Abstract

We study and demonstrate the nonlinear frequency conversion of broadband optical pulses from 1053 nm to 351 nm using sum-frequency generation with a narrowband pulse at 526.5 nm. The combination of angular dispersion and noncollinearity cancels out the wave-vector mismatch and its frequency derivative, yielding an order-of-magnitude increase in spectral acceptance compared to conventional tripling. This scheme can support the nonlinear frequency conversion of broadband spectrally incoherent nanosecond pulses generated by high-energy lasers and optical parametric amplifiers to mitigate laser−plasma instabilities occurring during interaction with a target. The experimental results obtained with KDP crystals are in excellent agreement with modeling, demonstrating the generation of spectrally incoherent pulses with a bandwidth larger than 10 THz at 351 nm.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Solid-state high-energy lasers based on neodymium-doped glasses are the workhorses of high-energy laser − matter interaction. Because they operate in the near-infrared (IR), an unfavorable wavelength range for laser–matter interaction, high-efficiency nonlinear frequency conversion to the ultraviolet (UV) is required at the end of these systems. Third-harmonic generation (THG) on lasers such as the National Ignition Facility [1], the Laser Mégajoule [2], and OMEGA [3] relies on second-harmonic generation (SHG) of the fundamental pulse from 1ω (1053 nm) to 2ω (526.5 nm), followed by nonlinear mixing of the 2ω pulse with the unconverted fraction of the 1ω pulse, leading to a pulse at 3ω (351 nm) [4,5]. The only nonlinear crystals that can be grown with good optical quality at apertures large enough for frequency conversion of kilojoule pulses are potassium dihydrogen phosphate (KDP) and partially deuterated KDP (DKDP). Owing to their relatively low nonlinearity (∼0.3 pm/V at the typical phase-matching angles for mixing 1ω and 2ω pulses), efficient frequency conversion of nanosecond pulses requires relatively thick nonlinear crystals, typically 1 cm. At these thicknesses, the spectral acceptance with one tripling crystal is limited to ∼1 THz [6], which can be approximately doubled using two independently tuned tripling crystals [7] or two bonded partially deuterated KDP crystals with different deuteration levels [8].

Broadband spectrally incoherent pulses can mitigate the laser−plasma instabilities that detrimentally impact laser − matter interaction [911]. There is currently no laser facility that can produce high-energy pulses with sufficient fractional bandwidth (∼1%, i.e., 10 THz at 351 nm) to significantly dampen laser−plasma instabilities. One approach to increase the tripling spectral acceptance is to add angular dispersion on the input 1ω wave so that the frequency-dependent propagation angles in the tripling crystal approximate the frequency-dependent phase-matching angles [12,13]. This scheme explicitly relies on a 2-to-1 ratio between instantaneous frequency in the 2ω and 1ω waves at all times. It has been demonstrated with phase-modulated pulses in Type-II KDP, but not for spectrally incoherent pulses that have a highly random field. A technique that has been proposed, but not demonstrated, to alleviate the limited tripling spectral acceptance relies on doubling of the broadband 1ω pulse followed by nonlinear mixing with a narrowband 1ω pulse, resulting in a simulated ∼3× increase in spectral acceptance relative to a single tripler [14]. Using the broadband nature of SHG in DKDP crystals with low deuteration level, broadband spectrally incoherent pulses at 2ω have been generated [15,16]. No practical scheme has been demonstrated up to now for efficient frequency conversion of spectrally incoherent pulses from IR to UV, a wavelength range where most of the high-energy physics supported by solid-state lasers has been performed. Other technologies for producing high-energy broadband UV pulses include stimulated rotational Raman scattering [17] and excimer lasers [18], but neither have yet been demonstrated at sufficient bandwidth.

Broadband frequency-conversion is highly relevant to ultrafast optics. The time-dependent instantaneous frequency in chirped pulses can be chosen to phase match nonlinear interactions over a large bandwidth [1921]. Angular dispersion can be used to optimize phase-matching conditions by inducing a suitable wavelength-dependent angle [22]. This has been used for second-harmonic generation of 300-fs pulses at 496 nm [23], as well as sum-frequency generation (SFG) of a broadband pulse at 707 nm with a monochromatic 266-nm pulse [24] and a broadband pulse at 800 nm with a monochromatic 532-nm pulse [25] in beta-barium borate (BBO). Optimizing the interaction geometry with noncollinearity and angular dispersion is an important tool for ultra-broadband optical parametric amplification [2631].

We show that sum-frequency generation can be implemented in an angularly dispersed noncollinear geometry for frequency conversion of broadband pulses around 1053 nm with narrowband pulses at 526.5 nm, and experimentally demonstrate this scheme in KDP. These results are highly relevant to not only existing high-energy laser facilities based on Nd:glass amplifiers, but also to future facilities generating broadband spectrally incoherent pulses via parametric amplification [32]. In particular, the SFG scheme allows for frequency conversion of a broadband signal and idler spectrally symmetric relative to 1053 nm. The broadband spectral acceptance and operation with spectrally incoherent pulses are experimentally demonstrated, leading to the generation of pulses with more than 10 THz of bandwidth at 351 nm. Section 2 analyzes broadband SFG in an angularly dispersed noncollinear geometry. Section 3 presents the experimental demonstration of this scheme, and in particular, direct measurements of the spectral acceptance and generation of spectrally incoherent pulses at 351 nm with bandwidth larger than 10 THz.

2. Concept and analysis

2.1 Concept

We consider a broadband optical wave with spectral components at frequencies ω1 + ω, where ω1 is the central frequency and ω is a relatively small frequency offset. Sum-frequency generation with a narrowband wave at frequency ω2 leads to a wave at the central frequency ω3 = ω1 + ω2, and each frequency ω1 + ω is up-converted to the frequency ω3 + ω. All waves are assumed to be spatially coherent. Efficient nonlinear interaction requires phase matching, i.e.,

$$\Delta k(\omega )= {k_1}({{\omega_1} + \omega } )+ {k_2}({{\omega_2}} )- {k_3}({{\omega_3} + \omega } )= 0,$$
where kj is the wave vector (dependent on frequency, propagation angle, and polarization state) for waves at frequencies around ωj projected on a common propagation axis. The wave-vector mismatch Δk can be expanded as a Taylor series at ω = 0, following
$$\Delta k(\omega )= \Delta {k^{(0 )}} + \Delta {k^{(1 )}}\omega + \frac{1}{2}\Delta {k^{(2 )}}{\omega ^2},$$
where Δk(1) and Δk(2) are the first-order and second-order derivatives of Δk relative to ω, respectively, and Δk(0) = Δk(0). Phase matching is most often obtained using the birefringence of nonlinear crystals. When at least one of the waves is extraordinarily polarized, angular tuning of the SFG crystal allows for Δk(0) = 0 at one specific phase-matching angle. However, in most cases, Δk(1) is nonzero, and the resulting frequency dependence of Δk leads to a narrowband nonlinear interaction.

Broadband sum-frequency generation requires a relatively small value of Δk(ω) over a sufficient frequency interval by canceling Δk(0) and Δk(1), which can be achieved with at least one additional degree of freedom. For specific nonlinear interactions, tuning a material-dependent parameter allows for broadband phase matching: for example, the deuteration level of partially deuterated KDP can be chosen for broadband second-harmonic generation at 1053 nm [15]. The angle between input waves is an additional degree of freedom used for broadband phase matching in optical parametric amplifiers [33] and in optical parametric chirped-pulse amplifiers [34]. Angular dispersion on one of the input waves introduces a frequency-dependent interaction angle, yielding an additional degree of freedom that can be implemented using diffraction gratings and prisms.

We consider the interaction geometry described in Fig. 1, in which the wave at the central frequency ω1 is taken as a reference for propagation. Angular dispersion D on the broadband wave leads to an angular deviation at frequency ω1 + ω. For a noncollinear angle α between the waves at ω1 and ω2, the wave-vector mismatch projected on the propagation axis for the wave at frequency ω1 is

$$\begin{aligned} \Delta k({\omega ,\theta ,\alpha ,D} )&= {k_1}({{\omega_1} + \omega ,\theta + D\omega } )\cos ({D\omega } )\\ & + {k_2}({{\omega_2},\theta + \alpha } )\cos (\alpha )\\ & - {k_3}[{{\omega_3} + \omega ,\theta + \Omega ({\omega ,\theta ,\alpha ,D} )} ]\cos [{\Omega ({\omega ,\theta ,\alpha ,D} )} ]. \end{aligned}$$

In Eq. (3), the propagation angles are defined referring to Fig. 1 as follows:

  • • The wave at frequency ω1, propagating at an angle θ relative to the crystal axis, is used as a reference for all waves.
  • • The wave at frequency ω1 + ω propagates at θ +  because of angular dispersion.
  • • The wave at ω2 propagates at an angle α relative to the reference wave at ω1.
  • • The wave at ω3 + ω propagates at an angle Ω(ω,θ,α,D) relative to the reference wave at ω1

 figure: Fig. 1.

Fig. 1. Configuration for the noncollinear sum-frequency generation of an angularly dispersed broadband 1ω wave (red wave vectors) with a narrowband 2ω wave (green wave vector), yielding a broadband angularly dispersed 3ω wave (purple wave vectors). The wave vectors at ω = 0 and at a sample ω ≠ 0 are displayed with a continuous line and a dashed line, respectively.

