Abstract

A tunable polarization-independent plasmon-induced transparency (PIT) metasurface based on connected half-ring and split-ring resonators is proposed to working in the terahertz band. We analyze the PIT effect in metasurfaces comprising of ring resonator and split ring resonator. Due to the magnetic attenuation caused by the reverse current between the two resonators, the relative position of the ring resonator and the split-ring resonator greatly affects the strength of the PIT effect. Magnetic attenuation weakens the dark mode of the split ring resonator. Through simulation and experiment, it is found that connecting the ring resonator and split-ring resonator can avoid magnetic attenuation and achieve a stronger PIT window. Furthermore, the fourfold rotation structure of the connected half-ring and split-ring resonator on silicon substrate achieves an optically controlled polarization-independent PIT effect. The design would provide significant guidance in multifunctional active devices, such as modulators and switches in terahertz communication.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Electromagnetically induced transparency (EIT) is a quantum-mechanical process observed in a three-level atomic or molecular systems based on destructive interference between transitions driven by two laser beams [1,2]. EIT renders a highly opaque medium transparent over a narrow spectral region due to cancellation of absorption [3]. Although the EIT effect has significant slow-light characteristics, the EIT effect has not been effectively used for decades due to the harsh requirements of the experiment on the high intensity lasers and cryogenic temperature environment [15]. In recent years, the plasmon-induced transparency (PIT) effect, an EIT phenomenon that relies on the destructive interference between different modes in the metasurface to achieve a transparent window, has been proposed [6,7]. Due to the advantages of expanding quantum mechanical effects in practical applications (for example, bandwidth expansion, room temperature operation and micro-nano planar devices), the PIT effect has received extensive attention [812].

The PIT effect induced by different metasurfaces composed of artificial periodic subwavelength structures has been simulated and experimentally proved in many fields such as slow light [1318], modulation [1923], absorption [24,25] and sensing [2628]. Generally, the excitation of the PIT effect requires a bright resonator that can be directly excited by electromagnetic wave and a dark resonator that can only be excited indirectly. The response of these resonators is often polarization-dependent, so most PIT effects are limited by the polarization state of the incident wave [615,2830]. The PIT phenomenon will weaken or even disappear when the polarization of the incident wave changes, which greatly limits the widespread application of the PIT effect. The polarization-independent structure is more universal in dealing with special situations such as when the polarization state of the light source is completely unknown or the polarization of the emitted electromagnetic wave needs to be changed [3137].

In this paper, we experimentally and numerically investigated a terahertz (THz) metasurface geometry capable of exhibiting polarization-independent PIT effect. The metasurface is formed by the fourfold rotation of connected half-ring and split-ring resonators. The connected half-ring and split ring resonators configuration avoids the suppression of the PIT effect by the magnetic attenuation in the discrete structure. The polarization-independent metasurface was prepared on a silicon substrate, and its optical transmission capability was characterized. The metasurface on silicon induces a significant transparent peak at 0.6 THz. The transmission peak decreases as the power of pump light increases, achieving an intensity modulation effect with a modulation depth of 36%. The optically controlled polarization-independent design enables the proposed metasurface to be used as a fast modulation device in the field of THz communication.

2. Characteristics of discrete resonators

The unit cell of proposed polarization-independent metasurface is derived from two basic structures, namely a ring resonator (RR) and a split ring resonator (SRR). The size and layout of RR and SRR are schematically shown in Fig. 1(a), the yellow area in the figure represents metal. The specific dimensions of the resonators involve the periods Px = Py = P = 110 µm, the radiuses R1= 43 µm, R2= 38 µm, r1= 20 µm, r2= 15 µm and the gap g = 5 µm. The metal metasurface is located on the 14 µm thick polyimide (PI) film. Commercial finite element method software package COMSOL Multiphysics is used to simulate the electromagnetic response characteristics of RR and SRR resonators respectively. The perfectly matched layer are added in the z dimension, and the periodic boundary conditions are applied in the x and y dimensions. The input and output ports are 270 µm apart, and both adopt periodic ports. The mesh type are free triangular node and free tetrahedral node, the size of mesh is between 0.5 µm and 25 µm. Due to the large imaginary part of the complex permittivity in the THz regime, the metal structure can be reasonably treated as a perfect electric conductor. The complex refractive index of the PI substrate is taken as $n = 1.8 - i0.04$ [38].

 figure: Fig. 1.

Fig. 1. (a) The schematic diagrams of the ring resonator and the split-ring resonator. (b) Transmission spectra of ring and split ring resonators under normal incident x-polarized wave.

Download Full Size | PPT Slide | PDF

When the x-polarized THz wave is incident along the z direction, the transmission spectra of RR and SRR resonators are shown in Fig. 1(b). For Ex incident waves, the past studies have shown that RR resonator supports electric dipole resonance and SRR resonator supports LC mode (magnetic dipole resonance) [29,3941]. Figure 1(b) shows that the resonance position of RR resonator is at 0.98 THz, with a half-peak width of 0.54 THz. The wide resonance range results in its quality factor being only Q = 1.8. The magnetic dipole resonance of SRR resonator at 0.88THz is in obvious contrast with the resonance of RR. The resonance is quite sharp, with a half-width of 0.06THz, so the quality factor is higher, Q = 14.8. Therefore, with narrow SRR resonance as the dark mode and wide RR resonance as the bright mode, combining the two resonators as a hybrid structure can stimulate PIT effect through the bright-dark coupling effect.

