach for large-area, tailorable reflective colors [2,15,16]. These systems are often realized in a metal-insulator-metal (MIM) configuration, consisting of a dielectric spacer sandwiched between a highly reflective mirror and a lossy metallic top film, and they are readily fabricated at large scale using standard lithography-free thin-film processes. Compared to traditional FP MIM cavities, which produce dull band-stop reflected colors, the broadband absorption of these structures results in bright, band-pass reflectance peaks [15,17]. Self-assembled metasurfaces based on plasmonic nanoparticles offer further control over the absorption profile of the top layer (and resulting color response of the entire stack), while maintaining scalable device fabrication [1722]. Franklin et al. recently demonstrated an innovative plasmonic MIM structure for display applications, which produced vivid, angle-independent reflective colors that were tuned by varying the nanoparticle size during deposition [19]. In another recent work, Roberts et al. used laser postprocessing to tune bright reflective colors in percolation-film MIM systems via reshaping of the top plasmonic nanostructures by localized plasmon heating [23]. In addition to changing the morphology, the density of nanoparticles in the top film can also be used to control the reflected color [18], further demonstrating the power of self-assembled plasmonic metasurfaces for reflective color generation in an MIM configuration. However, these have primarily been static realizations or on/off color switching between two states; an integrated functional layer would unlock new opportunities in continuous, reversible color tuning and colorimetric sensing.

In parallel, stimuli-responsive polymers [24] have been applied as the active tuning—or sensing—element in a wide range of scalable nanophotonic architectures, including single-layer responsive films [9,25], MIM structures [11,2628], and nanoparticle on mirror (NPoM) systems [29,30]. Stimuli-responsive polymers can be designed to respond to a wide range of environmental signals, including changes in chemical composition, charge, temperature, and pressure. Additionally, they are readily integrated with soft/flexible substrates enabling novel wearable sensors and conformal displays [31,32]. Yet, improvements are still needed in reflected color vibrancy and tuning range/sensitivity in these systems.

Here, we propose and demonstrate a nanophotonic platform which combines the vibrant reflective colors and broadband optical absorption of a self-assembled nanoisland MIM structure with the tunability and application potential of a stimuli-responsive polymer spacer. Our sensitive optical system amplifies small changes in the spacer properties (i.e., thickness and/or refractive index), resulting in large color shifts and strong optical contrast. Using a poly[methyl methacrylate] (PMMA) spacer, we demonstrate reversible, naked-eye detectable color tuning in response to organic vapor-induced polymer swelling. These structures are easily fabricated using standard thin-film processes and offer a stable reflected color response over wide viewing angles, facilitating practical sensing and display applications. Furthermore, near-perfect optical absorption in this system yields exceptionally high signal modulation at a desired wavelength, opening the door to ultra-sensitive on-chip measurements. Finally, we introduce a new figure of merit, which captures the sensing performance in this context.

2. Results

2.1 Device fabrication and color space

Our responsive nanoisland MIM structure is illustrated schematically in Fig. 1(a); the actively tunable PMMA polymer spacer is sandwiched between a near-percolation gold nanoisland film on top and an optically thick gold mirror below. The color reflected from this system is tuned by varying the thickness d of the polymer spacer layer, which determines the cavity resonance. In contrast to a traditional MIM resonator where the cavity resonance corresponds to a reflectance minimum (and corresponding band-stop reflected color) [33,34], the cavity resonance for our nanoisland MIM structure corresponds to a reflectance peak, while the off-resonance wavelengths are absorbed by the nanoisland film (Supplement 1, Figs. S1–S4). This key feature of our structure enables the vibrant reflective colors and enhanced colorimetric detection of changes in spacer thickness (Supplement 1, Fig. S5).

 figure: Fig. 1.

Fig. 1. Tunable reflective colors. (a) Schematic of Au nanoisland/PMMA/Au thin-film stack, illustrating structural coloration under white light illumination (left) and change in reflected color upon stimulus-induced polymer swelling (right). (b) Scanning electron micrograph (SEM) cross section (left) and top view (right) of example structure with a 5 nm near-percolation Au nanoisland top film and d = 115 nm poly[methyl methacrylate] (PMMA) spacer. (c) Photograph of sample in (b).

Download Full Size | PPT Slide | PDF

To characterize our nanoisland MIM structures for cavity-based sensing and active color switching applications, we first prepared samples with different PMMA cavity thicknesses d ${\approx} $ 80–200 nm (see Supplement 1 for complete fabrication details). Briefly, the samples were fabricated entirely using scalable, low-temperature thin-film processes (i.e., no annealing was required), enabling their realization across large, wafer-scale surfaces and on potentially delicate substrates, such as hydrogels or other polymers. First, an optically thick (200 nm) gold mirror was sputtered onto a silicon substrate. Next, PMMA films were spin coated using different spin speeds to achieve the desired thicknesses. Finally, the top gold nanoisland film, with a mass-equivalent thickness (MET) of 5 nm, was formed using electron-beam evaporation, completing the thin-film stack. As shown in the scanning electron micrograph (SEM) in Fig. 1(b), these nanoislands create interconnected fractal networks and exist near the transition region between isolated nanoparticles and a continuous film (i.e., the percolation threshold) [35]. Near-percolation fractal films have many interesting properties on their own including increased local density of states and intense electromagnetic hot spots—phenomena which enable enhanced light emission, broadband white light generation, and fluorescence-enhanced biosensing [3638]. By coupling such structures to a photonic nanocavity, bright reflective colors, efficient broadband absorption, and enhanced photodetection have been further demonstrated [23,39,40]. We leverage the complex nanostructure of these fractal island films—and resulting broadband localized surface plasmon resonances—to produce the vibrant reflective colors of our MIM structures. The fabricated samples have excellent uniformity and strong broadband absorption, which together contribute to the high-quality reflective colors.

The reflectance spectra of samples with different spacer thicknesses are shown in Fig. 2(a); there is excellent agreement between the measured spectra (solid curves) and the transfer matrix method (TMM) simulations used throughout this work (dashed curves). See Supplement 1 for details on the modeling. As the spacer thickness increases, the phase accumulation inside the optical cavity increases, redshifting the cavity resonance and corresponding reflectance peak. A wavelength tuning range of nearly 200 nm is observed for the approximately 100 nm span of spacer thickness (d = 85 to 195 nm), while strong optical contrast is evidenced by a nearly 100% change in reflectance between the d = 115 nm and d = 195 nm spectra at $\lambda \; $ = 650 nm. Our structures also have excellent angular stability, owing to the combination of the broadband absorption and their relatively thin spacers [41,42] (Supplement 1, Fig. S6).

 figure: Fig. 2.

Fig. 2. Color space and tuning principle. (a) Reflected spectra for nanoisland MIM structures as a function of spacer thickness d. Solid lines are experimental measurements and dashed lines represent transfer matrix method (TMM) simulations. (b) CIE chromaticity diagram. Simulated points for spacer thickness range d = 80–230 nm taken at $\Delta $d = 10 nm steps in thickness. Arrow length corresponds to the step size through CIE color space for the given fixed step in spacer thickness. (c) Color photographs of samples with different spacer thicknesses. Nanoisland coverage in top half of sample produces strong absorption and bright reflected color. (d) CIE-calculated corresponding to the simulated points in (b).