Download Full Size | PPT Slide | PDF

Projecting the vectorial phase-matching condition on a transverse axis, as is commonly done for noncollinear optical parametric amplifiers (OPA’s) [33], yields

$$\sin [{\Omega ({\omega ,\theta ,\alpha ,D} )- D\omega } ]= \sin ({\alpha - D\omega } )\frac{{{k_2}({{\omega_2},\theta + \alpha } )}}{{{k_3}[{{\omega_3} + \omega ,\theta + \Omega ({\omega ,\theta ,\alpha ,D} )} ]}}.$$

For ordinarily polarized waves, the wave vector kj does not depend on its angular argument, whereas the angular dependence of the wave vectors for extraordinarily polarized waves allows for birefringent phase matching. The overall noncollinearity of the two input waves (angle α) and the angular dispersion on one of them (D) can be used in addition to angular tuning (angle θ) for the cancelation of Δk(0) and Δk(1). Because there are now three degrees of freedom, there is a continuum of solutions [θ,α,D] for cancelation of the wave-vector mismatch and its frequency derivative. The requirement that the nonlinear interaction be phase matched at ω = 0 [Δk(0) = 0] sets the relation between α and θ. Cancelation of the frequency derivative [Δk(1) = 0] sets the relation between D, α, and θ. For a given α, the solution that provides broadband phase matching can be numerically identified by determining θ0 for Δk(0) = 0, then determining D for Δk(1) = 0 for the fixed values of α and θ0. This process has been followed for the results presented in this article, but an excellent approximation bringing more insight is described in the next subsection. Although angular dispersion is written as a linear relation between angle and frequency in Eq. (3), the parameters for broadband operation can be numerically identified for a specific angularly dispersive component, for example the line density and incidence angle of a diffraction grating.

2.2 Analytical derivation

We consider type-I SFG of a broadband source at ω0 with a narrowband source at 2ω0, for which Eqs. (3) and (4) are written as

$$\begin{aligned} \Delta k({\omega ,\theta ,\alpha ,D} )&= {k_\textrm{o}}({{\omega_0} + \omega } )\cos ({D\omega } )\\ & + {k_\textrm{o}}({2{\omega_0}} )\cos (\alpha )\\ & - {k_\textrm{e}}[{3{\omega_0} + \omega ,\theta + \Omega ({\omega ,\theta ,\alpha ,D} )} ]\cos [{\Omega ({\omega ,\theta ,\alpha ,D} )} ]\end{aligned}$$
and
$$\sin [{\Omega ({\omega ,\theta ,\alpha ,D} )- D\omega } ]= \sin ({\alpha - D\omega } )\frac{{{k_\textrm{o}}({2{\omega_0}} )}}{{{k_\textrm{e}}[{3{\omega_0} + \omega ,\theta + \Omega ({\omega ,\theta ,\alpha ,D} )} ]}}.$$

For small angles, Eq. (6) can be approximated as

$$\Omega ({\omega ,\theta ,\alpha ,D} )- D\omega = ({\alpha - D\omega } )\frac{{2{\omega _0}}}{{3{\omega _0} + \omega }},$$
which can be developed as
$$\Omega ({\omega ,\theta ,\alpha ,D} )= \frac{2}{3}\alpha + \frac{D}{3}\omega - \frac{2}{{9{\omega _0}}}\alpha \omega .$$

Equation (7) expresses the angle of the wave generated at 3ω0 + ω as a function of the noncollinear angle α and input dispersion D. The wave at the central frequency 3ω0 propagates at an angle Ω0 = 2α/3 relative to the wave at frequency ω0. The angular dispersion ∂Ω/∂ω on the generated wave is equal to

$$D^{\prime} = \frac{D}{3} - \frac{{2\alpha }}{{9{\omega _0}}}.$$

For a collinear interaction, the angular dispersion $D^{\prime}$ is reduced by a factor 3 compared to the input angular dispersion D (when these quantities are defined as angle per unit frequency). A noncollinear geometry results in an additional dispersion term proportional to the noncollinear angle.

For a specific noncollinear angle α, expressing Eq. (5) at ω = 0 identifies the phase-matching angle θ0 necessary to phase match the nonlinear interaction at the central frequency [Δk(0) = 0]:

$${k_\textrm{o}}({{\omega_0}} )+ {k_\textrm{o}}({2{\omega_0}} )\cos (\alpha )- {k_\textrm{e}}({3{\omega_0},{\theta_0} + {\Omega _0}} )\cos ({{\Omega _0}} )= 0.$$

Equation (9) can be written as a function of the crystal’s ordinary and extraordinary indices as

$${n_\textrm{o}}({{\omega_0}} )+ 2{n_\textrm{o}}({2{\omega_0}} )\cos (\alpha )- 3{n_\textrm{e}}({3{\omega_0},{\theta_0} + {\Omega _0}} )\cos ({{\Omega _0}} )= 0.$$

Equation (10) identifies the relation between noncollinear angle α and phase-matching angle θ0 for phase matching at ω0.

Calculating the frequency derivative of Eq. (5) for Δk(1) = 0 yields

$$\frac{{\partial {k_\textrm{o}}}}{{\partial \omega }} - \left[ {\frac{{\partial {k_\textrm{e}}}}{{\partial \omega }} + \frac{{\partial {k_\textrm{e}}}}{{\partial \theta }}\frac{{\partial \Omega }}{{\partial \omega }} - {k_\textrm{e}}{\Omega _0}\frac{{\partial \Omega }}{{\partial \omega }}} \right] = 0,$$
where ko and ke refer to the ordinary and extraordinary wave vectors around ω0 and 3ω0, respectively. This equation can be written as
$$D - \frac{{2\alpha }}{{3{\omega _0}}} = 3D^{\prime} = \frac{{{n_\textrm{o}} - {n_\textrm{e}} + \left( {\frac{{\partial {n_\textrm{o}}}}{{\partial \omega }} - 3\frac{{\partial {n_\textrm{e}}}}{{\partial \omega }}} \right){\omega _0}}}{{{\omega _0}\left( {\frac{{\partial {n_\textrm{e}}}}{{\partial \theta }} - \frac{{2{n_\textrm{e}}}}{3}\alpha } \right)}},$$
where no is the ordinary index for the wave around ω0 and ne is the extraordinary index for the wave around 3ω0. Equation (12) identifies the required angular dispersion D and resulting angular dispersion D’ for broadband phase matching at the noncollinear angle α and phase-matching angle θ0 in the limit of small angles.

It is instructive to evaluate how the optimal angular dispersion depends on the noncollinear angle for small noncollinear angles α leading to small angular dispersion added by the SFG process:

  • • The dependence of the angular dispersion on the noncollinear angle is a hyperbola. In this limit, the angular dispersion D converges to D = 0 when the magnitude of α increases.
  • • Noncollinear angles around ${\alpha _\infty } = ({{3 / {2{n_\textrm{e}}}}} )({{{\partial {n_\textrm{e}}} / {\partial \theta }}} )$ require large angular dispersions.
In the (D,α) phase space, α and D define two quadrants in which broadband SFG can be obtained. These two quadrants correspond to [α > α, D > 0] and [α < α, D < 0]. One corollary of Eq. (12) is that, for relatively small angles, there is generally no broadband solution for sum-frequency generation at either D = 0 (no input 1ω angular dispersion) or D′ = 0 (no output 3ω angular dispersion). These conclusions are, however, only valid for SFG of a broadband wave at ω0 with a narrowband wave at 2ω0 in a Type-I configuration at relatively small angles, for which Eq. (12) is valid. Other nonlinear interactions and operation at large angles might allow for operation at D = 0 or D′ = 0, the latter having for example been investigated for nonlinear mixing of a broadband 800-nm pulse with a narrowband 532-nm pulse in BBO at a large noncollinear angle [25].

2.3 Phase-matching conditions for broadband sum-frequency generation

Various simulations of the SFG phase-matching conditions are shown in Fig. 2. In this figure and in the remainder of this article, the dispersion coefficient at λ0 = 1053 nm is specified in units of angle per unit wavelength, i.e., $\Delta = {{ - 2\pi cD} / {\lambda _0^2}}$ (note that D and Δ have opposite signs). The calculated conditions for broadband phase matching in KDP clearly show the hyperbolic dependence of the angular dispersion and noncollinear angle [Fig. 2(a)]. Because operation at smaller noncollinear angles is preferable in practice, we focus on the quadrant for which [α > α, Δ < 0]. The broadband SFG condition is plotted over part of this quadrant for four different Type I crystals: KDP, DKDP, LBO, and BBO. The corresponding values of α are −2.6°, −2.4°, −1.6°, and −6.3°. Finally, Fig. 2(c) shows the good agreement between the analytical derivation [Eq. (12)] and computational cancelation of Δk(0) and Δk(1).

 figure: Fig. 2.

Fig. 2. (a) Relation between α and Δ for broadband SFG in KDP, obtained by computational cancelation of the phase-mismatch and its frequency derivative. (b) Relation between α and Δ for KDP, DKDP, LBO, and BBO in part of the quadrant corresponding to Δ < 0. (c) Comparison between the analytical relation given by Eq. (12) (solid line) and obtained by computation (dashed line).

Download Full Size | PPT Slide | PDF

2.4 Spectral acceptance

LBO and BBO cannot currently be grown at sufficiently large aperture to support application to high-energy laser systems. For a given angular dispersion, KDP allows for operation at a slightly lower noncollinear angle than DKDP, hence KDP has been chosen for simulations and experimental demonstration. The SFG efficiency for mixing of a wave at a wavelength λ around 1053 nm with a wave at 526.5 nm has been quantified in the fixed-field approximation [35] following

$$\eta (\lambda )= {\left[ {\frac{{\sin ({{{\Delta kL} / 2}} )}}{{{{\Delta kL} / 2}}}} \right]^2},$$
in which Δk is calculated using Eq. (5). A crystal thickness L = 1 cm representative of the crystals thickness used for high-efficiency tripling of nanosecond pulses has been chosen. Internal angular dispersion values that are of the order of the dispersion introduced by a diffraction grating with 800 l/mm are chosen because large-aperture, high-damage-threshold 1ω gratings with similar line density, as well as 3ω gratings with approximately three times this line density, have been developed for tripling of the Laser Mégajoule [36]. This ratio of line densities at 3ω and 1ω allows for ideal compensation of the angular dispersion at 3ω if the small angular dispersion from the SFG process is neglected in Eq. (8).