In order to investigate the influence of the relative positions of RR and SRR in the hybrid structure on the strength of the PIT effect, the transmission characteristics of the hybrid metasurface under different configurations are characterized by combining experiment and theory. The metasurface sample is prepared on a 14 µm thick PI film using traditional photolithography technology. The PI film is spin-coated and cured on a clean glass sheet in advance, and the thickness is controlled by the spin-coating speed. Finally, the film is peeled off the glass to obtain a flexible metasurface sample. We define the position difference between RR and SRR resonators is $\Delta = {O_2}(y) - {O_1}(y)$, where O1 is the center of RR and O2 is the center of SRR. For the convenience of description, when the gap of SRR always faces the + y direction, we respectively call the three hybrid structure configurations of Δ = 10 µm, Δ = 0 µm and Δ = –10 µm as RR/upSRR, RR/mSRR, RR/lowSRR. The photomicrographs of the three hybrid metasurfaces prepared in the experiment are shown in Fig. 2(a)-(c). The manufactured metasurfaces are tested through the THz time-domain spectroscopy system (BATOP THz-TDS 1008). The THz time-domain spectral resolution is 0.02 ps. The frequency spectrum is obtained by the Fourier transform of the time-domain spectrum, and the resolution of the frequency spectrum is related to the length of the time domain spectrum. In this experiment, the time domain spectrum length is 20 ps, so the frequency domain accuracy is 0.05 THz. In order to smooth the frequency spectrum, we interpolated in the Fourier process. In the experiment, a beam of x-polarized THz radiation was collimated for normal incidence on the sample.

 figure: Fig. 2.

Fig. 2. (a)-(c) The photomicrographs of the hybrid metasurface RR/upSRR, RR/mSRR and RR/lowSRR. The green fonts show the relative positional difference between RR and SRR resonators. (d)-(f) The measured (dotted line) and simulated (solid line) transmission spectra under normal incident x-polarized THz wave.

Download Full Size | PPT Slide | PDF

The measured transmission spectra are plotted in Fig. 2(d)-(f) and compared with the simulated spectra. The results show that the experimental value and the simulated value are in good agreement. For the RR/upSRR configuration, a significant PIT transparency peak is excited at 0.89 THz. When the centers of RR and SRR resonators coincide with each other, the PIT effect is still excited at 0.9 THz but the transparent peak is obviously weakened with the decrease of the difference Δ. Even for the RR/lowSRR configuration with Δ = –10 µm, the PIT effect is almost invisible in the transmission spectra of Fig. 2(f). For the sake of clearly explain the internal mechanism of the gradual weakening of the intensity of PIT effect with the decrease of the difference Δ, the electric field distribution, current density distribution and magnetic field Hz distribution of different hybrid structures at the transmission frequency are respectively presented in Fig. 3.

 figure: Fig. 3.

Fig. 3. (a), (b) and (c) are respectively the electric field distribution and current density distribution of the three hybrid configurations of RR/upSRR, RR/mSRR and RR/lowSRR at the transmission frequency. The white arrow lines indicate the direction of the current, and the thickness of the lines qualitatively indicate the current intensity. (d)-(f) The distribution of magnetic field Hz intensity of RR/upSRR, RR/mSRR and RR/lowSRR under transmission frequency, respectively.

Download Full Size | PPT Slide | PDF

Comparing the electric field intensity and current density distribution in Fig. 3(a)- (c), it is found that the electric field is mainly concentrated in the gap of the SRR resonator at the transmission frequency. The magnetic response induced by the loop current on the SRR resonator has a weak interaction with the free-space terahertz wave, which makes the corresponding frequency position have a higher transmittance. The higher transmittance appears as a transparent peak in the transmittance spectrum. As the distance Δ decreases, the electric field intensity in the gap and the loop current on the SRR resonator become significantly weaker.

The small loop current will directly lead to the weak magnetic resonance. The weak magnetic resonance is finally reflected in the transmission spectrum in the form of the PIT transparent peak decreasing or even disappearing. In Fig. 3(d)-(f), the magnetic field intensity Hz in the propagation direction more intuitively reveals the change of magnetic resonance strength. As the SRR resonator moves down along the y axis, the magnetic field in the SRR becomes weaker and weaker, but the magnetic field between the SRR and the RR resonators becomes stronger. This is because the arm of the SRR and the RR are strongly coupled at a close distance, making the current on the SRR resonator is concentrated on the arm (see Fig. 3(c)). A localized reverse current is formed between the two resonators, which weakens the magnetic resonance caused by the ring current of the SRR resonator.

3. Design and results of polarization-independent metasurfaces

To avoid the weakening of the magnetic resonance, a natural idea is to prevent the strong coupling between the arm of the SRR and the RR resonator, so we set the distance Δ = –22 µm. In this case, the two resonators of SRR and RR are connected, as shown in Fig. 4(a). This kind of structure is called RR/SRR. The transmission spectrum of RR/SRR in Fig. 4(d) exhibits a very conspicuous PIT effect, even stronger than the result of RR/upSRR configuration shown in Fig. 2(d). This proves that it is feasible to avoid the attenuation of magnetic response by connecting RR and SRR resonators. At this time, there is a strong coupling between the two resonators. The strong coupling between the bright and dark modes leads to the broadening of the PIT resonance peak [42]. In addition, the blue shift of the resonant frequency of the RR/SRR configuration is caused by the disappearance of the gap capacitance between the resonators. Considering that the electric dipole resonance excited by the RR resonator can also be excited by the half ring resonator (HRR), the RR/SRR configuration can be simplified to the HRR/SRR given in Fig. 4(b). Figure 4(e) is the transmission spectrum of the HRR/SRR hybrid metasurface. Compared with the transmission spectrum of RR/SRR, the PIT peak of HRR/SRR has a broadening and the intensity is still strong. Furthermore, using HRR/SRR as the basic resonance element, a symmetric polarization-independent resonator (PIR) is obtained through four-fold rotation. As shown in Fig. 4(c), the period of the PIR increases to 140 µm, the distance between the SRR and the center of the unit is 43 µm. According to Fig. 4(f), the PIR resonator inherits the PIT effect brought by the basic element HRR/SRR. The deviation between simulated and experimental results is manly comes from three aspects. One is that there is error between the actual permittivity of the material and the value in simulation. The second is that the accuracy of the lithography machine is only 1 µm, which leads to the size error of the metal structure cannot be ignored. The third is that the test conditions cannot be completely consistent with the simulation. Due to the symmetry of the structure, the transmission spectrum of the PIR under the y-polarized wave is consistent with the result of x-polarized wave, as shown in the inset of Fig. 4(f). The symmetrical PIR resonator supports polarization-independent PIT effect.

 figure: Fig. 4.