Download Full Size | PPT Slide | PDF

The CIE 1931 chromaticity diagram in Fig. 2(b) reveals how the reflected colors traverse the color space as the spacer thickness changes. The experimental points (denoted by black circle markers) were calculated from the measured spectra shown in Fig. 2(a), while the simulated points (denoted by arrows) were obtained from TMM spectra taken at fixed spacer intervals of $\Delta $d = 10 nm for d = 80–230 nm. We analyzed the structure in 10 nm increments in d because the ability to resolve this degree of polymer swelling is desirable for realistic target sensing applications, including humidity sensing [43], gas sensing [44] and biosensing [7,45,46]. This is also a useful benchmark to analyze the color sensitivity of stimuli-responsive displays [2,29]. The CIE color palette in Fig. 2(d) (derived from the simulated spectra in Fig. 2(b)) shows that each 10 nm increment in spacer thickness causes an observable color shift. The fabricated structures (Fig. 2(c)) also produce a subtle, yet noticeable change in reflectance given a 10 nm change in spacer thickness. Interestingly, some starting structures exhibit much larger spectral shifts than others given the same $\Delta $d = 10 nm change in thickness (Fig. 2(d)). This is seen graphically in the chromaticity diagram in Fig. 2(b), where the size of the arrow corresponds to the size of the step taken through the color space (measured by Euclidean distance). The spacer thickness, therefore, plays a key role in determining spectral sensitivity: for the same change in spacer thickness, some initial spacers lead to a larger step through the color space. This is especially relevant for optimizing the performance of such colorimetric sensors, where a large optical response is desired given a small change in the surrounding environment.

2.2 Stimuli-responsive color tuning

To demonstrate our active color tuning concept, we exposed the nanoisland MIM samples to saturated ethanol (EtOH) vapors, as shown schematically in Fig. 3(a). The PMMA cavities reversibly interact with EtOH through hydrogen bonding and swell in the presence of these vapors [47]. The color photographs in Fig. 3(b) illustrate the colorimetric response: samples with initial spacer thickness d0 are shown in air (top); upon exposure to EtOH, spacer swelling caused an observable shift in the reflected colors (bottom). A video showing the reversible color tuning can be found in Visualization 1. Before and after reflectance spectra for the most sensitive examples are shown in Fig. 3(c). As noted previously, some initial configurations are expected to be more sensitive than others—this behavior is also apparent in the vapor sensing experiments presented here. The d0 = 195 nm sample exhibited the most striking color change with the resonance peak shifting ∼150 nm in response to the EtOH vapor. Notice also that the gold-colored background PMMA/Au regions (seen in the bottom portion of the samples in Fig. 3(b)) produced no discernable color change in response to the EtOH vapor, highlighting the role of the entire Au nanoisland/PMMA/Au stack in producing the sensitive colorimetric response.

 figure: Fig. 3.

Fig. 3. Colorimetric vapor detection and continuous color tuning using nanoisland MIM sensors. (a) Schematic of test setup. (b) Color photographs of samples in air (top) versus in saturated EtOH vapor (bottom), illustrating large color shifts. No image enhancement added. (c) Reflectance spectra for exemplar samples in (b). (d) Sensor calibration curve: fixed-wavelength reflectance intensity as a function of spacer thickness. Filled circles correspond to as-fabricated samples in air; open circles correspond to TMM simulations taken at finer resolution. Linear region (shaded in gray) suggests application as sensor output signal. (e) Time series of measured reflectance at a fixed wavelength, illustrating dynamic switching performance. Light gray region on left indicates starting signal level after ∼20 min. of saturation in EtOH vapor.

Download Full Size | PPT Slide | PDF

In order to estimate the vapor-induced polymer swelling, we constructed a sensor calibration curve (shown in Fig. 3(d)) using the as-fabricated samples in Fig. 2 (filled circle markers) and TMM simulations taken at finer resolution (open circle markers). We monitored the reflectance intensity at $\lambda \; $ = 650 nm, because this wavelength gave the greatest absolute reflectance changes for our samples (see Fig. 2(a)). The optical response for spacer thicknesses between 115 nm and 170 nm shows excellent linearity, indicating the potential of this region for quantitative spacer thickness measurements. Using this model, and assuming the change in refractive index is negligible [44,47], we estimated spacer swelling of approximately 30 nm.

As shown in the time series in Fig. 3(e), the optical switching was fast and fully reversible: it took approximately 60 s for the signal to saturate upon each exposure to the EtOH vapors, while the signal recovered almost immediately (<1 s) to the original state after the vapors were removed. We also tested several other organic vapors (acetone, methanol, and isopropanol) and achieved similar results (Supplement 1, Fig. S7). It is important to note that the equilibration time is a function of both the gas dynamics and the responsivity of the sensing layer itself. Although the saturation level decreased slightly with each cycle in our proof-of-principle demonstration using PMMA (Fig. 3(e)), robustness to cycling has been addressed in other studies with application-specific polymers [4,29,30]. Analyte sensitivity and specificity can similarly be addressed through appropriate polymer selection [9,48]. Molecularly imprinted polymers offer a promising avenue to more selective chemical detection [46,48].

We also note that the porous nature of the nanoisland film is required for efficient vapor diffusion into the polymer spacer to enable this tuning mechanism. In contrast, structures with a continuous gold top film (t = 20 nm) did not display any colorimetric response during the vapor sensing experiments (Supplement 1, Fig. S8). The nanoisland film therefore plays two key roles in our structure: it helps produce the vibrant reflective structural colors, and it enables efficient interaction of the vapor molecules with the polymer spacer.

Additionally, we investigated two lower-cost alternatives to gold through simulation: aluminum (Al) and chromium (Cr). See Supplement 1, Fig. S9. Both the Al and Cr MIM structures produced reasonably strong broadband absorption and well-defined band-pass reflectance peaks. However, the Au structure provided the best response (highest contrast ratio and color vibrancy). To further explore the role of material, we kept the Au nanoisland top film but replaced the mirror with a cheaper alternative (Al). This case provided the same benefits of the all-gold structure and also highlights the role of the Au nanoislands in realizing broadband absorption and vibrant structural coloration (Supplement 1, Fig. S10). This is likely due to the stronger plasmonic response of Au compared to the other materials.

Besides the spontaneous nanoisland formation demonstrated in this work, other lithography-free fabrication methods may be considered for the nanoporous, optically absorbing top film, depending on the intended application. For example, disordered ITO and bismuth nanorods have both been grown using bottom-up fabrication techniques, and exhibit similar broadband absorbance qualities [49,50]. Colloidally dispersed nanoparticles are another promising alternative, and fine tuning of the particle morphology prior to coupling to the FP cavity offers further control over the absorption profile [51,52]. Disordered plasmonic nanoantennas can also be formed by depositing thin metal films onto a porous dielectric spacer [22,53,54]. These structures have excellent broadband optical absorption, and the band-pass resonance peaks can be dynamically tuned by infiltrating the pores with analyte liquids/vapors of interest. These structures, in particular, may offer a route towards colorimetric detection of larger biomolecules captured inside the pores. For colorimetric vapor sensing applications, we emphasize the simplicity and effectiveness of our platform.

Finally, we point out that the color sensitivity of such FP-based devices depends on two independent factors: (i) the color sensitivity of the underlying optical structure, and (ii) the physical tuning range of the active layer (e.g., the swelling potential and/or refractive index tuning of the functional spacer layer). The vibrant reflective coloration and strong absorption of our design combine to produce an exceptionally sensitive underlying optical structure. This platform therefore forms the basis for a sensitive optical sensor which may be optimized for specific applications through appropriate polymer/active layer design.