The SFG efficiency η is plotted as a function of the fundamental wavelength and detuning for Δ = −0.6 mrad/nm and α = 1.64° on Fig. 3(a), with five lineouts corresponding to angular detunings ranging from 0 to 0.1° plotted on Fig. 3(b). The efficiency is symmetric relative to 1053 nm and clearly shows the cancellation of both the phase mismatch and its frequency derivative at that wavelength in the absence of detuning (δθ = 0). The full width at half maximum of the spectral acceptance in the phase-matched configuration is 29.5 nm for this geometry, which corresponds to 8 THz. It is equal to 26 nm for Δ = −0.7 mrad/nm, α = 1.01°, and to 33 nm for Δ = −0.5 mrad/nm, α = 2.55°, showing that operating at lower angular dispersion and higher noncollinear angle yields larger spectral acceptance. When the crystal is detuned from phase matching at 1053 nm, the spectral acceptance curve has two lobes peaked at wavelengths approximately symmetric relative to 1053 nm.

 figure: Fig. 3.

Fig. 3. Efficiency of sum-frequency generation for a monochromatic wave around 1053 nm and a monochromatic wave at 526.5 nm as a function of the fundamental wavelength and internal detuning δθ relative to phase matching at 1053 nm for α = 1.64° and Δ = −0.6 mrad/nm, displayed (a) over the range of detuning [−0.05°, 0.1°] and (b) at five detunings between 0 and 0.1°.

Download Full Size | PPT Slide | PDF

The spectral acceptance of collinear third-harmonic generation with angular dispersion has been simulated for comparison. The THG efficiency (1ω, extraordinarily polarized + 2ω, ordinarily polarized, leading to extraordinarily polarized 3ω) in a Type-II 1-cm KDP crystal (θ = 59.0°) using 1ω angular dispersion equal to −1.11 mrad/nm is shown in Fig. 4. In this case, the efficiency is calculated for frequency mixing of a spectral component at ω0 + ω with a spectral component at 2ω0 + 2ω [12]. This scheme yields a 24-nm spectral acceptance relative to the 1ω wave when the crystal is angularly phase matched at 1053 nm. Although the SFG and THG schemes have similar spectral acceptance relative to the input 1ω wave, the output 3ω wave is expected to be broader for the THG scheme. Indeed, a frequency offset ω relative to the central frequency ω0 yields a frequency offset 3ω relative to the central frequency 3ω0 for THG, but only a frequency offset ω for SFG with the monochromatic 2ω0 wave. This spectral-acceptance calculation, which intrinsically relies on monochromatic waves, suggests that the THG scheme can provide larger bandwidth at 3ω. However, operation with spectrally incoherent pulses, as simulated in the next subsection, shows that the SFG scheme has a significant efficiency advantage.

 figure: Fig. 4.

Fig. 4. THG efficiency for an angularly dispersed monochromatic wave around 1053 nm and its second harmonic as a function of the fundamental wavelength and internal detuning relative to phase matching at 1053 nm, displayed (a) over the range of detuning [−0.07°, 0.1°] and (b) at the three detunings 0°, 0.05°, and 0.1°.

Download Full Size | PPT Slide | PDF

2.5 Operation with spectrally incoherent pulses

An example of operation with broadband spectrally incoherent pulses is simulated in this subsection to highlight the difference between the broadband SFG and THG schemes. The spectral acceptance curves simulated in the previous subsection corresponds to the nonlinear mixing of monochromatic waves and do not directly translate to the nonlinear mixing of broadband waves. In the broadband case, and particularly for spectrally incoherent pulses, the nonlinear mixing must occur between any two pairs of frequencies present in the 1ω and 2ω pulse for efficient operation.

The three-wave nonlinear mixing simulations consider fields that depend on time and the longitudinal coordinate only. The equations are integrated using a split-step formalism, with the time-domain nonlinear interaction performed at each step using a fourth-order Runge–Kutta technique and the frequency-domain propagation constant added on each wave at each step after Fourier transformation to the frequency domain. The crystal absorption is not taken into account because it is relatively small and similar for the two configurations. The effective nonlinear coefficient is calculated using analytical formula for Type-I and Type-II phase matching in KDP, taking into account the respective phase-matching angles, which yields deff = 0.28 pm/V for Type-I SFG and deff = 0.34 pm/V for Type-II THG.

A broadband spectrally incoherent pulse at 1053 nm is generated by assigning a random phase between 0 and 2π to its spectral components, Fourier transforming it to the time domain, and gating by a 1.5-ns super-Gaussian envelope to take into account the finite duration of pulses used in high-energy laser systems. As discussed in [37], such a time-gated spectrally incoherent pulse has large field modulations in both the time and frequency domain. For this example, a flat spectrum with 5-THz bandwidth centered at 1053 nm is chosen for the 1ω pulse. The spectral density of one realization of the spectrally incoherent 1ω pulse is shown in Fig. 5(a). The temporal intensity profile and its probability density function (PDF) are shown in Figs. 5(b) and 5(c), respectively. The latter is a negative exponential function [37].

 figure: Fig. 5.

Fig. 5. Spectral and temporal properties of [(a)–(c)] the 1ω input pulse, [(d)–(f)] the 3ω pulse obtained by SFG, and [(g)–(i)] the 3ω pulse obtained by THG. (a), (d), and (g) correspond to the peak-normalized spectral density. (b), (e) and (h) correspond to the intensity profile. (c), (f) and (i) correspond to the probability density function (PDF) of the intensity on a logarithmic scale, with 100 bins between 0 and 10 GW/cm2. On the latter plots, the vertical red line represents the average intensity.

Download Full Size | PPT Slide | PDF

For angularly dispersed noncollinear SFG, the 1ω pulse interacts with a flat-in-time narrowband 2ω pulse at 526.5 nm in a 1-cm KDP crystal, using Δ = –0.6 mrad/nm and α = 1.64°. The temporally averaged intensity of the 1ω pulse is chosen as 〈I1ω〉 = 0.75 GW/cm2, and the intensity of the flat-in-time 2ω pulse is chosen as I2ω = 1.5 GW/cm2 so that the two pulses have an identical time-averaged number of photons. The nonlinear interaction yields a 3ω pulse with a spectral density similar to that of the 1ω pulse [Fig. 5(d)]. This is expected for sum-frequency generation of the 1ω pulse with a narrowband 2ω pulse because the SFG efficiency is high over the pulse’s spectral support. The resulting temporal intensity profile is still highly modulated, with an average value 〈I3ω,SHG〉 equal to 1.6 GW/cm2 [Figs. 5(e) and 5(f)]. This corresponds to an efficiency equal to 71% relative to the sum of the input intensities 〈I1ω〉 + I2ω.

For angularly dispersed THG, the 1ω pulse interacts in a Type-II 1-cm KDP crystal with a 2ω pulse obtained from frequency doubling in another crystal. For this example, the 2ω field is chosen proportional to the square of the 1ω field, assuming no bandwidth limitation in the doubling process, and its intensity is scaled to an average value 〈I2ω〉 = 1.5 GW/cm2. The angular dispersion is equal to –1.11 mrad/nm, as in the previous subsection. The output 3ω pulse has a spectrum broader than the input 1ω spectrum [Fig. 5(g)] and large time-domain variations [Figs. 5(h) and 5(i)]. THG results in a pulse with instantaneous intensity values as high as SFG, although the intensity PDF is clearly more skewed toward lower values. The average 3ω intensity 〈I3ω,THG〉 is 0.54 GW/cm2, corresponding to an efficiency of 24% compared to the sum of the input intensities. THG therefore has much lower efficiency, despite the higher effective nonlinearity resulting from the crystal configuration, which makes it unsuitable for high-energy laser systems. Increasing the crystal thickness might increase the efficiency, although such increase modifies the phase-matching properties between frequency components and decreases the angular acceptance.

2.6 Spatial-domain considerations

We discuss the spatial properties of the SFG scheme: spatial spread due to angular dispersion, spatial overlap in the SFG crystal, and compensation of the angular dispersion at 3ω.

Using the typical internal dispersion Δ = –0.6 mrad/nm (external dispersion Δno, where no is the ordinary optical index of KDP at 1053 nm) and a 1ω bandwidth equal to δλ = 30 nm, the transverse spread of the 1ω beam in the dispersion direction after a distance δz is δx = Δno δz δλ. A typical propagation distance in high-energy laser facilities is δz = 1 m, resulting in δx = 2.7 cm. This is relatively small compared to typical beam sizes, although reducing δz or improving the spatial overlap between the 1ω and 2ω beam can be considered for improved efficiency. For lower-energy systems with smaller beams, as used on the testbed described in the next section, the beam spread is relatively large even after reducing the distance between the 1ω diffraction grating and the SFG crystal, e.g., 2.7 mm for δz = 10 cm. Reimaging between these two components significantly improves the spatial overlap between the 1ω and 2ω beam in the crystal. The angular dispersion inside the crystal provides a relatively small spread, e.g., 200 µm in a 1-cm crystal with the previous assumptions. Imaging of the 3ω beam between the SFG crystal and the 3ω grating can be used to alleviate the lateral spread from free-space propagation after the crystal.

Spatial overlap inside the SFG crystal is impacted by the noncollinear geometry and the spatial walk-off between waves. For an internal angle α = 1.5°, the relative change in transverse beam location at 1ω and 2ω over the crystal thickness L = 1 cm is Lsin(α) = 260 µm. The spatial walk-off angle can be calculated as $\rho = \arctan [{{{({{{{n_\textrm{o}}} / {{n_\textrm{e}}}}} )}^2}\tan (\theta )} ]- \theta ,$ where no and ne are the ordinary and extraordinary index for the extraordinary 3ω wave and θ is the phase-matching angle [38]. For the negative uniaxial KDP crystal, ρ = 1.7°, which leads to a displacement similar to that from the internal noncollinear angle. The 3ω beam is displaced away from the crystal axis, i.e., between the noncollinear 1ω and 2ω beam when referring to the configuration described in Fig. 1. These displacements are negligible for large high-energy beams but they will decrease the SFG efficiency and impact the beam quality for beams smaller than a few millimeters.