Fig. 4. (a)-(c) The photomicrographs of the hybrid metasurface RR/SRR, HRR/SRR and PIR. The green fonts show the relative positional difference between RR and SRR resonators. The PIR resonator is obtained by rotating HRR/SRR, the distance between O2 and the center of the unit is 43 µm, and the period is P = 140 µm. (d)-(f) The measured (dotted line) and simulated (solid line) transmission spectra under normal incident x-polarized THz wave.

Download Full Size | PPT Slide | PDF

Figure 5 illustrates the mechanism by which RR/SRR, HRR/SRR and PIR configurations can support the PIT effect by giving the distribution of the electric field, current density and magnetic field Hz. According to the results in Fig. 5(a)-(c), it is found that although different configurations will cause large differences in electric field intensity distribution, the three connected structures always support loop current. Moreover, the current on the RR (or HRR) resonator is too small to damage the loop current. This is in sharp contrast with the current in Fig. 3(a)-(c), which gradually changes from the loop current on the SRR to the reverse current between SRR and RR as Δ decreases. It is precisely because the loop current always exists in the connected structure that the magnetic field Hz inner the SRR resonator in Fig. 5(d)-(f) can always maintain its strength. The existence of magnetic resonance guarantees the transparent peak in the transmission spectrum at the corresponding frequency. Since the port excites the x-polarized wave in the simulation, only the upper and lower resonators respond in Fig. 5(c) and (f). The left and right resonators will respond to y-polarized wave. This method of connecting resonators to avoid strong non-demand coupling destroying the required performance can be more widely used in the design of various hybrid metasurfaces.

 figure: Fig. 5.

Fig. 5. (a), (b) and (c) are respectively the distributions of electric field and current density of the three hybrid configuration RR/SRR, HRR/SRR and PIR at the transmission frequency. The white arrow lines indicate the direction of the current, and the thickness of the lines qualitatively indicate the current intensity. (d)-(f) The distributions of magnetic field Hz of RR/SRR, HRR/SRR and PIR resonators under transmission frequency, respectively.

Download Full Size | PPT Slide | PDF

Furthermore, we verified the polarization-independent characteristics and slow light capability of the PIR metasurface. Figure 6(a) shows the transmission characteristics of the PIR metasurface under different polarization angles, where the transmittance is indicated by color. The results show that the PIT effect supported by the PIR metasurface remains unchanged at any polarization angle. An important manifestation of the slow light characteristic of the PIT effect is the positive group delay Δτ at the transparent peak frequency. The group delay is the time delay of a THz wave packet through the sample compared to the time through the air. The Δτ is defined as $\Delta \tau ={-} {{d({\varphi _{sam}} - {\varphi _{ref}})} / d}\omega $, where ω is the angular frequency, and φsam and φref are the phases of the THz wave through the sample and the air [1518]. The group delay spectrum of PIR is shown in Fig. 6(b).

 figure: Fig. 6.

Fig. 6. (a) Transmission spectra of PIR under different polarization angles. (b) The measured group delay of the PIR metasurface.

Download Full Size | PPT Slide | PDF

The proposed symmetrical PIR hybrid metasurface was fabricated on a 500 µm high-resistance silicon wafer, and the active optically-controlled performance of the polarization-independent PIT effect was explored. A continuous semiconductor laser with a wavelength of 830 nm is used as the pump source for the silicon-based metasurface. The pump light modulates the electromagnetic response of the metasurface by illuminating the metasurface through oblique incidence. Figure 7(a) is the measured transmission spectra of the metasurface under different pump light powers. The large permittivity of the silicon (ɛ = 11.7) results in a large red shift in the transmission frequency compared to PI-based samples. When there is no pump light, the PIT peak transmittance at 0.6 THz is 0.61. As the power of the pump light increases, the transparency window decreases, the transmittance drops to 0.47 at 0.3W, and 0.39 at 0.9W. By controlling the pump power, the polarization-independent metasurface achieves a modulation depth of 36%. The insufficient modulation depth is limited by the maximum light power of the pump source. In addition, the reflection of the silicon substrate and the shielding of the metal microstructure also suppress the modulation depth to a certain extent. The all-optical modulation speed of the designed metasurface depends on the recombination time t of carriers (t > 1 ns). Therefore, the silicon-based metasurface can generally achieve dynamic modulation on the order of KHz-GHz [43,44]. Due to the limitation of experimental equipment, this article does not give the corresponding results. For specific research, please refer to the literature [45] and [46].

 figure: Fig. 7.

Fig. 7. (a) Measured transmission spectra of metasurface under different pump powers. (b) Simulated transmission spectra of metasurface under different surface conductivities of silicon substrate. (c) and (d) are the electric field and current density distributions when the conductivity is 0 S/m and 1000 S/m, respectively.

Download Full Size | PPT Slide | PDF

The exposed area of the silicon substrate excites free carriers under the pump light, which is macroscopically manifested as an increase in the surface conductivity of the exposed area of the silicon wafer. In Fig. 7(b), we simulated the transmission characteristics of the PIR metasurface under different conductivity. The results reveal that the increase in conductivity does cause the PIT window to decrease. Figure 7(c) and (d) are the electric field and current density distributions of the PIR at the transmission frequency when the silicon conductivity is 0 S/m and 1000 S/m, respectively. Compared with the case of low conductivity, the electric field strength and loop current have a certain degree of attenuation at high conductivity. As the conductivity increases, part of the current will pass through the gap of the SRR resonator, which weakens the resonance intensity of the SRR as a dark mode. The surface conductivity of the silicon is controlled by modulating the power of the pump light, thereby the dark mode intensity of the PIT effect is controlled, and finally achieving the effect of manipulating the THz wave through the metasurface.

