Abstract

We demonstrate a simple method to fabricate efficient, electrically driven, polarized, and phosphor-free white semipolar (20-21) InGaN light-emitting diodes (LEDs) by adopting a top blue quantum well (QW) and a bottom yellow QW directly grown on (20-21) semipolar bulk GaN substrate. At an injection current of 20 mA, the fabricated 0.1 mm2 size regular LEDs show an output power of 0.9 mW tested on wafer without any backside roughing, a forward voltage of 3.1 V and two emission peaks located at 427 and 560 nm. A high polarization ratio of 0.40 was measured in the semipolar monolithic white LEDs, making them promising candidates for backlighting sources in liquid crystal displays (LCDs). Furthermore, a 3dB modulation bandwidth of 410 MHz in visible light communication (VLC) was obtained in the micro-size LEDs (µLEDs) with a size of 20×20 µm2 and 40×40 µm2, which could overcome the limitation of slow frequency response of yellow phosphor in commercial white LEDs combing blue LEDs and yellow phosphor.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Nowadays, GaN-based light-emitting diodes (LEDs) are widely applied in general illumination, display technologies, and auto headlight [13]. The commercial polar GaN-based LEDs grown on c-plane sapphire substrate, however, suffer from quantum-confined Stark effect (QCSE) due to the large polarization-related electric fields, leading to a spatial separation of electron-hole wave-functions overlap in quantum wells (QWs) [45]. The QCSE becomes more significant in long wavelength InGaN LEDs, resulting in a low luminous efficiency in InGaN green or even longer wavelength LEDs. Therefore, growing GaN-based optical devices on semipolar or nonpolar planes are proposed, which can reduce or eliminate the polarization-related electric fields [6]. High efficiency and high power InGaN semipolar LEDs and laser diodes (LDs) have been demonstrated by growing on semipolar bulk GaN substrate with a low density of extended defects such as threading dislocations (TDs) and basal stacking faults (BSFs) [78].

Phosphor-free white LEDs are attractive since they can overcome the drawbacks of conventional phosphor-converted white LEDs such as Stokes energy conversion loss and reduced thermal stability of the phosphor [910]. Semipolar phosphor-free white LEDs would be more attractive due to the unique properties of semipolar GaN materials like high polarization ratio, larger wave-function overlap and shorter carrier lifetime. The light emission light from the InGaN QWs grown on semipolar planes is partially polarized due to the strain related separation of the valence bands. Those polarized semipolar LEDs have potential application as the backlighting sources for liquid crystal displays (LCDs), which require polarized light [11]. Moreover, the monolithic white semipolar LEDs can be employed as the light source to enable a high speed in visible light communication (VLC) since the modulation bandwidth is limited to ∼30 MHz due to the long luminescence time in the yellow phosphors of phosphor-converted white LEDs [12]. High modulation bandwidths have been obtained in InGaN nonpolar blue LEDs [13]. However, it is very difficult to achieve long wavelength InGaN LEDs grown on m-plane substrate due to a very low In incorporation efficiency in this orientation [14]. Growing efficient phosphor-free white LEDs on (20-21) plane is promising since the In incorporation efficiency is high in this orientation [15]. In previous studies, Kowsz et al. have presented monolithic white semipolar LEDs by using two steps growth on double sides polished semipolar (20-2-1) bulk GaN substrate or combining blue and yellow QWs with tunnel junction (TJ) grown on (20-21) substrate [1617]. Nevertheless, the fabrication processes of these methods are complicate, resulting in a low yield and difficulty to control the repeatability.

In this study, we propose an easy method to achieve efficient, polarized, phosphor-free white semipolar LEDs directly grown on semipolar (20-21) bulk GaN substrate without any interruption. Atom probe tomography (APT) was used to characterize the In composition distribution in the QWs. The optical and electrical properties and the frequency response of the fabricated LEDs were discussed.