The angular dispersion of the 3ω wave generated by SFG must be compensated for most applications. If the dispersion term caused by the noncollinear geometry is neglected, the 1ω angular dispersion D and 3ω angular dispersion D′ are linked by D′ = D/3 (D in units of angle per unit angular frequency), i.e., Δ′ = 3Δ (Δ in units of angle per unit wavelength). The angular dispersion of a grating operated at Littrow, in units of angle per unit wavelength, is ΔLittrow = 1/[d cos(θLittrow)], where d is the line spacing and θLittrow is the Littrow angle verifying sin(θLittrow) = λ/(2d). This indicates that choosing the line spacing of the 1ω and 3ω grating as d1ω = 3d3ω yields identical Littrow angles and cancels the 3ω angular dispersion. This line-density ratio is identical to the theoretical line-density ratio for angular-dispersion compensation in the broadband THG scheme, i.e., the two schemes yield identical 3ω angular dispersion for a given 1ω angular dispersion. In a noncollinear geometry, any 3ω grating with line density d3ω spacing close to d1ω can be tuned to provide cancellation of the linear dependence of the angle as a function of frequency or wavelength over the spectral support. The higher-order dispersion terms result in an angular spread integrated over the 3ω spectrum. Numerical investigations considering the bandwidths that can be generated in a 1-cm crystal (Fig. 3) show that this spread (sub-10-µrad) is small compared to the angular spread introduced by typical phase plates on high-energy laser systems [1,39], but the impact on a specific application should be adequately simulated.

3. Experimental results

3.1 Setup

The angularly dispersed noncollinear SFG scheme has been demonstrated using pulses around 1053 nm amplified by an OPA (Fig. 6). Two distinct laser front ends generate broadband optical pulses for seeding the OPA and narrowband pulses for seeding the system generating the 2ω pulses for the OPA and SFG stages:

  • • The OPA seed originates either from an amplified spontaneous emission (ASE) source (MW Photonics) for operation with spectrally incoherent pulses or a tunable narrowband laser (Velocity Laser, Newport) for characterization of spectral acceptance. It is temporally carved to a flat-in-time 1.5-ns pulse by a Mach − Zehnder modulator (MZM) and amplified in two Yb-doped fiber amplifiers (FA’s). The seed is then launched in free space and collimated, resulting in a Gaussian beam with size of a few millimeters. Because the seed originates from a single-mode fiber, it is spatially coherent [32].
  • • The pump seed originates from a monochromatic 1053-nm laser carved and shaped by a MZM and amplified by an Yb-doped fiber amplifier. For increased flexibility, this front end generates two 1.5-ns pulses separated by 0.5 ns to pump the OPA and the SFG stage. After amplification in a diode-pumped Nd:YLF regenerative amplifier and two diode-pumped Nd:YLF rod amplifiers (Northrop-Grumman Cutting Edge Optronics) in a double-pass geometry, the narrowband pulses are frequency converted to 526.5 nm in a Type-I LBO crystal. A spatially dithered beam shaper [40] after the regenerative amplifier ensures that the 2ω beam has a high-order super-Gaussian profile.

 figure: Fig. 6.

Fig. 6. Experimental layout for generation of a broadband spectrally incoherent pulse (left-hand side) and sum-frequency generation (right-hand side).

Download Full Size | PPT Slide | PDF

Both Mach − Zehnder modulators are driven by a common arbitrary waveform generator (AWG, Tektronix AWG77000) to eliminate the relative jitter between the pulses at the OPA and SFG stage. The AWG generates a long waveform that contains the drive signal for the pump seed (two 1.5-ns pulses separated by ∼0.5 ns) and for the OPA seed (one 1.5-ns pulse, generated approximately 650 ns later to take into account the delay introduced by the Nd:YLF amplifiers. The pulse-shaping parameters are set to ensure flat-in-time 2ω pulses and 1ω pulses that are flat-in-time after temporal averaging over a time interval much longer than their coherence time. This was checked using photodiodes and an oscilloscope having a combined bandwidth of the order of 10 GHz.

The OPA stage is composed of two walk-off compensating Type-I LBO crystals with a total length of 66 mm. The seeding configuration for this demonstration mimics our previous work on the parametric amplification of spectrally incoherent signals, where collinear amplification of a signal slightly offset from spectral degeneracy yields an idler wave that can be combined with the amplified signal to increase the available energy and bandwidth [32]. The OPA seed has a spectral support below 1053 nm to take advantage of the higher gain in Yb-doped fiber amplifiers, resulting in an idler at wavelengths above 1053 nm. For example, tuning the monochromatic seed laser from 1030 to 1053 nm results in an idler wavelength from 1077 to 1053 nm.

The SFG stage is implemented following the right-hand side of Fig. 6, using transmission gratings at 1ω and 3ω. Because of the relatively small beam sizes (∼2.5 mm), two-lens imaging systems are used between the 1ω diffraction grating and the SFG crystal, and between the SFG crystal and the 3ω diffraction grating. The imaging systems are implemented with commercial achromats having suitable design wavelengths for broadband operation, but no other consideration is required considering the spatial coherence of the spectrally incoherent waves at 1ω and 3ω. The gratings (Plymouth Gratings Laboratories) have line densities equal to 802.5 l/mm and 2305 l/mm, respectively. The 1ω grating is set at its Littrow angle (∼25°), while the 3ω grating is set to minimize the 3ω angular dispersion observed with a far-field camera. The 1ω and 2ω beams are combined using a dichroic mirror, and their relative angle is monitored with a camera at the far field of an achromatic lens. Both beams have a high-order super-Gaussian profile because of spatial beam shaping of the pump after the regenerative amplifier and OPA saturation. Balancing the ratio of the energy in the 2ω pulses pumping the OPA and the SFG stage allows for OPA operation at saturation. OPA pump energies of the order of 20 mJ yield a combined signal and idler energy up to 7 mJ in the SFG crystal, i.e., time-averaged 1ω intensity of the order of 0.075 GW/cm2. The 2ω pulse synchronized with the 1ω pulse from the OPA has energy up to 13 mJ (2ω intensity = 0.15 GW/cm2). The generated 3ω beam is separated from the 1ω and 2ω beams using another dichroic mirror before the 3ω imaging system. Two KDP crystals with thickness equal to 10 mm and 3 mm have been tested. Both crystals are cut at θ = 47.7°, φ = 45°. They are antireflection coated at 1ω and 2ω on the input face and 3ω on the output face.

3.2 Sum-frequency-generation optimization

Optimization of the SFG stage consists in identifying a combination of dispersion, noncollinear angle, and phase-matching angle for broadband operation at 1053 nm. The strategy that has been followed is to keep the angular dispersion constant and identify the noncollinear angle for which a signal and idler that are spectrally symmetric relative to 1053 nm are frequency converted for the same phase-matching angle. For nonideal values of α, up-conversion of the signal and idler is phase matched at different angles θSignal and θIdler, and the difference θSignalθIdler indicates the magnitude and sign of the discrepancy between the experimental and ideal α. This provides a direct approach to optimize the broadband phase-matching condition.

For SFG optimization, the OPA is seeded by a 1030-nm monochromatic pulse, leading to a signal at 1030 nm and idler at 1077 nm. The noncollinear angle was iteratively adjusted to observe SFG at the same phase-matching angle for the signal and idler. Figures 7(a) and 7(b) show the normalized SFG signal for the signal and idler at the initial (non-optimal) and final (optimized) noncollinear angles. The data are plotted as a function of the rotation stage angle. The difference in internal phase-matching angles θIdlerθSignal is 0 at the optimal noncollinear angle α = 2.44° for this specific configuration [Fig. 7(c)]. In this set of experiments, the magnitude of the 1ω angular dispersion introduced by the grating was determined to be 0.89 mrad/nm by measuring the wavelength-dependent far-field position at the focal plane of a lens. The image relay between the 1ω diffraction grating and the SFG crystal has a nominal magnification equal to 1.15. Taking into account this magnification and Fresnel refraction at the input face of the SFG crystal, the internal angular dispersion is Δ = –0.52 mrad/nm. Simulations of the optimal SFG configuration for this value of the angular dispersion yields a noncollinear internal angle α = 2.37°, which is in good agreement with what has been measured considering experimental uncertainties. After this initial set of results, a 1-to-1 achromatic image relay was installed between the 1ω grating and the SFG crystal, leading to Δ = −0.60 mrad/nm in the SFG crystal and a noncollinear angle approximately equal to 1.64°.

 figure: Fig. 7.

Fig. 7. Normalized 3ω energy for SFG of the signal at 1030 nm (blue line and square markers) and the idler at 1077 nm (red line and round markers) for (a) non-optimal α and (b) optimized α. (c): measured θIdlerθSignal plotted as a function of the noncollinear angle α.