4. Conclusion

In summary, we use RR as bright resonator and SRR as dark resonator to induce transparent window. The attenuation effect of the strong interaction between two resonators on the loop current of SRR is analyzed. The attenuation of the loop current directly causes the magnetic resonance as a dark mode to weaken. The Magnetic attenuation is suppressed by connecting the resonator, and the connection structure is simplified to the HRR/SRR configuration. The polarization-independent metasurface consists of a fourfold rotation configuration of HRR/SRR resonators. An optically controlled PIT phenomenon in the presented silicon-based metasurface was experimentally and numerically demonstrated. The active polarization-independent design enables the proposed metasurface to be used as modulators and switches in THz communication.

Funding

National Natural Science Foundation of China (12004085, 12074092); National Postdoctoral Program for Innovative Talents (BX20200111).

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 12074092 and No. 12004085). P.T. acknowledges support from the fellowship of China National Postdoctoral Program for Innovative Talents (Grant No. BX20200111), Heilongjiang Postdoctoral Fund (Grant No. LBH-Z20065 and No. LBH-Z20150), and the Post-Doctoral Research Project at Harbin Institute of Technology.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]  

2. K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991). [CrossRef]  

3. F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123(17), 173101 (2018). [CrossRef]  

4. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001). [CrossRef]  

5. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]  

6. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef]  

7. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef]  

8. Z. Zhao, Z. Gu, R. T. Ako, H. Zhao, and S. Sriram, “Coherently controllable terahertz plasmon-induced transparency using a coupled Fano–Lorentzian metasurface,” Opt. Express 28(10), 15573–15586 (2020). [CrossRef]  

9. D. Li, Z. Ji, and C. Luo, “Optically tunable plasmon-induced transparency in terahertz metamaterial system,” Opt. Mater. 104, 109920 (2020). [CrossRef]  

10. Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018). [CrossRef]  

11. B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019). [CrossRef]  

12. H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018). [CrossRef]  

13. Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020). [CrossRef]  

14. R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019). [CrossRef]  

15. Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019). [CrossRef]  

16. Z. Zhao, H. Zhao, R. T. Ako, S. Nickl, and S. Sriram, “Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry,” Appl. Phys. Lett. 117(1), 011105 (2020). [CrossRef]  

17. H. Zhao, L. Wang, and Z. Zhao, “Polarization-insensitive terahertz array-induced transparency in diffractively coupled metasurface of embedded square lattice,” Appl. Phys. Express 13(9), 092001 (2020). [CrossRef]  

18. Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019). [CrossRef]  

19. B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018). [CrossRef]  

20. J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019). [CrossRef]  

21. J. Wang, H. Tian, Y. Wang, X. Li, Y. Cao, L. Li, J. Liu, and Z. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018). [CrossRef]  

22. J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021). [CrossRef]  

23. S. Bahadori-Haghighi, R. Ghayour, and A. Zarifkar, “Tunable graphene–dielectric metasurfaces for terahertz all-optical modulation,” J. Appl. Phys. 128(4), 044506 (2020). [CrossRef]  

24. E. Gao, Z. Liu, H. Li, H. Xu, Z. Zhang, X. Lou, C. Xiong, C. Liu, B. Zhang, and F. Zhou, “Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial,” Opt. Express 27(10), 13884–13894 (2019). [CrossRef]  

25. M. Cao, T. Wang, L. Li, H. Zhang, and Y. Zhang, “Tunable bifunctional polarization-independent metamaterial device based on Dirac semimetal and vanadium dioxide,” J. Opt. Soc. Am. A 37(8), 1340–1349 (2020). [CrossRef]  

26. M. Zhong, “Design and modulation of the plasmon-induced transparency based on terahertz metamaterials,” Infrared Phys. Technol. 108, 103377 (2020). [CrossRef]  

27. S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017). [CrossRef]  

28. Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018). [CrossRef]  

29. M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017). [CrossRef]  

30. C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015). [CrossRef]  

31. O. Demirkap, F. Bagci, A. E. Yilmaz, and B. Akaoglu, “Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial,” AEM 8(2), 63–70 (2019). [CrossRef]  

32. K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020). [CrossRef]  

33. S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017). [CrossRef]  

34. S. E. Mun, K. Lee, H. Yun, and B. Lee, “Polarization-independent plasmon-induced transparency in a symmetric metamaterial,” IEEE Photon. Technol. Lett. 28(22), 2581–2584 (2016). [CrossRef]  

35. L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018). [CrossRef]  

36. M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017). [CrossRef]  

37. R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020). [CrossRef]  

38. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008). [CrossRef]  

39. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015). [CrossRef]  

40. M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018). [CrossRef]  

41. N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano-Lorentzian Metasurfaces: A Classical Analog of a Four-Level Tripod Quantum System,” Adv. Opt. Mater. 4(8), 1179–1185 (2016). [CrossRef]  