2.3 High-contrast reflectance modulation

We exploit near-perfect optical absorption in our structures to amplify small changes in spacer thickness by normalizing the spectra to the dark (absorbing) state: $\Delta R/{R_0} = ({{R_1} - {R_0}} )/{R_0}$, where R1 is the reflectance of the sample under exposure to a stimulus (e.g., EtOH), and R0 is the reflectance of the sample in its initial, perfectly absorbing state (i.e., zero reflection at a target wavelength). This allows for extremely sensitive detection of changes in reflectance due to any deviation from the perfect absorption condition, e.g., a change in spacer thickness [55].

The normalized reflectance modulation for the most sensitive samples in our EtOH sensing experiment is shown in Fig. 4(a). Owing to the nearly perfect absorption at $\lambda $ = 677 nm (R0 = 0.003), the d0 = 115 nm MIM sample has the largest modulation with a contrast ratio of 80:1 (8000% modulation depth). In Fig. 4(b), we simulated the d0 = 115 nm MIM structure in 5 nm spacer increments, demonstrating the potential for resolving extremely small changes in spacer thickness using this normalization method. More generally, the optical path length (OPL = nd) can be considered for systems in which both n and d vary, where n is the refractive index of the spacer. Based on these results, we introduce a new figure of merit (FOM), which captures the sensitivity to changes in optical path length ($\Delta $OPL):

$$\textrm{FOM}_\Delta ^\ast{=} \; \textrm{max}\left|{\frac{{\Delta R/{R_0}}}{{\Delta \textrm{OPL}}}} \right|.$$

 figure: Fig. 4.

Fig. 4. High-contrast reflectance modulation. (a) Measured normalized reflectance $\Delta $R/R0 = (R1R0)/R0 for each of the structures shown in Fig. 3(c), where R1 is reflectance in EtOH vapors and R0 is reflectance in air. 80:1 contrast ratio is observed for d0 = 115 nm case. (b) Simulated normalized reflectance for d0 = 115 nm nanoisland MIM using 5 nm steps in spacer thickness. Inset: normalized reflectance peak as a function of spacer thickness.

Download Full Size | PPT Slide | PDF

Our FOM is similar to FOM* introduced by Becker et al. [56] and later used to characterize plasmonic absorber-based sensors by Liu et al. [55], but instead measures the sensitivity to OPL rather than surrounding refractive index. Assuming a fixed refractive index of n = 1.49 for PMMA (i.e., $\Delta $OPL = 1.49$\Delta d$), we calculated and displayed FOMΔ* on the right axis of Fig. 4(a). This FOM is a useful metric for the growing class of stimuli-responsive optical absorber/interference-based sensors (see [11,26,27,57,58]); by measuring the underlying optical sensitivity of the structure itself, this metric can be used to optimize sensor designs, independent of the polymer or other functional layer.

These results clearly show how the strong signal at the perfect absorption wavelength can be used to sensitively detect small changes in spacer thickness, complementing the visual colorimetric readout. Combined with our sample uniformity and angular stability, this absorption-based signal enhancement may be harnessed to realize a simple, cheap, and highly sensitive on-chip sensor—without requiring a spectrometer or precise optical alignment—e.g., using a cell phone light source/detector to monitor the fixed-wavelength intensity change [59].

3. Conclusions

The platform developed in this paper can be used for both sensing and display applications. Our thin-film structures demonstrate observable color differentiation in response to as little as a 10 nm variation in spacer thickness, providing the basis for colorimetric detection in realistic bio- and chemical sensing applications using stimuli-responsive polymers [7,9,4345]. By choosing an appropriate polymer spacer, this basic platform can be tailored to respond to a variety of environmental stimuli including chemical, thermal, and mechanical inputs. Alternatively, the polymer can be stimulated by a controlled signal to drive the desired spectral response [29,30]. In both cases, the spectral shifts are easily observed thanks to the sensitive optical design and vibrant reflective colors arising from the broadband nanocavity-enhanced absorption. See Table S1 in Supplement 1 for a detailed comparison with related structures.

In summary, we have developed a new nanophotonic structure that exhibits vibrant, dynamic reflective structural coloration via coupling near-percolation plasmonic nanoislands to a stimuli-responsive optical nanocavity. The structures are readily fabricated over large, wafer-scale areas using thin-film deposition processes. To demonstrate the application potential of our device, we showed fast, reversible color switching in response to organic vapors using a polymer cavity. Leveraging the sensitive optical response, we demonstrated dynamic color tuning across ∼150 nm in wavelength and modulation contrasts as high as 80:1. These features combine to enable simultaneous naked-eye detection and sensitive on-chip measurements—resulting in a promising sensing platform for resource-limited applications, e.g., point-of-care biosensing, and low-power/passive optical coatings for environmental monitoring. Finally, our thin-film structure may be integrated with a flexible substrate for wearable sensors, e.g., to measure biochemical analytes as an indicator of human health or performance [31,32].

Funding

National Science Foundation (ECCS1509369); NASA Center Innovation Fund; Dartmouth College (Thayer School of Engineering, Start-up Fund).

Acknowledgment

We gratefully acknowledge J. Xu, J. Gonzalez, and D. Spry at NASA Glenn Research Center, and I. Martin and A. Avishai at Case Western Reserve for their help with device fabrication and characterization. We thank M. Testorf, F. Shubitidze, and G. Beheim for insightful technical discussions, and J. Molinski for assistance with the experiments. We also acknowledge K. Spear for providing the illustrations. The structures were fabricated in the Microsystems Fabrication Clean Room at NASA Glenn Research Center.

Disclosures

A patent application has been filed on the nanoisland MIM cavity-based sensor in this work.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document

See Supplement 1 for supporting content.

References

1. F. Neubrech, X. Duan, and N. Liu, “Dynamic plasmonic color generation enabled by functional materials,” Sci. Adv. 6(36), eabc2709 (2020). [CrossRef]  

2. S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021). [CrossRef]  

3. J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862–14889 (2013). [CrossRef]  

4. L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019). [CrossRef]  

5. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006). [CrossRef]  

6. J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014). [CrossRef]  

7. A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014). [CrossRef]  

8. Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019). [CrossRef]  

9. M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018). [CrossRef]  

10. P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015). [CrossRef]  

11. H. Kwon and S. Kim, “Chemically Tunable, Biocompatible, and Cost-Effective Metal-Insulator-Metal Resonators Using Silk Protein and Ultrathin Silver Films,” ACS Photonics 2(12), 1675–1680 (2015). [CrossRef]  

12. G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016). [CrossRef]  

13. H. B. Seo and S. Y. Lee, “Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae),” Sci. Rep. 7(1), 44927 (2017). [CrossRef]  

14. M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016). [CrossRef]  

15. Z. Yang, C. Ji, D. Liu, and L. J. Guo, “Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers,” Adv. Opt. Mater. 7(21), 1900739 (2019). [CrossRef]  

16. J. Kim, H. Oh, M. Seo, and M. Lee, “Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film,” ACS Photonics 6(9), 2342–2349 (2019). [CrossRef]  

17. J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015). [CrossRef]  

18. P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020). [CrossRef]  

19. D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020). [CrossRef]  

20. S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019). [CrossRef]  

21. K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016). [CrossRef]  

22. E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018). [CrossRef]  

23. A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019). [CrossRef]  

24. M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010). [CrossRef]  

25. T. Karakouz, A. Vaskevich, and I. Rubinstein, “Polymer-coated gold island films as localized plasmon transducers for gas sensing,” J. Phys. Chem. B 112(46), 14530–14538 (2008). [CrossRef]  