Download Full Size | PPT Slide | PDF

3.3 Measurement of spectral acceptance

To demonstrate the large SFG spectral acceptance relatively to the 1ω wave, the wavelength of the tunable monochromatic seed was scanned between 1030 and 1053 nm, yielding a 1ω wave composed of the amplified signal at ω0 + ω and corresponding idler at ω0ω. The resulting 3ω wave was sent to a spectrometer, and the relative SFG efficiency for the signal and idler wavelength was determined from the measured spectrum, which is composed of two lines at frequency 3ω0 + ω and 3ω0ω. Using this process, tuning the signal from 1030 nm to 1053 nm allows for the measurement of the SFG efficiency between 1030 nm and 1077 nm. This measurement was repeated for different crystal angles close to the phase-matching angle at 1053 nm. The results for the 10-mm and 3-mm KDP crystals are plotted in Figs. 8 and 9, respectively. The two sets of results clearly demonstrate the large bandwidth and symmetry of the spectral acceptance [Figs. 8(a), 8(b), 9(a), and 9(b)]. At the optimal phase-matching angle (δθ = 0), the SFG is broadband at 1053 nm, with an estimated full-width at half maximum equal to 28 nm and 55 nm. These are in good agreement with the simulated values (29 nm and 54 nm). One should note that the spectral acceptance scales like the square root of the crystal length in the optimal SFG configuration, for which the wave vector is a quadratic function of the optical frequency offset at 1ω; therefore, one expects that the spectral acceptance increases by $\sqrt {10\textrm{mm}/3\textrm{mm}} \approx 1.8$ between the 10-mm and 3-mm crystal. Detuning from phase matching at 1053 nm allows for a broader spectral acceptance at the expense of an efficiency loss at 1053 nm, resulting in two distinct lobes for large detuning. The measured SFG spectral acceptance is in good agreement with simulations [Figs. 8(c), 8(d), 9(c), and 9(d)] and clearly demonstrates that the optimized SFG stage allows for broadband up-conversion from 1ω to 3ω.

 figure: Fig. 8.

Fig. 8. SFG efficiency in the broadband configuration for a 10-mm KDP crystal. [(a), (b)] The measured efficiency as a function of 1ω wavelength and crystal angle. [(c), (d)] The calculated efficiency.

Download Full Size | PPT Slide | PDF

 figure: Fig. 9.

Fig. 9. SFG efficiency in the broadband configuration for a 3-mm KDP crystal. [(a), (b)] The measured efficiency as a function of 1ω wavelength and crystal angle. [(c), (d)] The calculated efficiency.

Download Full Size | PPT Slide | PDF

3.4 SFG of broadband spectrally incoherent pulses

Operation with a spectrally incoherent source has been demonstrated with the 10-mm and 3-mm crystals. The collinear OPA seeded by a 1.5-ns pulse from the ASE source generates a 1ω wave composed of its signal and idler. The spectral density of this source as a function of the frequency offset relative to its central frequency is shown with a black line in Figs. 10(b) and 10(c). The up-converted 3ω wave is sent to a spectrometer and an energy meter for characterization. Frequency up-conversion with the narrowband 2ω pulse yields a 3ω wave with a spectral density that is approximately the product of the input 1ω spectral and the spectral acceptance. The resulting 3ω spectral density for the 10-mm and 3-mm crystal at different phase-matching conditions therefore follows the overall shape of the measured spectral acceptance curves shown in the previous subsections (Fig. 10). Both crystals allow for generation of spectrally incoherent pulses extending over more than 10 THz.

 figure: Fig. 10.

Fig. 10. SFG of a spectrally incoherent source for various crystal detunings relative to phase matching at 1053 nm. (a) and (b) correspond to the 10-mm KDP crystal, while (c) and (d) correspond to the 3-mm crystal. On (b) and (d) the spectral density of the 1ω wave as a function of the frequency detuning relative to its central frequency (upper horizontal axis) is indicated with a black line.

Download Full Size | PPT Slide | PDF

The up-conversion efficiency has been quantified by measuring the 3ω energy after the SFG stage as a function of the 1ω and 2ω energy. The SFG crystal was tuned to maximize the 3ω energy when operating with the spectrally incoherent 1ω pulse, with both the 1ω and 2ω pulse being at their maximal value (for the 2ω pulse, the energy in the pulse overlapping with the 1ω pulse at the SFG crystal was estimated from the total energy and 2ω waveform). Energy ramps were then performed by attenuating either the 1ω or 2ω pulse (Fig. 11). The observed linear dependence of the 3ω energy is indicative of operation without depletion of either 1ω or 2ω wave. The efficiency of a phase-matched interaction depends on the intensity of the input waves, which are relatively low on the test bed. From the measured beam size and pulse duration, the time-averaged intensity of the 1ω beam and intensity of the 2ω beam at the nominal energy are estimated to be 0.075 GW/cm2 and 0.15 GW/cm2 at the nominal pulse energy. Simulations of the SFG interaction that take into account the estimated intensities, experimental configuration, and the input spectrum [black line in Fig. 10(b)] predict an output 3ω energy equal to 2.3 mJ, which is an overestimate of the measured energy (1.5 mJ). This discrepancy can be explained by the uncertainties in beams size and spatial overlap in the SFG crystal. The low efficiency observed in this proof-of-concept experiment can be greatly improved by operating at higher intensities, as simulated in Sec. 2.5. The mismatch in spatial overlap between the interacting beams becomes negligible for the large beams typically used in high-energy laser systems. The front end producing the spectrally incoherent pulses can be engineered for better overlap between their optical spectrum and the SFG spectral acceptance.

 figure: Fig. 11.

Fig. 11. Energy at 3ω generated by up-conversion in the 10-mm KDP crystal as a function of (a) the 1ω energy, keeping the 2ω energy constant, and (b) the 2ω energy, keeping the 1ω energy constant. All energies are stated for the interacting waves at the SFG crystal.

Download Full Size | PPT Slide | PDF

4. Conclusions

We have shown that the combination of a noncollinear geometry and angular dispersion allows for the nonlinear frequency conversion of broadband pulses at a central wavelength of 1053 nm with a narrowband pulse at 526.5 nm to generate broadband pulses at 351 nm. Both the phase mismatch and its frequency derivative can be canceled for an approximately hyperbolic dependence between the angular dispersion at 1053 nm and the interaction angle between the waves at 1053 nm and 526.5 nm. Tuning the nonlinear crystal allows for broadband SFG of waves centered at 1053 nm or simultaneous SFG of waves that are spectrally symmetric relative to 1053 nm. The experimental results obtained with KDP are in excellent agreement with simulations. Using this technique, nanosecond spectrally incoherent pulses with bandwidth larger than 10 THz at 351 nm have been generated.

This work demonstrates a practical path to high-efficiency broadband frequency conversion of pulses generated by broadband lasers and optical parametric amplifiers from the IR to the UV. Using large-aperture nonlinear crystals and diffraction gratings, which have already been developed for high-energy lasers, this scheme can support the generation of high-energy spectrally incoherent pulses with bandwidth sufficient to mitigate laser−plasma instabilities.

Funding

National Nuclear Security Administration (DE-NA0003856); Office of Science (DE-SC0021032); University of Rochester; New York State Energy Research and Development Authority.

Acknowledgment

The authors thank Plymouth Gratings Laboratory for providing the transmission diffraction gratings used for this experimental demonstration.

The concept presented in this article and initial experimental results were presented at the Conference on Lasers and Electro-Optics 2020, paper JTh4B.7.

This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007). [CrossRef]  

2. J. L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule: LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016). [CrossRef]  

3. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997). [CrossRef]  

4. R. S. Craxton, “Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation,” Opt. Commun. 34(3), 474–478 (1980). [CrossRef]  

5. R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:Glass lasers,” IEEE J. Quantum Electron. 17(9), 1771–1782 (1981). [CrossRef]  

6. W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016). [CrossRef]  

7. A. Babushkin, R. S. Craxton, S. Oskoui, M. J. Guardalben, R. L. Keck, and W. Seka, “Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation,” Opt. Lett. 23(12), 927–929 (1998). [CrossRef]  

8. P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007). [CrossRef]  

9. J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17(8), 1608–1613 (1974). [CrossRef]  

10. S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36(22), 1309–1312 (1976). [CrossRef]  

11. R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26(6), 062111 (2019). [CrossRef]  

12. M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992). [CrossRef]  

13. D. Pennington, M. Henesian, D. Milam, and D. Eimerl, “Efficient broadband third-harmonic frequency conversion via angular dispersion,” Proc. SPIE 2633, 645–654 (1995). [CrossRef]  

14. Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010). [CrossRef]  

15. M. S. Webb, D. Eimerl, and S. P. Velsko, “Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP,” J. Opt. Soc. Am. B 9(7), 1118–1127 (1992). [CrossRef]  

16. L. Ji, X. Zhao, D. Liu, Y. Gao, Y. Cui, D. Rao, W. Feng, F. Li, H. Shi, J. Liu, X. Li, L. Xia, T. Wang, J. Liu, P. Du, X. Sun, W. Ma, Z. Sui, and X. Chen, “High-efficiency second-harmonic generation of low-temporal-coherent light pulse,” Opt. Lett. 44(17), 4359–4362 (2019). [CrossRef]  

17. J. Weaver, R. Lehmberg, S. Obenschain, D. Kehne, and M. Wolford, “Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser,” Appl. Opt. 56(31), 8618–8631 (2017). [CrossRef]  

18. S. Obenschain, R. Lehmberg, D. Kehne, F. Hegeler, M. Wolford, J. Sethian, J. Weaver, and M. Karasik, “High-energy krypton fluoride lasers for inertial fusion,” Appl. Opt. 54(31), F103–F122 (2015). [CrossRef]  

19. K. Osvay and I. N. Ross, “Broadband sum-frequency generation by chirp-assisted group-velocity matching,” J. Opt. Soc. Am. B 13(7), 1431–1438 (1996). [CrossRef]  

20. F. Raoult, A. C. L. Boscheron, D. Husson, C. Rouyer, C. Sauteret, and A. Migus, “Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching,” Opt. Lett. 24(5), 354–356 (1999). [CrossRef]  

21. A. C. L. Boscheron, C. J. Sauteret, and A. Migus, “Efficient broadband sum frequency based on controlled phase-modulated input fields: Theory for 351-mm ultrabroadband or ultrashort-pulse generation,” J. Opt. Soc. Am. B 13(5), 818–826 (1996). [CrossRef]  