42. M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017). [CrossRef]  

43. W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018). [CrossRef]  

44. R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017). [CrossRef]  

45. M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019). [CrossRef]  

46. Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  2. K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref]
  3. F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123(17), 173101 (2018).
    [Crossref]
  4. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [Crossref]
  5. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  6. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  7. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref]
  8. Z. Zhao, Z. Gu, R. T. Ako, H. Zhao, and S. Sriram, “Coherently controllable terahertz plasmon-induced transparency using a coupled Fano–Lorentzian metasurface,” Opt. Express 28(10), 15573–15586 (2020).
    [Crossref]
  9. D. Li, Z. Ji, and C. Luo, “Optically tunable plasmon-induced transparency in terahertz metamaterial system,” Opt. Mater. 104, 109920 (2020).
    [Crossref]
  10. Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
    [Crossref]
  11. B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
    [Crossref]
  12. H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
    [Crossref]
  13. Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020).
    [Crossref]
  14. R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
    [Crossref]
  15. Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
    [Crossref]
  16. Z. Zhao, H. Zhao, R. T. Ako, S. Nickl, and S. Sriram, “Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry,” Appl. Phys. Lett. 117(1), 011105 (2020).
    [Crossref]
  17. H. Zhao, L. Wang, and Z. Zhao, “Polarization-insensitive terahertz array-induced transparency in diffractively coupled metasurface of embedded square lattice,” Appl. Phys. Express 13(9), 092001 (2020).
    [Crossref]
  18. Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
    [Crossref]
  19. B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
    [Crossref]
  20. J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
    [Crossref]
  21. J. Wang, H. Tian, Y. Wang, X. Li, Y. Cao, L. Li, J. Liu, and Z. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
    [Crossref]
  22. J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
    [Crossref]
  23. S. Bahadori-Haghighi, R. Ghayour, and A. Zarifkar, “Tunable graphene–dielectric metasurfaces for terahertz all-optical modulation,” J. Appl. Phys. 128(4), 044506 (2020).
    [Crossref]
  24. E. Gao, Z. Liu, H. Li, H. Xu, Z. Zhang, X. Lou, C. Xiong, C. Liu, B. Zhang, and F. Zhou, “Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial,” Opt. Express 27(10), 13884–13894 (2019).
    [Crossref]
  25. M. Cao, T. Wang, L. Li, H. Zhang, and Y. Zhang, “Tunable bifunctional polarization-independent metamaterial device based on Dirac semimetal and vanadium dioxide,” J. Opt. Soc. Am. A 37(8), 1340–1349 (2020).
    [Crossref]
  26. M. Zhong, “Design and modulation of the plasmon-induced transparency based on terahertz metamaterials,” Infrared Phys. Technol. 108, 103377 (2020).
    [Crossref]
  27. S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
    [Crossref]
  28. Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
    [Crossref]
  29. M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
    [Crossref]
  30. C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
    [Crossref]
  31. O. Demirkap, F. Bagci, A. E. Yilmaz, and B. Akaoglu, “Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial,” AEM 8(2), 63–70 (2019).
    [Crossref]
  32. K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
    [Crossref]
  33. S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
    [Crossref]
  34. S. E. Mun, K. Lee, H. Yun, and B. Lee, “Polarization-independent plasmon-induced transparency in a symmetric metamaterial,” IEEE Photon. Technol. Lett. 28(22), 2581–2584 (2016).
    [Crossref]
  35. L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
    [Crossref]
  36. M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
    [Crossref]
  37. R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
    [Crossref]
  38. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
    [Crossref]
  39. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
    [Crossref]
  40. M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
    [Crossref]
  41. N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano-Lorentzian Metasurfaces: A Classical Analog of a Four-Level Tripod Quantum System,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
    [Crossref]
  42. M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
    [Crossref]
  43. W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
    [Crossref]
  44. R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
    [Crossref]
  45. M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019).
    [Crossref]
  46. Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
    [Crossref]

2021 (1)

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

2020 (10)

S. Bahadori-Haghighi, R. Ghayour, and A. Zarifkar, “Tunable graphene–dielectric metasurfaces for terahertz all-optical modulation,” J. Appl. Phys. 128(4), 044506 (2020).
[Crossref]

M. Cao, T. Wang, L. Li, H. Zhang, and Y. Zhang, “Tunable bifunctional polarization-independent metamaterial device based on Dirac semimetal and vanadium dioxide,” J. Opt. Soc. Am. A 37(8), 1340–1349 (2020).
[Crossref]

M. Zhong, “Design and modulation of the plasmon-induced transparency based on terahertz metamaterials,” Infrared Phys. Technol. 108, 103377 (2020).
[Crossref]

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
[Crossref]

Z. Zhao, Z. Gu, R. T. Ako, H. Zhao, and S. Sriram, “Coherently controllable terahertz plasmon-induced transparency using a coupled Fano–Lorentzian metasurface,” Opt. Express 28(10), 15573–15586 (2020).
[Crossref]

D. Li, Z. Ji, and C. Luo, “Optically tunable plasmon-induced transparency in terahertz metamaterial system,” Opt. Mater. 104, 109920 (2020).
[Crossref]

Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, S. Nickl, and S. Sriram, “Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry,” Appl. Phys. Lett. 117(1), 011105 (2020).
[Crossref]

H. Zhao, L. Wang, and Z. Zhao, “Polarization-insensitive terahertz array-induced transparency in diffractively coupled metasurface of embedded square lattice,” Appl. Phys. Express 13(9), 092001 (2020).
[Crossref]

2019 (8)

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
[Crossref]

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

O. Demirkap, F. Bagci, A. E. Yilmaz, and B. Akaoglu, “Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial,” AEM 8(2), 63–70 (2019).
[Crossref]

E. Gao, Z. Liu, H. Li, H. Xu, Z. Zhang, X. Lou, C. Xiong, C. Liu, B. Zhang, and F. Zhou, “Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial,” Opt. Express 27(10), 13884–13894 (2019).
[Crossref]

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019).
[Crossref]

2018 (10)

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

J. Wang, H. Tian, Y. Wang, X. Li, Y. Cao, L. Li, J. Liu, and Z. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
[Crossref]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
[Crossref]

L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
[Crossref]

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123(17), 173101 (2018).
[Crossref]

2017 (6)

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref]

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
[Crossref]

S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

2016 (2)

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano-Lorentzian Metasurfaces: A Classical Analog of a Four-Level Tripod Quantum System,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

S. E. Mun, K. Lee, H. Yun, and B. Lee, “Polarization-independent plasmon-induced transparency in a symmetric metamaterial,” IEEE Photon. Technol. Lett. 28(22), 2581–2584 (2016).
[Crossref]

2015 (2)

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

2008 (2)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1991 (1)

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Ahmad, A.

R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
[Crossref]

Ahmadivand, A.

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

Akaoglu, B.

O. Demirkap, F. Bagci, A. E. Yilmaz, and B. Akaoglu, “Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial,” AEM 8(2), 63–70 (2019).
[Crossref]

F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123(17), 173101 (2018).
[Crossref]

Ako, R. T.

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Bagci, F.

O. Demirkap, F. Bagci, A. E. Yilmaz, and B. Akaoglu, “Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial,” AEM 8(2), 63–70 (2019).
[Crossref]

F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123(17), 173101 (2018).
[Crossref]

Bahadori-Haghighi, S.

