Abstract

This erratum corrects a typographical error in Eq. (10) of our paper [Opt. Express 29, 14615 (2021) [CrossRef]  ].

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Erratum

In this erratum we correct a typographical error in Eq. (10) of our recently published paper [1], in which the negative sign of the second product enclosed in squared brackets in the denominator is wrong. The correct equation should be:

$${z_0} = \frac{{[{{T_1}{k_1}({\Delta _ - }{f_\textrm{b}} - {\Delta _ + }{f_\textrm{b}}) + {\Delta _ - }{f_\textrm{b}}\Delta {f_0} - {\Delta _ + }{f_\textrm{b}}({f_{01}} + {f_{02}}) - (\Delta t + {T_2})({\Delta _ + }{f_\textrm{b}} + {\Delta _ - }{f_\textrm{b}}){k_2}} ]c}}{{4[{({T_1} - {T_2} - \Delta t){k_1}{k_2} + {f_{01}}{k_2} - {f_{02}}{k_1}} ]}}.$$

We note that all results and figures through the manuscript were obtained using the correct equation and are therefore unaffacted by this correction and remain valid.

References

1. M. Koeppel, A. Sharma, J. Podschus, S. Sundaramahalingam, N. Y. Joly, S. Xie, P. St. J. Russell, and B. Schmauss, “Doppler optical frequency domain reflectometry for remote fiber sensing,” Opt. Express 29(10), 14615–14629 (2021). [CrossRef]  

References

  • View by:

  1. M. Koeppel, A. Sharma, J. Podschus, S. Sundaramahalingam, N. Y. Joly, S. Xie, P. St. J. Russell, and B. Schmauss, “Doppler optical frequency domain reflectometry for remote fiber sensing,” Opt. Express 29(10), 14615–14629 (2021).
    [Crossref]

2021 (1)

Joly, N. Y.

Koeppel, M.

Podschus, J.

Russell, P. St. J.

Schmauss, B.

Sharma, A.

Sundaramahalingam, S.

Xie, S.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z 0 = [ T 1 k 1 ( Δ f b Δ + f b ) + Δ f b Δ f 0 Δ + f b ( f 01 + f 02 ) ( Δ t + T 2 ) ( Δ + f b + Δ f b ) k 2 ] c 4 [ ( T 1 T 2 Δ t ) k 1 k 2 + f 01 k 2 f 02 k 1 ] .

Metrics