22. G. Szabó and Z. Bor, “Frequency conversion of ultrashort pulses,” Appl. Phys. B 58(3), 237–241 (1994). [CrossRef]  

23. G. Szabó and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50(1), 51–54 (1990). [CrossRef]  

24. Th. Hofmann, K. Mossavi, F. K. Tittel, and G. Szabó, “Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm,” Opt. Lett. 17(23), 1691–1693 (1992). [CrossRef]  

25. Y. Nabekawa and K. Midorikawa, “Broadband sum frequency mixing using noncollinear angularly dispersed geometry for indirect phase control of sub-20-femtosecond UV pulses,” Opt. Express 11(4), 324–338 (2003). [CrossRef]  

26. G. Arisholm, J. Biegert, P. Schlup, C. P. Hauri, and U. Keller, “Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams,” Opt. Express 12(3), 518–530 (2004). [CrossRef]  

27. K. Yamane, T. Tanigawa, T. Sekikawa, and M. Yamashita, “Angularly-dispersed optical parametric amplification of optical pulses with one-octave bandwidth toward monocycle regime,” Opt. Express 16(22), 18345–18353 (2008). [CrossRef]  

28. O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16(6), 3949–3954 (2008). [CrossRef]  

29. L. Cardoso, H. Pires, and G. Figueira, “Increased bandwidth optical parametric amplification of supercontinuum pulses with angular dispersion,” Opt. Lett. 34(9), 1369–1371 (2009). [CrossRef]  

30. S.-W. Huang, J. Moses, and F. X. Kärtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012). [CrossRef]  

31. Z. Li, K. Tsubakimoto, J. Ogino, X. Guo, S. Tokita, N. Miyanaga, and J. Kawanaka, “Stable ultra-broadband gain spectrum with wide-angle non-collinear optical parametric amplification,” Opt. Express 26(22), 28848–28860 (2018). [CrossRef]  

32. C. Dorrer, E. M. Hill, and J. D. Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express 28(1), 451–471 (2020). [CrossRef]  

33. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003). [CrossRef]  

34. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

35. R. Boyd, Nonlinear optics, 3rd ed. (Academic Press, Amsterdam, 2008).

36. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44(16), 3143–3152 (2005). [CrossRef]  

37. C. Dorrer, “Optical parametric amplification of spectrally incoherent pulses,” J. Opt. Soc. Am. B 38(3), 792–804 (2021). [CrossRef]  

38. G. G. Gurzadian, V. G. Dmitriev, and D. N. Nikogosian, Handbook of Nonlinear Optical Crystals, 3rd rev. ed., Springer series in Optical Sciences, vol. 64 (Springer-Verlag, Berlin, 1999).

39. R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015). [CrossRef]  

40. C. Dorrer and J. D. Zuegel, “Design and analysis of binary beam shapers using error diffusion,” J. Opt. Soc. Am. B 24(6), 1268–1275 (2007). [CrossRef]  

References

  • View by:

  1. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [Crossref]
  2. J. L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule: LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016).
    [Crossref]
  3. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
    [Crossref]
  4. R. S. Craxton, “Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation,” Opt. Commun. 34(3), 474–478 (1980).
    [Crossref]
  5. R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:Glass lasers,” IEEE J. Quantum Electron. 17(9), 1771–1782 (1981).
    [Crossref]
  6. W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
    [Crossref]
  7. A. Babushkin, R. S. Craxton, S. Oskoui, M. J. Guardalben, R. L. Keck, and W. Seka, “Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation,” Opt. Lett. 23(12), 927–929 (1998).
    [Crossref]
  8. P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007).
    [Crossref]
  9. J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17(8), 1608–1613 (1974).
    [Crossref]
  10. S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36(22), 1309–1312 (1976).
    [Crossref]
  11. R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26(6), 062111 (2019).
    [Crossref]
  12. M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
    [Crossref]
  13. D. Pennington, M. Henesian, D. Milam, and D. Eimerl, “Efficient broadband third-harmonic frequency conversion via angular dispersion,” Proc. SPIE 2633, 645–654 (1995).
    [Crossref]
  14. Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010).
    [Crossref]
  15. M. S. Webb, D. Eimerl, and S. P. Velsko, “Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP,” J. Opt. Soc. Am. B 9(7), 1118–1127 (1992).
    [Crossref]
  16. L. Ji, X. Zhao, D. Liu, Y. Gao, Y. Cui, D. Rao, W. Feng, F. Li, H. Shi, J. Liu, X. Li, L. Xia, T. Wang, J. Liu, P. Du, X. Sun, W. Ma, Z. Sui, and X. Chen, “High-efficiency second-harmonic generation of low-temporal-coherent light pulse,” Opt. Lett. 44(17), 4359–4362 (2019).
    [Crossref]
  17. J. Weaver, R. Lehmberg, S. Obenschain, D. Kehne, and M. Wolford, “Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser,” Appl. Opt. 56(31), 8618–8631 (2017).
    [Crossref]
  18. S. Obenschain, R. Lehmberg, D. Kehne, F. Hegeler, M. Wolford, J. Sethian, J. Weaver, and M. Karasik, “High-energy krypton fluoride lasers for inertial fusion,” Appl. Opt. 54(31), F103–F122 (2015).
    [Crossref]
  19. K. Osvay and I. N. Ross, “Broadband sum-frequency generation by chirp-assisted group-velocity matching,” J. Opt. Soc. Am. B 13(7), 1431–1438 (1996).
    [Crossref]
  20. F. Raoult, A. C. L. Boscheron, D. Husson, C. Rouyer, C. Sauteret, and A. Migus, “Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching,” Opt. Lett. 24(5), 354–356 (1999).
    [Crossref]
  21. A. C. L. Boscheron, C. J. Sauteret, and A. Migus, “Efficient broadband sum frequency based on controlled phase-modulated input fields: Theory for 351-mm ultrabroadband or ultrashort-pulse generation,” J. Opt. Soc. Am. B 13(5), 818–826 (1996).
    [Crossref]
  22. G. Szabó and Z. Bor, “Frequency conversion of ultrashort pulses,” Appl. Phys. B 58(3), 237–241 (1994).
    [Crossref]
  23. G. Szabó and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50(1), 51–54 (1990).
    [Crossref]
  24. Th. Hofmann, K. Mossavi, F. K. Tittel, and G. Szabó, “Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm,” Opt. Lett. 17(23), 1691–1693 (1992).
    [Crossref]
  25. Y. Nabekawa and K. Midorikawa, “Broadband sum frequency mixing using noncollinear angularly dispersed geometry for indirect phase control of sub-20-femtosecond UV pulses,” Opt. Express 11(4), 324–338 (2003).
    [Crossref]
  26. G. Arisholm, J. Biegert, P. Schlup, C. P. Hauri, and U. Keller, “Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams,” Opt. Express 12(3), 518–530 (2004).
    [Crossref]
  27. K. Yamane, T. Tanigawa, T. Sekikawa, and M. Yamashita, “Angularly-dispersed optical parametric amplification of optical pulses with one-octave bandwidth toward monocycle regime,” Opt. Express 16(22), 18345–18353 (2008).
    [Crossref]
  28. O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16(6), 3949–3954 (2008).
    [Crossref]
  29. L. Cardoso, H. Pires, and G. Figueira, “Increased bandwidth optical parametric amplification of supercontinuum pulses with angular dispersion,” Opt. Lett. 34(9), 1369–1371 (2009).
    [Crossref]
  30. S.-W. Huang, J. Moses, and F. X. Kärtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012).
    [Crossref]
  31. Z. Li, K. Tsubakimoto, J. Ogino, X. Guo, S. Tokita, N. Miyanaga, and J. Kawanaka, “Stable ultra-broadband gain spectrum with wide-angle non-collinear optical parametric amplification,” Opt. Express 26(22), 28848–28860 (2018).
    [Crossref]
  32. C. Dorrer, E. M. Hill, and J. D. Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express 28(1), 451–471 (2020).
    [Crossref]
  33. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
    [Crossref]
  34. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).
  35. R. Boyd, Nonlinear optics, 3rd ed. (Academic Press, Amsterdam, 2008).
  36. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44(16), 3143–3152 (2005).
    [Crossref]
  37. C. Dorrer, “Optical parametric amplification of spectrally incoherent pulses,” J. Opt. Soc. Am. B 38(3), 792–804 (2021).
    [Crossref]
  38. G. G. Gurzadian, V. G. Dmitriev, and D. N. Nikogosian, Handbook of Nonlinear Optical Crystals, 3rd rev. ed., Springer series in Optical Sciences, vol. 64 (Springer-Verlag, Berlin, 1999).
  39. R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
    [Crossref]
  40. C. Dorrer and J. D. Zuegel, “Design and analysis of binary beam shapers using error diffusion,” J. Opt. Soc. Am. B 24(6), 1268–1275 (2007).
    [Crossref]

2021 (1)

2020 (1)

2019 (2)

2018 (1)

2017 (1)

2016 (2)

J. L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule: LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016).
[Crossref]

W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
[Crossref]

2015 (2)

S. Obenschain, R. Lehmberg, D. Kehne, F. Hegeler, M. Wolford, J. Sethian, J. Weaver, and M. Karasik, “High-energy krypton fluoride lasers for inertial fusion,” Appl. Opt. 54(31), F103–F122 (2015).
[Crossref]

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

2012 (1)

2010 (1)

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (3)

2005 (2)

J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44(16), 3143–3152 (2005).
[Crossref]

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

2004 (1)

2003 (2)

1999 (1)

1998 (1)

1997 (1)

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

1996 (2)

1995 (1)

D. Pennington, M. Henesian, D. Milam, and D. Eimerl, “Efficient broadband third-harmonic frequency conversion via angular dispersion,” Proc. SPIE 2633, 645–654 (1995).
[Crossref]

1994 (1)

G. Szabó and Z. Bor, “Frequency conversion of ultrashort pulses,” Appl. Phys. B 58(3), 237–241 (1994).
[Crossref]

1992 (3)

1990 (1)

G. Szabó and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50(1), 51–54 (1990).
[Crossref]

1981 (1)

R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:Glass lasers,” IEEE J. Quantum Electron. 17(9), 1771–1782 (1981).
[Crossref]

1980 (1)

R. S. Craxton, “Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation,” Opt. Commun. 34(3), 474–478 (1980).
[Crossref]

1976 (1)

S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36(22), 1309–1312 (1976).
[Crossref]

1974 (1)

J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17(8), 1608–1613 (1974).
[Crossref]

Anderson, K. S.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Arisholm, G.