S. Bahadori-Haghighi, R. Ghayour, and A. Zarifkar, “Tunable graphene–dielectric metasurfaces for terahertz all-optical modulation,” J. Appl. Phys. 128(4), 044506 (2020).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

Bettiol, A. A.

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Bingham, C. M.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Boiler, K. J.

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Cao, M.

Cao, Y.

Cen, H.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Chen, J.

S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
[Crossref]

Chen, T.

Cheng, X.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Chiam, S. Y.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Chowdhury, D. R.

R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
[Crossref]

Cong, L.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Demirkap, O.

O. Demirkap, F. Bagci, A. E. Yilmaz, and B. Akaoglu, “Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial,” AEM 8(2), 63–70 (2019).
[Crossref]

Devi, K. M.

R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
[Crossref]

R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
[Crossref]

Ding, P.

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

Dong, H.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Dong, L.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Gao, E.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Gerislioglu, B.

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

Ghahraloud, H.

Ghayour, R.

S. Bahadori-Haghighi, R. Ghayour, and A. Zarifkar, “Tunable graphene–dielectric metasurfaces for terahertz all-optical modulation,” J. Appl. Phys. 128(4), 044506 (2020).
[Crossref]

Ghindani, D.

R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
[Crossref]

R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
[Crossref]

Gong, Q.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

Gu, J.

Gu, Z.

Guo, J.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
[Crossref]

Guo, W.

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

Han, J.

Han, Q.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

Hao, H.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

He, J. N.

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

He, X. J.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
[Crossref]

He, Y.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

Hong, W.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Hu, Q.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

Hu, S.

S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
[Crossref]

Hu, X.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

Hu, Y.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Huang, L.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Ji, P. F.

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

Ji, Z.

D. Li, Z. Ji, and C. Luo, “Optically tunable plasmon-induced transparency in terahertz metamaterial system,” Opt. Mater. 104, 109920 (2020).
[Crossref]

Jiang, L.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Jiang, T.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Kee, C. S.

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

Kim, K. J.

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

Kim, S. H.

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

Krishnamoorthy, H. N. S.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Kumar, A.

M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019).
[Crossref]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

Kumar, G.

R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
[Crossref]

R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
[Crossref]

Lai, J.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Lee, B.

S. E. Mun, K. Lee, H. Yun, and B. Lee, “Polarization-independent plasmon-induced transparency in a symmetric metamaterial,” IEEE Photon. Technol. Lett. 28(22), 2581–2584 (2016).
[Crossref]

Lee, C.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Lee, K.

S. E. Mun, K. Lee, H. Yun, and B. Lee, “Polarization-independent plasmon-induced transparency in a symmetric metamaterial,” IEEE Photon. Technol. Lett. 28(22), 2581–2584 (2016).
[Crossref]

Lee, S. G.

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

Li, D.

D. Li, Z. Ji, and C. Luo, “Optically tunable plasmon-induced transparency in terahertz metamaterial system,” Opt. Mater. 104, 109920 (2020).
[Crossref]

Li, H.

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

E. Gao, Z. Liu, H. Li, H. Xu, Z. Zhang, X. Lou, C. Xiong, C. Liu, B. Zhang, and F. Zhou, “Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial,” Opt. Express 27(10), 13884–13894 (2019).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Li, L.

Li, Q.

Li, S.

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

Li, X.

Liang, R.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Lim, W. X.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

Lin, H.

S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
[Crossref]

Ling, Y.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Liu, C.

Liu, D.

S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
[Crossref]

Liu, J.

Liu, M.

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Liu, S.

Liu, T.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Liu, W.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Liu, Z.

Lou, X.

Lu, C.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

Luan, J.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Luo, C.

D. Li, Z. Ji, and C. Luo, “Optically tunable plasmon-induced transparency in terahertz metamaterial system,” Opt. Mater. 104, 109920 (2020).
[Crossref]

MacDonald, K. F.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

Manjappa, M.

M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019).
[Crossref]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano-Lorentzian Metasurfaces: A Classical Analog of a Four-Level Tripod Quantum System,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Meng, F. Y.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
[Crossref]

Meng, H.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Mun, S. E.

S. E. Mun, K. Lee, H. Yun, and B. Lee, “Polarization-independent plasmon-induced transparency in a symmetric metamaterial,” IEEE Photon. Technol. Lett. 28(22), 2581–2584 (2016).
[Crossref]

Nickl, S.

Z. Zhao, H. Zhao, R. T. Ako, S. Nickl, and S. Sriram, “Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry,” Appl. Phys. Lett. 117(1), 011105 (2020).
[Crossref]

Ouyang, C.

Ouyang, H.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Pala, N.

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Peng, W.

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

Pitchappa, P.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Prabhu, S. S.

R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
[Crossref]

R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Qin, S.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Ren, K.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

Ren, X.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Sarkar, R.

R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
[Crossref]

R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
[Crossref]

Savinov, V.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Shi, K.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

Shi, W.

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

Singh, R.

M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano-Lorentzian Metasurfaces: A Classical Analog of a Four-Level Tripod Quantum System,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Solanki, A.

M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019).
[Crossref]

Song, Y. L.

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

Sriram, S.

Srivastava, Y. K.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Sui, Y.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Sum, T. C.

M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019).
[Crossref]

Sun, X. J.

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

Tian, H.

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

J. Wang, H. Tian, Y. Wang, X. Li, Y. Cao, L. Li, J. Liu, and Z. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
[Crossref]

Tian, Z.

Turaga, S. P.

Vafapour, Z.

Wan, M. L.

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

Wang, C.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Wang, F.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Wang, G.

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

Wang, J.

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

J. Wang, H. Tian, Y. Wang, X. Li, Y. Cao, L. Li, J. Liu, and Z. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
[Crossref]

Wang, L.

H. Zhao, L. Wang, and Z. Zhao, “Polarization-insensitive terahertz array-induced transparency in diffractively coupled metasurface of embedded square lattice,” Appl. Phys. Express 13(9), 092001 (2020).
[Crossref]

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Wang, N.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Wang, S.