26. J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020). [CrossRef]  

27. Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019). [CrossRef]  

28. M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018). [CrossRef]  

29. T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016). [CrossRef]  

30. J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019). [CrossRef]  

31. A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018). [CrossRef]  

32. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016). [CrossRef]  

33. Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015). [CrossRef]  

34. B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100(6), 063529 (2006). [CrossRef]  

35. K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013). [CrossRef]  

36. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010). [CrossRef]  

37. S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017). [CrossRef]  

38. S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011). [CrossRef]  

39. S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032 (2016). [CrossRef]  

40. C. Frydendahl, M. Grajower, J. Bar-David, R. Zektzer, N. Mazurski, J. Shappir, and U. Levy, “Giant enhancement of silicon plasmonic shortwave infrared photodetection using nanoscale self-organized metallic films,” Optica 7(5), 371 (2020). [CrossRef]  

41. M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi, “Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities,” Opt. Lett. 42(18), 3598 (2017). [CrossRef]  

42. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015). [CrossRef]  

43. A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016). [CrossRef]  

44. C. L. C. Smith, J. U. Lind, C. H. Nielsen, M. B. Christiansen, T. Buss, N. B. Larsen, and A. Kristensen, “Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film,” Opt. Lett. 36(8), 1392 (2011). [CrossRef]  

45. X. Zhang, Y. Guan, and Y. Zhang, “Ultrathin Hydrogel Films for Rapid Optical Biosensing,” Biomacromolecules 13(1), 92–97 (2012). [CrossRef]  

46. I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006). [CrossRef]  

47. H. Clevenson, P. Desjardins, X. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014). [CrossRef]  

48. N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009). [CrossRef]  

49. D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019). [CrossRef]  

50. M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020). [CrossRef]  

51. X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247 (2013). [CrossRef]  

52. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010). [CrossRef]  

53. Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020). [CrossRef]  

54. P. Shapturenka, H. Stute, N. I. Zakaria, S. P. DenBaars, and M. J. Gordon, “Color-changing refractive index sensor based on Fano-resonant filtering of optical modes in a porous dielectric Fabry-Pérot microcavity,” Opt. Express 28(19), 28226 (2020). [CrossRef]  

55. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef]  

56. J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010). [CrossRef]  

57. Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018). [CrossRef]  

58. V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997). [CrossRef]  

59. J. F. Masson, “Portable and field-deployed surface plasmon resonance and plasmonic sensors,” Analyst 145(11), 3776–3800 (2020). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. F. Neubrech, X. Duan, and N. Liu, “Dynamic plasmonic color generation enabled by functional materials,” Sci. Adv. 6(36), eabc2709 (2020).
    [Crossref]
  2. S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
    [Crossref]
  3. J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862–14889 (2013).
    [Crossref]
  4. L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
    [Crossref]
  5. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
    [Crossref]
  6. J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
    [Crossref]
  7. A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
    [Crossref]
  8. Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
    [Crossref]
  9. M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
    [Crossref]
  10. P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
    [Crossref]
  11. H. Kwon and S. Kim, “Chemically Tunable, Biocompatible, and Cost-Effective Metal-Insulator-Metal Resonators Using Silk Protein and Ultrathin Silver Films,” ACS Photonics 2(12), 1675–1680 (2015).
    [Crossref]
  12. G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016).
    [Crossref]
  13. H. B. Seo and S. Y. Lee, “Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae),” Sci. Rep. 7(1), 44927 (2017).
    [Crossref]
  14. M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
    [Crossref]
  15. Z. Yang, C. Ji, D. Liu, and L. J. Guo, “Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers,” Adv. Opt. Mater. 7(21), 1900739 (2019).
    [Crossref]
  16. J. Kim, H. Oh, M. Seo, and M. Lee, “Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film,” ACS Photonics 6(9), 2342–2349 (2019).
    [Crossref]
  17. J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
    [Crossref]
  18. P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
    [Crossref]
  19. D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
    [Crossref]
  20. S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
    [Crossref]
  21. K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
    [Crossref]
  22. E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
    [Crossref]
  23. A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
    [Crossref]
  24. M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
    [Crossref]
  25. T. Karakouz, A. Vaskevich, and I. Rubinstein, “Polymer-coated gold island films as localized plasmon transducers for gas sensing,” J. Phys. Chem. B 112(46), 14530–14538 (2008).
    [Crossref]
  26. J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
    [Crossref]
  27. Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
    [Crossref]
  28. M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
    [Crossref]
  29. T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
    [Crossref]
  30. J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
    [Crossref]
  31. A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
    [Crossref]
  32. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
    [Crossref]
  33. Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
    [Crossref]
  34. B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
    [Crossref]
  35. K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013).
    [Crossref]
  36. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
    [Crossref]
  37. S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
    [Crossref]
  38. S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
    [Crossref]
  39. S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032 (2016).
    [Crossref]
  40. C. Frydendahl, M. Grajower, J. Bar-David, R. Zektzer, N. Mazurski, J. Shappir, and U. Levy, “Giant enhancement of silicon plasmonic shortwave infrared photodetection using nanoscale self-organized metallic films,” Optica 7(5), 371 (2020).
    [Crossref]
  41. M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi, “Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities,” Opt. Lett. 42(18), 3598 (2017).
    [Crossref]
  42. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
    [Crossref]
  43. A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
    [Crossref]
  44. C. L. C. Smith, J. U. Lind, C. H. Nielsen, M. B. Christiansen, T. Buss, N. B. Larsen, and A. Kristensen, “Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film,” Opt. Lett. 36(8), 1392 (2011).
    [Crossref]
  45. X. Zhang, Y. Guan, and Y. Zhang, “Ultrathin Hydrogel Films for Rapid Optical Biosensing,” Biomacromolecules 13(1), 92–97 (2012).
    [Crossref]
  46. I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006).
    [Crossref]
  47. H. Clevenson, P. Desjardins, X. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
    [Crossref]
  48. N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
    [Crossref]
  49. D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
    [Crossref]
  50. M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020).
    [Crossref]
  51. X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247 (2013).
    [Crossref]
  52. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010).
    [Crossref]
  53. Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020).
    [Crossref]
  54. P. Shapturenka, H. Stute, N. I. Zakaria, S. P. DenBaars, and M. J. Gordon, “Color-changing refractive index sensor based on Fano-resonant filtering of optical modes in a porous dielectric Fabry-Pérot microcavity,” Opt. Express 28(19), 28226 (2020).
    [Crossref]
  55. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  56. J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010).
    [Crossref]
  57. Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
    [Crossref]
  58. V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997).
    [Crossref]
  59. J. F. Masson, “Portable and field-deployed surface plasmon resonance and plasmonic sensors,” Analyst 145(11), 3776–3800 (2020).
    [Crossref]

2021 (1)

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

2020 (9)

F. Neubrech, X. Duan, and N. Liu, “Dynamic plasmonic color generation enabled by functional materials,” Sci. Adv. 6(36), eabc2709 (2020).
[Crossref]

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
[Crossref]

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

C. Frydendahl, M. Grajower, J. Bar-David, R. Zektzer, N. Mazurski, J. Shappir, and U. Levy, “Giant enhancement of silicon plasmonic shortwave infrared photodetection using nanoscale self-organized metallic films,” Optica 7(5), 371 (2020).
[Crossref]

Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020).
[Crossref]