Auerbach, J. M.

Babushkin, A.

Bahr, R. E.

W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
[Crossref]

Betti, R.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Biegert, J.

Boehly, T. R.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Bor, Z.

G. Szabó and Z. Bor, “Frequency conversion of ultrashort pulses,” Appl. Phys. B 58(3), 237–241 (1994).
[Crossref]

G. Szabó and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50(1), 51–54 (1990).
[Crossref]

Borguet, E.

Boscheron, A. C. L.

Bouchut, P.

Bowers, M. W.

Boyd, R.

R. Boyd, Nonlinear optics, 3rd ed. (Academic Press, Amsterdam, 2008).

Brown, D. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Cardoso, L.

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Chen, X.

Chen, Y.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010).
[Crossref]

Collins, T. J. B.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Craxton, R. S.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

A. Babushkin, R. S. Craxton, S. Oskoui, M. J. Guardalben, R. L. Keck, and W. Seka, “Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation,” Opt. Lett. 23(12), 927–929 (1998).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
[Crossref]

R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:Glass lasers,” IEEE J. Quantum Electron. 17(9), 1771–1782 (1981).
[Crossref]

R. S. Craxton, “Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation,” Opt. Commun. 34(3), 474–478 (1980).
[Crossref]

Cui, Y.

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Delettrez, J. A.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Dixit, S. N.

Dmitriev, V. G.

G. G. Gurzadian, V. G. Dmitriev, and D. N. Nikogosian, Handbook of Nonlinear Optical Crystals, 3rd rev. ed., Springer series in Optical Sciences, vol. 64 (Springer-Verlag, Berlin, 1999).

Donaldson, W. R.

W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
[Crossref]

Dorrer, C.

Du, P.

Eimerl, D.

D. Pennington, M. Henesian, D. Milam, and D. Eimerl, “Efficient broadband third-harmonic frequency conversion via angular dispersion,” Proc. SPIE 2633, 645–654 (1995).
[Crossref]

M. S. Webb, D. Eimerl, and S. P. Velsko, “Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP,” J. Opt. Soc. Am. B 9(7), 1118–1127 (1992).
[Crossref]

Erbert, G. V.

Fan, D.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010).
[Crossref]

P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007).
[Crossref]

Feng, W.

Figueira, G.

Follett, R. K.

R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26(6), 062111 (2019).
[Crossref]

Freidman, G. I.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

Froula, D. H.

R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26(6), 062111 (2019).
[Crossref]

Gaborit, G.

Gao, Y.

Ginzburg, V. N.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

Goncharov, V. N.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Greiling, P. T.

S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36(22), 1309–1312 (1976).
[Crossref]

Guardalben, M. J.

Guo, X.

Gurzadian, G. G.

G. G. Gurzadian, V. G. Dmitriev, and D. N. Nikogosian, Handbook of Nonlinear Optical Crystals, 3rd rev. ed., Springer series in Optical Sciences, vol. 64 (Springer-Verlag, Berlin, 1999).

Harding, D. R.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Hauri, C. P.

Haynam, C. A.

Heestand, G. M.

Hegeler, F.

Henesian, M.

D. Pennington, M. Henesian, D. Milam, and D. Eimerl, “Efficient broadband third-harmonic frequency conversion via angular dispersion,” Proc. SPIE 2633, 645–654 (1995).
[Crossref]

Henesian, M. A.

Hermann, M. R.

Hill, E. M.

C. Dorrer, E. M. Hill, and J. D. Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express 28(1), 451–471 (2020).
[Crossref]

W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
[Crossref]

Hofmann, Th.

Hu, S. X.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Huang, S.-W.

Husson, D.

Isaienko, O.

Jancaitis, K. S.

Ji, L.

Journot, E.

Karasik, M.

Kärtner, F. X.

Karush, J. I.

J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17(8), 1608–1613 (1974).
[Crossref]

Katz, J.

W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
[Crossref]

Kawanaka, J.

Keck, R. L.

A. Babushkin, R. S. Craxton, S. Oskoui, M. J. Guardalben, R. L. Keck, and W. Seka, “Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation,” Opt. Lett. 23(12), 927–929 (1998).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Kehne, D.

Keller, U.

Kelly, J. H.

W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Kessler, T. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
[Crossref]

Khazanov, E. A.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

Knauer, J. P.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Kosc, T. Z.

W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
[Crossref]

Kruer, W. L.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Kumpan, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Lehmberg, R.

Letzring, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Li, F.

Li, X.

Li, Z.

Lion, C.

J. L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule: LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016).
[Crossref]

Liu, D.

Liu, J.

Loucks, S. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Lozhkarev, V. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

Luhmann, N. C.

S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36(22), 1309–1312 (1976).
[Crossref]

Luo, H.

P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007).
[Crossref]

Ma, W.

Manes, K. R.

Marozas, J. A.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Marshall, C. D.

Marshall, F. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Maximov, A. V.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

McCrory, R. L.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

McKenty, P. W.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Mehta, N. C.

Menapace, J.

Meyerhofer, D. D.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Michel, D. T.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Midorikawa, K.

Migus, A.

Milam, D.

D. Pennington, M. Henesian, D. Milam, and D. Eimerl, “Efficient broadband third-harmonic frequency conversion via angular dispersion,” Proc. SPIE 2633, 645–654 (1995).
[Crossref]

Miquel, J. L.

J. L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule: LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016).
[Crossref]

Miyanaga, N.

Morse, S. F. B.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Moses, E.

Moses, J.

Mossavi, K.

Murray, J. R.

Myatt, J. F.

R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26(6), 062111 (2019).
[Crossref]

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Nabekawa, Y.

Néauport, J.

Nikogosian, D. N.

G. G. Gurzadian, V. G. Dmitriev, and D. N. Nikogosian, Handbook of Nonlinear Optical Crystals, 3rd rev. ed., Springer series in Optical Sciences, vol. 64 (Springer-Verlag, Berlin, 1999).

Nostrand, M. C.

Obenschain, S.

Obenschain, S. P.

S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36(22), 1309–1312 (1976).
[Crossref]

Ogino, J.

Orth, C. D.

Oskoui, S.

Osvay, K.

Palashov, O. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

Palastro, J. P.

R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26(6), 062111 (2019).
[Crossref]

Patterson, R.

Pennington, D.

D. Pennington, M. Henesian, D. Milam, and D. Eimerl, “Efficient broadband third-harmonic frequency conversion via angular dispersion,” Proc. SPIE 2633, 645–654 (1995).
[Crossref]

Pires, H.

Qian, L.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010).
[Crossref]

P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007).
[Crossref]

Radha, P. B.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Rao, D.

Raoult, F.

Regan, S. P.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Ross, I. N.

Rouyer, C.

Sacks, R. A.

Sangster, T. C.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Sauteret, C.

Sauteret, C. J.

Schlup, P.

Schmitt, A. J.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Seka, W.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

A. Babushkin, R. S. Craxton, S. Oskoui, M. J. Guardalben, R. L. Keck, and W. Seka, “Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation,” Opt. Lett. 23(12), 927–929 (1998).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
[Crossref]

Sekikawa, T.

Sergeev, A. M.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

Sethian, J.

Sethian, J. D.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Shaw, J. G.

R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26(6), 062111 (2019).
[Crossref]

Shaw, M. J.

Shi, H.

Short, R. W.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
[Crossref]

Skeldon, M. D.

M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
[Crossref]

Skupsky, S.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
[Crossref]

Solodov, A. A.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Soures, J. M.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
[Crossref]

Spaeth, M.

Stoeckl, C.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Sui, Z.

Sun, X.

Sutton, S. B.

Szabó, G.

G. Szabó and Z. Bor, “Frequency conversion of ultrashort pulses,” Appl. Phys. B 58(3), 237–241 (1994).
[Crossref]

Th. Hofmann, K. Mossavi, F. K. Tittel, and G. Szabó, “Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm,” Opt. Lett. 17(23), 1691–1693 (1992).
[Crossref]

G. Szabó and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50(1), 51–54 (1990).
[Crossref]

Tanaka, K.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Tanigawa, T.

Theobald, W.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Thomson, J. J.

J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17(8), 1608–1613 (1974).
[Crossref]

Tittel, F. K.

Tokita, S.

Tsubakimoto, K.

Van Wonterghem, B. M.

Velsko, S. P.

Verdon, C. P.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

Vivini, P.

J. L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule: LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016).
[Crossref]

Wang, T.

Weaver, J.

Webb, M. S.

Wegner, P. J.

White, R. K.

Widmayer, C. C.

Williams, W. H.

Wolford, M.

Xia, L.

Yakovlev, I. V.

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

Yamane, K.

Yamashita, M.

Yang, S. T.

Yuan, P.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010).
[Crossref]

P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007).
[Crossref]

Zhao, X.

Zheng, W.

P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007).
[Crossref]

Zhu, H.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010).
[Crossref]

P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007).
[Crossref]

Zuegel, J. D.