Wang, T.

Wang, Y.

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

J. Wang, H. Tian, Y. Wang, X. Li, Y. Cao, L. Li, J. Liu, and Z. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Wei, Z.

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Wu, K.

Wu, T. H.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
[Crossref]

Xing, J.

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

Xiong, C.

Xu, H.

Xu, M.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

Xu, N.

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano-Lorentzian Metasurfaces: A Classical Analog of a Four-Level Tripod Quantum System,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

Xu, Z.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

Yang, H.

S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
[Crossref]

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

Yi, Y.

S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
[Crossref]

Yilmaz, A. E.

O. Demirkap, F. Bagci, A. E. Yilmaz, and B. Akaoglu, “Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial,” AEM 8(2), 63–70 (2019).
[Crossref]

You, J.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Yun, H.

S. E. Mun, K. Lee, H. Yun, and B. Lee, “Polarization-independent plasmon-induced transparency in a symmetric metamaterial,” IEEE Photon. Technol. Lett. 28(22), 2581–2584 (2016).
[Crossref]

Zarifkar, A.

S. Bahadori-Haghighi, R. Ghayour, and A. Zarifkar, “Tunable graphene–dielectric metasurfaces for terahertz all-optical modulation,” J. Appl. Phys. 128(4), 044506 (2020).
[Crossref]

Zhang, B.

Zhang, H.

Zhang, J.

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, W.

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano-Lorentzian Metasurfaces: A Classical Analog of a Four-Level Tripod Quantum System,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Zhang, X.

Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020).
[Crossref]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, X. P.

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

Zhang, Y.

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

M. Cao, T. Wang, L. Li, H. Zhang, and Y. Zhang, “Tunable bifunctional polarization-independent metamaterial device based on Dirac semimetal and vanadium dioxide,” J. Opt. Soc. Am. A 37(8), 1340–1349 (2020).
[Crossref]

Zhang, Z.

Zhao, H.

Z. Zhao, H. Zhao, R. T. Ako, S. Nickl, and S. Sriram, “Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry,” Appl. Phys. Lett. 117(1), 011105 (2020).
[Crossref]

H. Zhao, L. Wang, and Z. Zhao, “Polarization-insensitive terahertz array-induced transparency in diffractively coupled metasurface of embedded square lattice,” Appl. Phys. Express 13(9), 092001 (2020).
[Crossref]

Z. Zhao, Z. Gu, R. T. Ako, H. Zhao, and S. Sriram, “Coherently controllable terahertz plasmon-induced transparency using a coupled Fano–Lorentzian metasurface,” Opt. Express 28(10), 15573–15586 (2020).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

Zhao, M.

Zhao, Z.

Z. Zhao, Z. Gu, R. T. Ako, H. Zhao, and S. Sriram, “Coherently controllable terahertz plasmon-induced transparency using a coupled Fano–Lorentzian metasurface,” Opt. Express 28(10), 15573–15586 (2020).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, S. Nickl, and S. Sriram, “Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry,” Appl. Phys. Lett. 117(1), 011105 (2020).
[Crossref]

H. Zhao, L. Wang, and Z. Zhao, “Polarization-insensitive terahertz array-induced transparency in diffractively coupled metasurface of embedded square lattice,” Appl. Phys. Express 13(9), 092001 (2020).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Zheng, X.

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Zhong, M.

M. Zhong, “Design and modulation of the plasmon-induced transparency based on terahertz metamaterials,” Infrared Phys. Technol. 108, 103377 (2020).
[Crossref]

Zhou, F.

Zhou, J.

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Zhou, Z.

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

J. Wang, H. Tian, Y. Wang, X. Li, Y. Cao, L. Li, J. Liu, and Z. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
[Crossref]

Zhu, L.

L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
[Crossref]

Zhu, R.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

Adv. Mater. (3)

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref]

M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Solution-Processed Lead Iodide for Ultrafast All-Optical Switching of Terahertz Photonic Devices,” Adv. Mater. 31(32), 1901455 (2019).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), 1801257 (2018).
[Crossref]

Adv. Opt. Mater. (2)

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the Electromagnetically Induced Transparency and Absorbance in Coupled Fano-Lorentzian Metasurfaces: A Classical Analog of a Four-Level Tripod Quantum System,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

AEM (1)

O. Demirkap, F. Bagci, A. E. Yilmaz, and B. Akaoglu, “Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial,” AEM 8(2), 63–70 (2019).
[Crossref]

Appl. Phys. Express (1)

H. Zhao, L. Wang, and Z. Zhao, “Polarization-insensitive terahertz array-induced transparency in diffractively coupled metasurface of embedded square lattice,” Appl. Phys. Express 13(9), 092001 (2020).
[Crossref]

Appl. Phys. Lett. (4)

Z. Zhao, H. Zhao, R. T. Ako, S. Nickl, and S. Sriram, “Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry,” Appl. Phys. Lett. 117(1), 011105 (2020).
[Crossref]

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. E. Mun, K. Lee, H. Yun, and B. Lee, “Polarization-independent plasmon-induced transparency in a symmetric metamaterial,” IEEE Photon. Technol. Lett. 28(22), 2581–2584 (2016).
[Crossref]

Infrared Phys. Technol. (1)

M. Zhong, “Design and modulation of the plasmon-induced transparency based on terahertz metamaterials,” Infrared Phys. Technol. 108, 103377 (2020).
[Crossref]

J. Appl. Phys. (3)

S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121(12), 123103 (2017).
[Crossref]

S. Bahadori-Haghighi, R. Ghayour, and A. Zarifkar, “Tunable graphene–dielectric metasurfaces for terahertz all-optical modulation,” J. Appl. Phys. 128(4), 044506 (2020).
[Crossref]

F. Bagci and B. Akaoglu, “A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product,” J. Appl. Phys. 123(17), 173101 (2018).
[Crossref]