P. Shapturenka, H. Stute, N. I. Zakaria, S. P. DenBaars, and M. J. Gordon, “Color-changing refractive index sensor based on Fano-resonant filtering of optical modes in a porous dielectric Fabry-Pérot microcavity,” Opt. Express 28(19), 28226 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020).
[Crossref]

J. F. Masson, “Portable and field-deployed surface plasmon resonance and plasmonic sensors,” Analyst 145(11), 3776–3800 (2020).
[Crossref]

2019 (9)

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
[Crossref]

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

Z. Yang, C. Ji, D. Liu, and L. J. Guo, “Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers,” Adv. Opt. Mater. 7(21), 1900739 (2019).
[Crossref]

J. Kim, H. Oh, M. Seo, and M. Lee, “Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film,” ACS Photonics 6(9), 2342–2349 (2019).
[Crossref]

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

2018 (5)

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
[Crossref]

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

2017 (3)

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi, “Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities,” Opt. Lett. 42(18), 3598 (2017).
[Crossref]

H. B. Seo and S. Y. Lee, “Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae),” Sci. Rep. 7(1), 44927 (2017).
[Crossref]

2016 (7)

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref]

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032 (2016).
[Crossref]

2015 (5)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

H. Kwon and S. Kim, “Chemically Tunable, Biocompatible, and Cost-Effective Metal-Insulator-Metal Resonators Using Silk Protein and Ultrathin Silver Films,” ACS Photonics 2(12), 1675–1680 (2015).
[Crossref]

2014 (3)

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

H. Clevenson, P. Desjardins, X. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

2013 (3)

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247 (2013).
[Crossref]

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862–14889 (2013).
[Crossref]

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013).
[Crossref]

2012 (1)

X. Zhang, Y. Guan, and Y. Zhang, “Ultrathin Hydrogel Films for Rapid Optical Biosensing,” Biomacromolecules 13(1), 92–97 (2012).
[Crossref]

2011 (2)

C. L. C. Smith, J. U. Lind, C. H. Nielsen, M. B. Christiansen, T. Buss, N. B. Larsen, and A. Kristensen, “Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film,” Opt. Lett. 36(8), 1392 (2011).
[Crossref]

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

2010 (5)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref]

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

2009 (1)

N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
[Crossref]

2008 (1)

T. Karakouz, A. Vaskevich, and I. Rubinstein, “Polymer-coated gold island films as localized plasmon transducers for gas sensing,” J. Phys. Chem. B 112(46), 14530–14538 (2008).
[Crossref]

2006 (3)

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
[Crossref]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006).
[Crossref]

1997 (1)

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997).
[Crossref]

a Jarrell, J.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Agnarsson, B.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013).
[Crossref]

Aizpurua, J.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010).
[Crossref]

Akinoglu, E. M.

Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
[Crossref]

Aleisa, R.

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

Assender, H. E.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Atesal, O.

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Aydin, K.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Bae, Y. G.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Bai, R.

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

Baird, L. M.

N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
[Crossref]

Bar-David, J.

Baumberg, J. J.

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Becker, J.

J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Beermann, J.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Benz, F.

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

Bhushan, B.

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862–14889 (2013).
[Crossref]

Blyth, J.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Boarino, L.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Boroviks, S.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

Bozhevolnyi, S. I.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Buss, T.

Butt, H.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref]

Caliskan, M. D.

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Carminati, R.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref]

Carmody, J. B.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Castanié, E.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref]

Cencillo-Abad, P.

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

Chan, J. Y. E.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

Chan, L.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Chanda, D.

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

Chang, W. S.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Chen, X.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref]

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247 (2013).
[Crossref]

Chen, Y.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

Chen, Z.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Choe, A.

A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
[Crossref]

Choi, J.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Christiansen, M. B.

Chu, S.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref]

Clevenson, H.

H. Clevenson, P. Desjardins, X. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Coello, V.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Coles, D. M.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Comite, A.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Comoretto, D.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Cormier, S.

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

Dahlin, A. B.

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

Dai, H.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Dai, S.

Dancil, K. P. S.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997).
[Crossref]

Daqiqeh Rezaei, S.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Davidson, C. A. B.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

De Volder, M. F. L.

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

De Wilde, Y.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref]

DenBaars, S. P.

Desjardins, P.

H. Clevenson, P. Desjardins, X. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Dhinojwala, A.

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

Ding, T.

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

Dong, Y.

Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
[Crossref]

Dong, Z.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Duan, X.

F. Neubrech, X. Duan, and N. Liu, “Dynamic plasmonic color generation enabled by functional materials,” Sci. Adv. 6(36), eabc2709 (2020).
[Crossref]

Eftekhari, Z.

ElKabbash, M.

Emilsson, G.

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

Englund, D.

H. Clevenson, P. Desjardins, X. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Erturk, V. B.

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020).
[Crossref]

Fendler, J. H.

I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006).
[Crossref]

Feng, J.

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

Foerster, B.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Franklin, D.

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

Frydendahl, C.

C. Frydendahl, M. Grajower, J. Bar-David, R. Zektzer, N. Mazurski, J. Shappir, and U. Levy, “Giant enhancement of silicon plasmonic shortwave infrared photodetection using nanoscale self-organized metallic films,” Optica 7(5), 371 (2020).
[Crossref]

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Gallei, M.

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

Gan, X.

H. Clevenson, P. Desjardins, X. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Gao, M.

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

Genzer, J.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Ghadiri, M. R.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997).
[Crossref]

Ghobadi, A.

Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Gianneschi, N. C.

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Gong, H.

Gordon, M. J.

Grajower, M.

Gray, S. K.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

Greer, J. R.

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Guan, Y.

X. Zhang, Y. Guan, and Y. Zhang, “Ultrathin Hydrogel Films for Rapid Optical Biosensing,” Biomacromolecules 13(1), 92–97 (2012).
[Crossref]

Guo, J.

Guo, L. J.

Z. Yang, C. Ji, D. Liu, and L. J. Guo, “Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers,” Adv. Opt. Mater. 7(21), 1900739 (2019).
[Crossref]

Halas, N. J.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Hall-Chen, V. H.

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Han, M.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
[Crossref]

He, X.

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

He, Z.

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Hinczewski, M.

Ho, J.

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Hoffman, N.

Hohenster, U.

J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Huck, W. T. S.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Hutter, E.

I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006).
[Crossref]

Ilker, E.

Ingason, A. S.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013).
[Crossref]

Ismukhanova, A.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Izenberg, N. R.

N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
[Crossref]

Jager, E. W. H.

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

Jakab, A.

J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Jang, J.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Jeong, H.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Jeong, H. H.

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

Ji, C.

Z. Yang, C. Ji, D. Liu, and L. J. Guo, “Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers,” Adv. Opt. Mater. 7(21), 1900739 (2019).
[Crossref]

Jinno, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Jung, C.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Kaltenbrunner, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Kang, K.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Kang, S.

A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
[Crossref]

Karakouz, T.

T. Karakouz, A. Vaskevich, and I. Rubinstein, “Polymer-coated gold island films as localized plasmon transducers for gas sensing,” J. Phys. Chem. B 112(46), 14530–14538 (2008).
[Crossref]

Kim, B.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Kim, C.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Kim, J.

J. Kim, H. Oh, M. Seo, and M. Lee, “Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film,” ACS Photonics 6(9), 2342–2349 (2019).
[Crossref]

Kim, M. P.

A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
[Crossref]

Kim, S.