C. Dorrer, E. M. Hill, and J. D. Zuegel, “High-energy parametric amplification of spectrally incoherent broadband pulses,” Opt. Express 28(1), 451–471 (2020).
[Crossref]

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

C. Dorrer and J. D. Zuegel, “Design and analysis of binary beam shapers using error diffusion,” J. Opt. Soc. Am. B 24(6), 1268–1275 (2007).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (2)

G. Szabó and Z. Bor, “Frequency conversion of ultrashort pulses,” Appl. Phys. B 58(3), 237–241 (1994).
[Crossref]

G. Szabó and Z. Bor, “Broadband frequency doubler for femtosecond pulses,” Appl. Phys. B 50(1), 51–54 (1990).
[Crossref]

IEEE J. Quantum Electron. (2)

M. D. Skeldon, R. S. Craxton, T. J. Kessler, W. Seka, R. W. Short, S. Skupsky, and J. M. Soures, “Efficient harmonic generation with a broad-band laser,” IEEE J. Quantum Electron. 28(5), 1389–1399 (1992).
[Crossref]

R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:Glass lasers,” IEEE J. Quantum Electron. 17(9), 1771–1782 (1981).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

P. Yuan, L. Qian, W. Zheng, H. Luo, H. Zhu, and D. Fan, “Broadband frequency tripling based on segmented partially deuterated KDP crystals,” J. Opt. A: Pure Appl. Opt. 9(11), 1082–1086 (2007).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys.: Conf. Ser. (1)

J. L. Miquel, C. Lion, and P. Vivini, “The laser mega-joule: LMJ & PETAL status and program overview,” J. Phys.: Conf. Ser. 688, 012067 (2016).
[Crossref]

Laser Phys. (1)

V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. A. Khazanov, O. V. Palashov, A. M. Sergeev, and I. V. Yakovlev, “Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser,” Laser Phys. 15(9), 1319–1333 (2005).

Opt. Commun. (3)

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, “Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: Glass lasers,” Opt. Commun. 283(13), 2737–2741 (2010).
[Crossref]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133(1-6), 495–506 (1997).
[Crossref]

R. S. Craxton, “Theory of high efficiency third harmonic generation of high power Nd-glass laser radiation,” Opt. Commun. 34(3), 474–478 (1980).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Fluids (1)

J. J. Thomson and J. I. Karush, “Effects of finite-bandwidth driver on the parametric instability,” Phys. Fluids 17(8), 1608–1613 (1974).
[Crossref]

Phys. Plasmas (2)

R. K. Follett, J. G. Shaw, J. F. Myatt, C. Dorrer, D. H. Froula, and J. P. Palastro, “Thresholds of absolute instabilities driven by a broadband laser,” Phys. Plasmas 26(6), 062111 (2019).
[Crossref]

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Phys. Rev. Lett. (1)

S. P. Obenschain, N. C. Luhmann, and P. T. Greiling, “Effects of finite-bandwidth driver pumps on the parametric-decay instability,” Phys. Rev. Lett. 36(22), 1309–1312 (1976).
[Crossref]

Proc. SPIE (2)

W. R. Donaldson, J. Katz, T. Z. Kosc, J. H. Kelly, E. M. Hill, and R. E. Bahr, “Enhancements to the timing of the OMEGA laser system to improve illumination uniformity,” Proc. SPIE 9966, 996607 (2016).
[Crossref]

D. Pennington, M. Henesian, D. Milam, and D. Eimerl, “Efficient broadband third-harmonic frequency conversion via angular dispersion,” Proc. SPIE 2633, 645–654 (1995).
[Crossref]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Other (2)

R. Boyd, Nonlinear optics, 3rd ed. (Academic Press, Amsterdam, 2008).

G. G. Gurzadian, V. G. Dmitriev, and D. N. Nikogosian, Handbook of Nonlinear Optical Crystals, 3rd rev. ed., Springer series in Optical Sciences, vol. 64 (Springer-Verlag, Berlin, 1999).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Configuration for the noncollinear sum-frequency generation of an angularly dispersed broadband 1ω wave (red wave vectors) with a narrowband 2ω wave (green wave vector), yielding a broadband angularly dispersed 3ω wave (purple wave vectors). The wave vectors at ω = 0 and at a sample ω ≠ 0 are displayed with a continuous line and a dashed line, respectively.
Fig. 2.
Fig. 2. (a) Relation between α and Δ for broadband SFG in KDP, obtained by computational cancelation of the phase-mismatch and its frequency derivative. (b) Relation between α and Δ for KDP, DKDP, LBO, and BBO in part of the quadrant corresponding to Δ < 0. (c) Comparison between the analytical relation given by Eq. (12) (solid line) and obtained by computation (dashed line).
Fig. 3.
Fig. 3. Efficiency of sum-frequency generation for a monochromatic wave around 1053 nm and a monochromatic wave at 526.5 nm as a function of the fundamental wavelength and internal detuning δθ relative to phase matching at 1053 nm for α = 1.64° and Δ = −0.6 mrad/nm, displayed (a) over the range of detuning [−0.05°, 0.1°] and (b) at five detunings between 0 and 0.1°.
Fig. 4.
Fig. 4. THG efficiency for an angularly dispersed monochromatic wave around 1053 nm and its second harmonic as a function of the fundamental wavelength and internal detuning relative to phase matching at 1053 nm, displayed (a) over the range of detuning [−0.07°, 0.1°] and (b) at the three detunings 0°, 0.05°, and 0.1°.
Fig. 5.
Fig. 5. Spectral and temporal properties of [(a)–(c)] the 1ω input pulse, [(d)–(f)] the 3ω pulse obtained by SFG, and [(g)–(i)] the 3ω pulse obtained by THG. (a), (d), and (g) correspond to the peak-normalized spectral density. (b), (e) and (h) correspond to the intensity profile. (c), (f) and (i) correspond to the probability density function (PDF) of the intensity on a logarithmic scale, with 100 bins between 0 and 10 GW/cm2. On the latter plots, the vertical red line represents the average intensity.
Fig. 6.
Fig. 6. Experimental layout for generation of a broadband spectrally incoherent pulse (left-hand side) and sum-frequency generation (right-hand side).
Fig. 7.
Fig. 7. Normalized 3ω energy for SFG of the signal at 1030 nm (blue line and square markers) and the idler at 1077 nm (red line and round markers) for (a) non-optimal α and (b) optimized α. (c): measured θIdlerθSignal plotted as a function of the noncollinear angle α.
Fig. 8.
Fig. 8. SFG efficiency in the broadband configuration for a 10-mm KDP crystal. [(a), (b)] The measured efficiency as a function of 1ω wavelength and crystal angle. [(c), (d)] The calculated efficiency.
Fig. 9.
Fig. 9. SFG efficiency in the broadband configuration for a 3-mm KDP crystal. [(a), (b)] The measured efficiency as a function of 1ω wavelength and crystal angle. [(c), (d)] The calculated efficiency.
Fig. 10.
Fig. 10. SFG of a spectrally incoherent source for various crystal detunings relative to phase matching at 1053 nm. (a) and (b) correspond to the 10-mm KDP crystal, while (c) and (d) correspond to the 3-mm crystal. On (b) and (d) the spectral density of the 1ω wave as a function of the frequency detuning relative to its central frequency (upper horizontal axis) is indicated with a black line.
Fig. 11.
Fig. 11. Energy at 3ω generated by up-conversion in the 10-mm KDP crystal as a function of (a) the 1ω energy, keeping the 2ω energy constant, and (b) the 2ω energy, keeping the 1ω energy constant. All energies are stated for the interacting waves at the SFG crystal.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ k ( ω ) = k 1 ( ω 1 + ω ) + k 2 ( ω 2 ) k 3 ( ω 3 + ω ) = 0 ,
Δ k ( ω ) = Δ k ( 0 ) + Δ k ( 1 ) ω + 1 2 Δ k ( 2 ) ω 2 ,
Δ k ( ω , θ , α , D ) = k 1 ( ω 1 + ω , θ + D ω ) cos ( D ω ) + k 2 ( ω 2 , θ + α ) cos ( α ) k 3 [ ω 3 + ω , θ + Ω ( ω , θ , α , D ) ] cos [ Ω ( ω , θ , α , D ) ] .
sin [ Ω ( ω , θ , α , D ) D ω ] = sin ( α D ω ) k 2 ( ω 2 , θ + α ) k 3 [ ω 3 + ω , θ + Ω ( ω , θ , α , D ) ] .
Δ k ( ω , θ , α , D ) = k o ( ω 0 + ω ) cos ( D ω ) + k o ( 2 ω 0 ) cos ( α ) k e [ 3 ω 0 + ω , θ + Ω ( ω , θ , α , D ) ] cos [ Ω ( ω , θ , α , D ) ]
sin [ Ω ( ω , θ , α , D ) D ω ] = sin ( α D ω ) k o ( 2 ω 0 ) k e [ 3 ω 0 + ω , θ + Ω ( ω , θ , α , D ) ] .
Ω ( ω , θ , α , D ) D ω = ( α D ω ) 2 ω 0 3 ω 0 + ω ,
Ω ( ω , θ , α , D ) = 2 3 α + D 3 ω 2 9 ω 0 α ω .
D = D 3 2 α 9 ω 0 .
k o ( ω 0 ) + k o ( 2 ω 0 ) cos ( α ) k e ( 3 ω 0 , θ 0 + Ω 0 ) cos ( Ω 0 ) = 0.
n o ( ω 0 ) + 2 n o ( 2 ω 0 ) cos ( α ) 3 n e ( 3 ω 0 , θ 0 + Ω 0 ) cos ( Ω 0 ) = 0.
k o ω [ k e ω + k e θ Ω ω k e Ω 0 Ω ω ] = 0 ,
D 2 α 3 ω 0 = 3 D = n o n e + ( n o ω 3 n e ω ) ω 0 ω 0 ( n e θ 2 n e 3 α ) ,
η ( λ ) = [ sin ( Δ k L / 2 ) Δ k L / 2 ] 2 ,

Metrics