J. Opt. (1)

R. Sarkar, K. M. Devi, D. Ghindani, S. S. Prabhu, D. R. Chowdhury, and G. Kumar, “Polarization independent double-band electromagnetically induced transparency effect in terahertz metamaterials,” J. Opt. 22(3), 035105 (2020).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (4)

J. Wang, H. Tian, G. Wang, S. Li, W. Guo, J. Xing, Y. Wang, L. Li, and Z. Zhou, “Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial,” J. Phys. D: Appl. Phys. 54(3), 035101 (2021).
[Crossref]

L. Zhu, L. Dong, J. Guo, F. Y. Meng, X. J. He, and T. H. Wu, “Polarization-independent transparent effect in windmill-like metasurface,” J. Phys. D: Appl. Phys. 51(26), 265101 (2018).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41(23), 232004 (2008).
[Crossref]

K. Ren, Y. He, X. Ren, Y. Zhang, Q. Han, L. Wang, and M. Xu, “Dynamically tunable multi-channel and polarization-independent electromagnetically induced transparency in terahertz metasurfaces,” J. Phys. D: Appl. Phys. 53(13), 135107 (2020).
[Crossref]

Light: Sci. Appl. (1)

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light: Sci. Appl. 4(6), e302 (2015).
[Crossref]

Nanoscale (1)

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref]

Nature (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

Opt. Commun. (1)

H. Cen, F. Wang, R. Liang, Z. Wei, H. Meng, L. Jiang, H. Dong, S. Qin, L. Wang, and C. Wang, “Tunable plasmon induced transparency based on bright–bright mode coupling graphene metamaterial,” Opt. Commun. 420, 78–83 (2018).
[Crossref]

Opt. Express (7)

Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020).
[Crossref]

B. Zhang, H. Li, H. Xu, M. Zhao, C. Xiong, C. Liu, and K. Wu, “Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial,” Opt. Express 27(3), 3598–3608 (2019).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
[Crossref]

Z. Zhao, Z. Gu, R. T. Ako, H. Zhao, and S. Sriram, “Coherently controllable terahertz plasmon-induced transparency using a coupled Fano–Lorentzian metasurface,” Opt. Express 28(10), 15573–15586 (2020).
[Crossref]

E. Gao, Z. Liu, H. Li, H. Xu, Z. Zhang, X. Lou, C. Xiong, C. Liu, B. Zhang, and F. Zhou, “Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial,” Opt. Express 27(10), 13884–13894 (2019).
[Crossref]

M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, and W. Zhang, “Tailoring the plasmon-induced transparency resonances in terahertz metamaterials,” Opt. Express 25(17), 19844–19855 (2017).
[Crossref]

J. Wang, H. Tian, Y. Wang, X. Li, Y. Cao, L. Li, J. Liu, and Z. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

D. Li, Z. Ji, and C. Luo, “Optically tunable plasmon-induced transparency in terahertz metamaterial system,” Opt. Mater. 104, 109920 (2020).
[Crossref]

Photonics Res. (1)

J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices,” Photonics Res. 7(9), 994–1002 (2019).
[Crossref]

Phys. Rev. B (1)

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

Phys. Rev. Lett. (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Plasmonics (1)

M. L. Wan, X. J. Sun, Y. L. Song, P. F. Ji, X. P. Zhang, P. Ding, and J. N. He, “Broadband Plasmon-Induced Transparency in Plasmonic Metasurfaces Based on Bright-Dark-Bright Mode Coupling,” Plasmonics 12(5), 1555–1560 (2017).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Sci. Rep. (2)

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

R. Sarkar, D. Ghindani, K. M. Devi, S. S. Prabhu, A. Ahmad, and G. Kumar, “Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial,” Sci. Rep. 9(1), 18068 (2019).
[Crossref]

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) The schematic diagrams of the ring resonator and the split-ring resonator. (b) Transmission spectra of ring and split ring resonators under normal incident x-polarized wave.
Fig. 2.
Fig. 2. (a)-(c) The photomicrographs of the hybrid metasurface RR/upSRR, RR/mSRR and RR/lowSRR. The green fonts show the relative positional difference between RR and SRR resonators. (d)-(f) The measured (dotted line) and simulated (solid line) transmission spectra under normal incident x-polarized THz wave.
Fig. 3.
Fig. 3. (a), (b) and (c) are respectively the electric field distribution and current density distribution of the three hybrid configurations of RR/upSRR, RR/mSRR and RR/lowSRR at the transmission frequency. The white arrow lines indicate the direction of the current, and the thickness of the lines qualitatively indicate the current intensity. (d)-(f) The distribution of magnetic field Hz intensity of RR/upSRR, RR/mSRR and RR/lowSRR under transmission frequency, respectively.
Fig. 4.
Fig. 4. (a)-(c) The photomicrographs of the hybrid metasurface RR/SRR, HRR/SRR and PIR. The green fonts show the relative positional difference between RR and SRR resonators. The PIR resonator is obtained by rotating HRR/SRR, the distance between O2 and the center of the unit is 43 µm, and the period is P = 140 µm. (d)-(f) The measured (dotted line) and simulated (solid line) transmission spectra under normal incident x-polarized THz wave.
Fig. 5.
Fig. 5. (a), (b) and (c) are respectively the distributions of electric field and current density of the three hybrid configuration RR/SRR, HRR/SRR and PIR at the transmission frequency. The white arrow lines indicate the direction of the current, and the thickness of the lines qualitatively indicate the current intensity. (d)-(f) The distributions of magnetic field Hz of RR/SRR, HRR/SRR and PIR resonators under transmission frequency, respectively.
Fig. 6.
Fig. 6. (a) Transmission spectra of PIR under different polarization angles. (b) The measured group delay of the PIR metasurface.
Fig. 7.
Fig. 7. (a) Measured transmission spectra of metasurface under different pump powers. (b) Simulated transmission spectra of metasurface under different surface conductivities of silicon substrate. (c) and (d) are the electric field and current density distributions when the conductivity is 0 S/m and 1000 S/m, respectively.

Metrics