H. Kwon and S. Kim, “Chemically Tunable, Biocompatible, and Cost-Effective Metal-Insulator-Metal Resonators Using Silk Protein and Ultrathin Silver Films,” ACS Photonics 2(12), 1675–1680 (2015).
[Crossref]

King, N. S.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Kitanosako, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Knight, M. W.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Ko, H.

A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
[Crossref]

Koay, E. H. H.

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref]

Koizumi, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Kossoy, A.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013).
[Crossref]

Krachmalnicoff, V.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref]

Kristensen, A.

Kwon, H.

H. Kwon and S. Kim, “Chemically Tunable, Biocompatible, and Cost-Effective Metal-Insulator-Metal Resonators Using Silk Protein and Ultrathin Silver Films,” ACS Photonics 2(12), 1675–1680 (2015).
[Crossref]

Lai, J.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

Larsen, N. B.

Lau, L.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Laus, M.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Lee, B. J.

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
[Crossref]

Lee, D.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Lee, J.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Lee, M.

J. Kim, H. Oh, M. Seo, and M. Lee, “Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film,” ACS Photonics 6(9), 2342–2349 (2019).
[Crossref]

Lee, S. D.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Lee, S. H.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Lee, S. Y.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

H. B. Seo and S. Y. Lee, “Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae),” Sci. Rep. 7(1), 44927 (2017).
[Crossref]

Lee, T.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Lee, T. W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

Leosson, K.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013).
[Crossref]

Letsou, T.

Levin, S. M.

N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
[Crossref]

Levy, U.

Li, C.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

Li, J.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

Li, Q.

Li, Y.

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref]

Liang, H. L.

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

Lin, Q.

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

Lin, V. S. Y.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997).
[Crossref]

Lind, J. U.

Link, S.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Liu, B.

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

Liu, C.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
[Crossref]

Liu, D.

Z. Yang, C. Ji, D. Liu, and L. J. Guo, “Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers,” Adv. Opt. Mater. 7(21), 1900739 (2019).
[Crossref]

Liu, H.

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Liu, K.

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

Liu, L.

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Liu, N.

F. Neubrech, X. Duan, and N. Liu, “Dynamic plasmonic color generation enabled by functional materials,” Sci. Adv. 6(36), eabc2709 (2020).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, S.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref]

Liu, X.

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

Liu, Y.

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Lova, P.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Lowe, C. R.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Luk, T. S.

Luzinov, I.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Maasoumi, F.

Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
[Crossref]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

Maier, S. A.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
[Crossref]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

Manfredi, G.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Manjavacas, A.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Mao, P.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
[Crossref]

Mao, Y.

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

Marabelli, F.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Masson, J. F.

J. F. Masson, “Portable and field-deployed surface plasmon resonance and plasmonic sensors,” Analyst 145(11), 3776–3800 (2020).
[Crossref]

Matsuhisa, N.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Maziz, A.

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

Mazurski, N.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Minko, S.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006).
[Crossref]

Mirshafieyan, S. S.

Montelongo, Y.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Mortensen, N. A.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Moshchalkov, V. V.

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

Motesharei, K.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997).
[Crossref]

Müller, M.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Mulvaney, P.

Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
[Crossref]

Murrray, G. M.

N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
[Crossref]

Naderi, A.

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Neubrech, F.

F. Neubrech, X. Duan, and N. Liu, “Dynamic plasmonic color generation enabled by functional materials,” Sci. Adv. 6(36), eabc2709 (2020).
[Crossref]

Ng, R. C.

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Ng, R. J. H.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Nielsen, C. H.

Nordlander, P.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010).
[Crossref]

Novikov, S. M.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

Ober, C.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Oh, H.

J. Kim, H. Oh, M. Seo, and M. Lee, “Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film,” ACS Photonics 6(9), 2342–2349 (2019).
[Crossref]

Ohadi, H.

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

Olafsson, S.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013).
[Crossref]

Olson, J.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

Ortega, P. M.

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

Ozbay, E.

Z. Eftekhari, A. Ghobadi, and E. Ozbay, “Lithography-free disordered metal–insulator–metal nanoantennas for colorimetric sensing,” Opt. Lett. 45(24), 6719 (2020).
[Crossref]

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref]

Park, I.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Patrini, M.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Peng, J.

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

Pilato, R. S.

N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
[Crossref]

Powell, A. W.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Price, J.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Qi, H. J.

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

Qian, X.

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

Qin, M.

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

Qiu, C. W.

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

Qiu, C.-W.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

Qiu, M.

Raeis-Hosseini, N.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Ramakrishna, S.

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Reyes-Coronado, A.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010).
[Crossref]

Rho, J.

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

Roberts, A. S.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

Robinson, J. T.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Rogers, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

Ruan, Q.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

Rubinstein, I.

T. Karakouz, A. Vaskevich, and I. Rubinstein, “Polymer-coated gold island films as localized plasmon transducers for gas sensing,” J. Phys. Chem. B 112(46), 14530–14538 (2008).
[Crossref]

Rüttiger, C.

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

Ryu, Y. S.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Safaei, A.

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

Sailor, M. J.

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997).
[Crossref]

Seo, H. B.

H. B. Seo and S. Y. Lee, “Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae),” Sci. Rep. 7(1), 44927 (2017).
[Crossref]

Seo, M.

J. Kim, H. Oh, M. Seo, and M. Lee, “Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film,” ACS Photonics 6(9), 2342–2349 (2019).
[Crossref]

Shanker, R.

A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
[Crossref]

Shao, L.

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

Shappir, J.

Shapturenka, P.

Shawkey, M. D.

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

Sherlock, S. P.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Sikka, D.

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

Smith, C. L. C.

Smith, J. M.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Soares, J. A. N. T.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

Soci, C.

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

Someya, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Song, F.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
[Crossref]

Song, J.

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

Sönnichsen, C.

J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Soydan, M. C.

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Stamm, M.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Steiner, U.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Stenger, N.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

Strangi, G.

Stuart, M. A. C.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Stute, H.

Su, R.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

Sukhorukov, G. B.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Sun, J.

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862–14889 (2013).
[Crossref]

Sun, M.

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

Suo, Z.

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

Szleifer, I.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Tabakman, S. M.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Tachibana, Y.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Tangsombatvisit, S.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Tavakkoli Yaraki, M.

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Taylor, R. A.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Tokarev, I.

I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006).
[Crossref]

Tokareva, I.

I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006).
[Crossref]

Tong, J.

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862–14889 (2013).
[Crossref]

Toprak, A.

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Trisno, J.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

Trügler, A.

J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Tsukruk, V. V.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Urban, M.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Utz, P. J.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Van Houten, K. A.

N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
[Crossref]

Vandenbosch, G. A. E.

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

Vasconcellos, C.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Vaskevich, A.

T. Karakouz, A. Vaskevich, and I. Rubinstein, “Polymer-coated gold island films as localized plasmon transducers for gas sensing,” J. Phys. Chem. B 112(46), 14530–14538 (2008).
[Crossref]

Vignolini, S.

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Wang, G.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref]

Wang, H.

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Wang, T.

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Wang, W.

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

Wang, X. H.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

Wang, Z.

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

Watt, A. A. R.

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Wei, H.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010).
[Crossref]

Wei, Z.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Wilkinson, T. D.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Winnik, F.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Wong, C.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref]

Wu, S. T.

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

Wu, Y.

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

Xiao, M.

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

Xiong, K.

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

Xu, H.

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010).
[Crossref]

Xue, J.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

Yaney, A.

Yang, B.

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

Yang, J. K. W.

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Yang, X.

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

Yang, Y.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247 (2013).
[Crossref]

Yang, Z.

Z. Yang, C. Ji, D. Liu, and L. J. Guo, “Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers,” Adv. Opt. Mater. 7(21), 1900739 (2019).
[Crossref]

Yeom, J.

A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
[Crossref]

Yetisen, A. K.

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

Yildirim, D. U.

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

Yin, Y.

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

Yokota, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Yu, E. S.

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

Yukita, W.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Zakaria, N. I.

Zalar, P.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Zauscher, S.

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

Zektzer, R.

Zenin, V. A.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Zhang, B.

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Zhang, H.

Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
[Crossref]

Zhang, J.

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

Zhang, S.

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
[Crossref]

Zhang, T.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

Zhang, X.

X. Zhang, Y. Guan, and Y. Zhang, “Ultrathin Hydrogel Films for Rapid Optical Biosensing,” Biomacromolecules 13(1), 92–97 (2012).
[Crossref]

Zhang, Y.

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

X. Zhang, Y. Guan, and Y. Zhang, “Ultrathin Hydrogel Films for Rapid Optical Biosensing,” Biomacromolecules 13(1), 92–97 (2012).
[Crossref]

Zhang, Z. M.

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
[Crossref]

Zhao, D.

Zhao, J.

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

Zhao, Y.

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

Zheng, X.

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

Zheng, Y.

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

Zhou, J.

Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
[Crossref]

Zhou, Z. K.

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

E. S. Yu, S. H. Lee, Y. G. Bae, J. Choi, D. Lee, C. Kim, T. Lee, S. Y. Lee, S. D. Lee, and Y. S. Ryu, “Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure,” ACS Appl. Mater. Interfaces 10(44), 38581–38587 (2018).
[Crossref]

ACS Nano (3)

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref]

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning,” ACS Nano 10(2), 1788–1794 (2016).
[Crossref]

H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano 4(5), 2649–2654 (2010).
[Crossref]

ACS Photonics (7)

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

D. U. Yildirim, A. Ghobadi, M. C. Soydan, O. Atesal, A. Toprak, M. D. Caliskan, and E. Ozbay, “Disordered and Densely Packed ITO Nanorods as an Excellent Lithography-Free Optical Solar Reflector Metasurface,” ACS Photonics 6(7), 1812–1822 (2019).
[Crossref]

P. Lova, G. Manfredi, L. Boarino, A. Comite, M. Laus, M. Patrini, F. Marabelli, C. Soci, and D. Comoretto, “Polymer Distributed Bragg Reflectors for Vapor Sensing,” ACS Photonics 2(4), 537–543 (2015).
[Crossref]

H. Kwon and S. Kim, “Chemically Tunable, Biocompatible, and Cost-Effective Metal-Insulator-Metal Resonators Using Silk Protein and Ultrathin Silver Films,” ACS Photonics 2(12), 1675–1680 (2015).
[Crossref]

J. Kim, H. Oh, M. Seo, and M. Lee, “Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film,” ACS Photonics 6(9), 2342–2349 (2019).
[Crossref]

S. Daqiqeh Rezaei, Z. Dong, J. Y. E. Chan, J. Trisno, R. J. H. Ng, Q. Ruan, C.-W. Qiu, N. A. Mortensen, and J. K. W. Yang, “Nanophotonic Structural Colors,” ACS Photonics 8(1), 18–33 (2021).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Large-area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Y. Dong, E. M. Akinoglu, H. Zhang, F. Maasoumi, J. Zhou, and P. Mulvaney, “An Optically Responsive Soft Etalon Based on Ultrathin Cellulose Hydrogels,” Adv. Funct. Mater. 29(40), 1904290 (2019).
[Crossref]

Adv. Mater. (3)

M. Sun, R. Bai, X. Yang, J. Song, M. Qin, Z. Suo, and X. He, “Hydrogel Interferometry for Ultrasensitive and Highly Selective Chemical Detection,” Adv. Mater. 30(46), 1804916 (2018).
[Crossref]

K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao, E. W. H. Jager, and A. B. Dahlin, “Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color,” Adv. Mater. 28(45), 9956–9960 (2016).
[Crossref]

M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, and X. He, “Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing,” Adv. Mater. 30(21), 1800468 (2018).
[Crossref]

Adv. Opt. Mater. (6)

A. K. Yetisen, H. Butt, C. Vasconcellos, Y. Montelongo, C. A. B. Davidson, J. Blyth, L. Chan, J. B. Carmody, S. Vignolini, U. Steiner, J. J. Baumberg, T. D. Wilkinson, and C. R. Lowe, “Light-Directed Writing of Chemically Tunable Narrow-Band Holographic Sensors,” Adv. Opt. Mater. 2(3), 250–254 (2014).
[Crossref]

S. Daqiqeh Rezaei, J. Ho, A. Naderi, M. Tavakkoli Yaraki, T. Wang, Z. Dong, S. Ramakrishna, and J. K. W. Yang, “Tunable, Cost-Effective, and Scalable Structural Colors for Sensing and Consumer Products,” Adv. Opt. Mater. 7(20), 1900735 (2019).
[Crossref]

Z. Yang, C. Ji, D. Liu, and L. J. Guo, “Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers,” Adv. Opt. Mater. 7(21), 1900739 (2019).
[Crossref]

J. Jang, K. Kang, N. Raeis-Hosseini, A. Ismukhanova, H. Jeong, C. Jung, B. Kim, J. Lee, I. Park, and J. Rho, “Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters,” Adv. Opt. Mater. 8(9), 1901932 (2020).
[Crossref]

T. Ding, C. Rüttiger, X. Zheng, F. Benz, H. Ohadi, G. A. E. Vandenbosch, V. V. Moshchalkov, M. Gallei, and J. J. Baumberg, “Fast Dynamic Color Switching in Temperature-Responsive Plasmonic Films,” Adv. Opt. Mater. 4(6), 877–882 (2016).
[Crossref]

A. W. Powell, D. M. Coles, R. A. Taylor, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Plasmonic Gas Sensing Using Nanocube Patch Antennas,” Adv. Opt. Mater. 4(4), 634–642 (2016).
[Crossref]

Analyst (1)

J. F. Masson, “Portable and field-deployed surface plasmon resonance and plasmonic sensors,” Analyst 145(11), 3776–3800 (2020).
[Crossref]

Angew. Chem. (1)

L. Liu, R. Aleisa, Y. Zhang, J. Feng, Y. Zheng, Y. Yin, and W. Wang, “Dynamic Color-Switching of Plasmonic Nanoparticle Films,” Angew. Chem. 131(45), 16453–16459 (2019).
[Crossref]

Appl. Phys. Lett. (1)

H. Clevenson, P. Desjardins, X. Gan, and D. Englund, “High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity,” Appl. Phys. Lett. 104(24), 241108 (2014).
[Crossref]

Biomacromolecules (1)

X. Zhang, Y. Guan, and Y. Zhang, “Ultrathin Hydrogel Films for Rapid Optical Biosensing,” Biomacromolecules 13(1), 92–97 (2012).
[Crossref]

Chem. Commun. (1)

I. Tokareva, I. Tokarev, S. Minko, E. Hutter, and J. H. Fendler, “Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy,” Chem. Commun. 31(31), 3343–3345 (2006).
[Crossref]

Chem. Mater. (1)

M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N. C. Gianneschi, A. Dhinojwala, and M. D. Shawkey, “Stimuli-Responsive Structurally Colored Films from Bioinspired Synthetic Melanin Nanoparticles,” Chem. Mater. 28(15), 5516–5521 (2016).
[Crossref]

J. Appl. Phys. (1)

B. J. Lee and Z. M. Zhang, “Design and fabrication of planar multilayer structures with coherent thermal emission characteristics,” J. Appl. Phys. 100(6), 063529 (2006).
[Crossref]

J. Mater. Chem. C (1)

Z. Wang, X. Liu, Y. Wu, B. Liu, Z. Wang, J. Zhang, K. Liu, and B. Yang, “Ultrathin stimuli-responsive polymer film-based optical sensor for fast and visual detection of hazardous organic solvents,” J. Mater. Chem. C 6(40), 10861–10869 (2018).
[Crossref]

J. Phys. Chem. B (1)

T. Karakouz, A. Vaskevich, and I. Rubinstein, “Polymer-coated gold island films as localized plasmon transducers for gas sensing,” J. Phys. Chem. B 112(46), 14530–14538 (2008).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nanoscale (1)

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, and S. Olafsson, “Ultra-thin gold films on transparent polymers,” Nanoscale 2(1), 3–11 (2013).
[Crossref]

Nat. Commun. (4)

Y. Liu, H. Wang, J. Ho, R. C. Ng, R. J. H. Ng, V. H. Hall-Chen, E. H. H. Koay, Z. Dong, H. Liu, C. W. Qiu, J. R. Greer, and J. K. W. Yang, “Structural color three-dimensional printing by shrinking photonic crystals,” Nat. Commun. 10, 4340 (2019).
[Crossref]

J. Xue, Z. K. Zhou, Z. Wei, R. Su, J. Lai, J. Li, C. Li, T. Zhang, and X. H. Wang, “Scalable, full-colour and controllable chromotropic plasmonic printing,” Nat. Commun. 6(1), 8906 (2015).
[Crossref]

P. Mao, C. Liu, F. Song, M. Han, S. A. Maier, and S. Zhang, “Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection,” Nat. Commun. 11(1) 1538 (2020).
[Crossref]

S. M. Tabakman, L. Lau, J. T. Robinson, J. Price, S. P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J. a Jarrell, P. J. Utz, and H. Dai, “Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range,” Nat. Commun. 2(1), 466 (2011).
[Crossref]

Nat. Mater. (1)

M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, “Emerging applications of stimuli-responsive polymer materials,” Nat. Mater. 9(2), 101–113 (2010).
[Crossref]

NPG Asia Mater. (1)

A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, “Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film,” NPG Asia Mater. 10(9), 912–922 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. Lett. (1)

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref]

Phys. Status Solidi RRL (1)

M. C. Soydan, A. Ghobadi, D. U. Yildirim, V. B. Erturk, and E. Ozbay, “Deep Subwavelength Light Confinement in Disordered Bismuth Nanorods as a Linearly Thermal-Tunable Metamaterial,” Phys. Status Solidi RRL 14(7), 2000066 (2020).
[Crossref]

Planet. Space Sci. (1)

N. R. Izenberg, G. M. Murrray, R. S. Pilato, L. M. Baird, S. M. Levin, and K. A. Van Houten, “Astrobiological molecularly imprinted polymer sensors,” Planet. Space Sci. 57(7), 846–853 (2009).
[Crossref]

Plasmonics (1)

J. Becker, A. Trügler, A. Jakab, U. Hohenster, and C. Sönnichsen, “The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (3)

D. Franklin, Z. He, P. M. Ortega, A. Safaei, P. Cencillo-Abad, S. T. Wu, and D. Chanda, “Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states,” Proc. Natl. Acad. Sci. U. S. A. 117(24), 13350–13358 (2020).
[Crossref]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U. S. A. 103(46), 17143–17148 (2006).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U. S. A. 111(40), 14348–14353 (2014).
[Crossref]

RSC Adv. (1)

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862–14889 (2013).
[Crossref]

Sci. Adv. (3)

F. Neubrech, X. Duan, and N. Liu, “Dynamic plasmonic color generation enabled by functional materials,” Sci. Adv. 6(36), eabc2709 (2020).
[Crossref]

J. Peng, H. H. Jeong, Q. Lin, S. Cormier, H. L. Liang, M. F. L. De Volder, S. Vignolini, and J. J. Baumberg, “Scalable electrochromic nanopixels using plasmonics,” Sci. Adv. 5(5), eaaw2205 (2019).
[Crossref]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref]

Sci. Rep. (2)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref]

H. B. Seo and S. Y. Lee, “Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae),” Sci. Rep. 7(1), 44927 (2017).
[Crossref]

Science (1)

V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A Porous Silicon-Based Optical Interferometric Biosensor,” Science 278(5339), 840–843 (1997).
[Crossref]

Supplementary Material (2)

NameDescription
» Supplement 1       Revised supplemental document
» Visualization 1       A movie showing the colorimetric response of plasmonic Fabry-Pérot nanocavities.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Tunable reflective colors. (a) Schematic of Au nanoisland/PMMA/Au thin-film stack, illustrating structural coloration under white light illumination (left) and change in reflected color upon stimulus-induced polymer swelling (right). (b) Scanning electron micrograph (SEM) cross section (left) and top view (right) of example structure with a 5 nm near-percolation Au nanoisland top film and d = 115 nm poly[methyl methacrylate] (PMMA) spacer. (c) Photograph of sample in (b).
Fig. 2.
Fig. 2. Color space and tuning principle. (a) Reflected spectra for nanoisland MIM structures as a function of spacer thickness d. Solid lines are experimental measurements and dashed lines represent transfer matrix method (TMM) simulations. (b) CIE chromaticity diagram. Simulated points for spacer thickness range d = 80–230 nm taken at $\Delta $d = 10 nm steps in thickness. Arrow length corresponds to the step size through CIE color space for the given fixed step in spacer thickness. (c) Color photographs of samples with different spacer thicknesses. Nanoisland coverage in top half of sample produces strong absorption and bright reflected color. (d) CIE-calculated corresponding to the simulated points in (b).
Fig. 3.
Fig. 3. Colorimetric vapor detection and continuous color tuning using nanoisland MIM sensors. (a) Schematic of test setup. (b) Color photographs of samples in air (top) versus in saturated EtOH vapor (bottom), illustrating large color shifts. No image enhancement added. (c) Reflectance spectra for exemplar samples in (b). (d) Sensor calibration curve: fixed-wavelength reflectance intensity as a function of spacer thickness. Filled circles correspond to as-fabricated samples in air; open circles correspond to TMM simulations taken at finer resolution. Linear region (shaded in gray) suggests application as sensor output signal. (e) Time series of measured reflectance at a fixed wavelength, illustrating dynamic switching performance. Light gray region on left indicates starting signal level after ∼20 min. of saturation in EtOH vapor.
Fig. 4.
Fig. 4. High-contrast reflectance modulation. (a) Measured normalized reflectance $\Delta $R/R0 = (R1R0)/R0 for each of the structures shown in Fig. 3(c), where R1 is reflectance in EtOH vapors and R0 is reflectance in air. 80:1 contrast ratio is observed for d0 = 115 nm case. (b) Simulated normalized reflectance for d0 = 115 nm nanoisland MIM using 5 nm steps in spacer thickness. Inset: normalized reflectance peak as a function of spacer thickness.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FOM Δ = max | Δ R / R 0 Δ OPL | .