2. Experiments

The semipolar LEDs were directly grown on semipolar (20-21) bulk GaN substrate supplied by Mitsubishi Chemical Corporation using atmospheric pressure metal-organic chemical vapor deposition (MOCVD). The epitaxial structure was consisted of a 2-µm n-type GaN with a silicon concentration of 7×1018 cm−3, 30 periods In0.06Ga0.94N/GaN (2-nm/2-nm) superlattices (SLs), a 3-nm In0.28Ga0.72N yellow QW, a 30 nm GaN barrier, a 3-nm In0.13Ga0.87N blue QW, a 30 nm GaN spacer, a 15-nm p-type AlGaN electron blocking layer (EBL), a 120-nm p-type GaN with a Mg concentration of around 5×1019 cm−3 and a 20-nm p + GaN contact layer with a heavily doped Mg of ∼1020 cm−3. Trimethylgallium (TMGa), triethylgallium (TEGa), ammonia (NH3), trimethylindium (TMIn), disilane (Si2H6), and bicyclopentadienyl (Cp2Mg) sources were used as precursors and dopants. Regular LEDs were fabricated with a size of 0.1 mm2 and square micro-scale LEDs (µLEDs) were fabricated with a length ranging from 20 to 100 µm [1819]. 110-nm indium-tin oxide (ITO) was firstly deposited as a transparent and ohmic contact layer for p-GaN using electron-beam (EB) evaporation. Silicon tetrachloride was used to etch to n-GaN layer by reactive-ion etching (RIE). Omnidirectional reflector (ODR) consisting of silicon dioxide (SiO2) and tantalum pentoxide stacks was deposited using ion beam deposition (IBD), following by aluminum oxide (Al2O3) as the capping layer. 50-nm of SiO2 was deposited as sidewall passivation layer by atomic-layer deposition (ALD). Finally, Al/Ni/Au (700/100/700 nm) were deposited as n- and p-contact pads.

3. Results and discussion

The In composition in the blue and yellow QWs were evaluated by APT. Details of the sample preparation and APT measurement procedures can be found in previous studies [2021]. A 2D reconstruction side view of the blue/yellow QWs and the EBL layer was presented in Fig. 1(a). The blue and yellow QWs can be clearly observed with different In compositions. The In compositions in the blue and yellow QWs were measured to be 13% and 28%, respectively. Figure 1(b) reports the corresponding statistical distribution analysis (SDA) of In composition in the blue and yellow QWs, which is typically used to highlight the clustering effects in the QWs [21]. The experimental distribution measured by APT (blue and yellow histograms) are compared to the binomial distribution (dotted curve) expected for disordered InGaN alloys. No clustering of In was observed in the blue and yellow QWs and the alloys were randomly distributed.

 figure: Fig. 1.

Fig. 1. (a) Side view distribution of In, Al and Ga in the active region and (b) The distribution of bin compositions of In and comparison with the binomial distribution in the blue and yellow QWs.

Download Full Size | PPT Slide | PDF

Figure 2 shows the output power-current-voltage (L-I-V) characteristic of the 0.1 mm2 size regular LEDs. The output power increased linearly with the injection current. At 20 mA, the LEDs exhibited an output power of 0.9 mW and a forward voltage of 3.1 V. It is noted that the output power was measured from the chips on wafer (COW) without any backside roughing. Based on our experience, the output power of the planar LEDs measured in an integrating sphere, which were roughed in backside and mounted in a silver head with encapsulated resin, is expected to increase by at least 3 times than the value from COW [7]. Compared to previous studies about the phosphor-free white semipolar LEDs reported in Ref. [16] and [17], the presented polarized monolithic white semipolar LEDs show a significant improvement of performance such as a higher output power and a lower forward voltage.

 figure: Fig. 2.

Fig. 2. Output power-current-voltage characteristics for the regular LEDs with a size of 0.1 mm2. The power is measured from the chips on wafer.

Download Full Size | PPT Slide | PDF

The electroluminescence (EL) spectra with increasing injection current from 10 to 100 mA of the phosphor-free white LEDs were described in Fig. 3(a). At 20 mA, two emission peaks were located at 427 and 560 nm. The full-width half maximum (FWHM) of the blue and yellow peaks were 18 and 38 nm, respectively. The blue and yellow peaks wavelength versus injection current were plotted in Fig. 3(b). As the current increases from 10 to 100 mA, the blue peak wavelength shows a neglectable blue-shift less than 1 nm while the yellow peak position exhibits a blue-shift of 13 nm, which is still smaller than that in c-plane polar LEDs [22]. Additionally, the integrated intensity ratio of the blue and yellow peaks (Iblue/Iyellow) versus injection current was presented in Fig. 3(b). The Iblue/Iyellow increased from 0.14 to 0.24 with increasing current from 10 to 100 mA. A portion of the blue emission could be absorbed by the yellow QW, leading to an optically pumped yellow emission. The yellow emission originates from both electrical injection and optical pumping by the blue emission since the Iblue/Iyellow is much smaller than 1. The Iblue/Iyellow increased with the injection current, which suggests that more carrier radiative recombination occurs in the blue QW at high current density. The emission spectrum at 20 mA corresponds to a point at (0.32, 0.50) in the Commission Internationale de l’Eclairage (CIE) (x, y) chromaticity diagram. It is noted that the emission spectrum, CIE and color rendering index (CRI) can be precisely tailored by manipulating the QWs numbers and/or the In composition in our design.

 figure: Fig. 3.

Fig. 3. (a) EL spectra versus current from 10 to 100 mA; (b) The peak wavelength of blue and yellow QWs and Iblue/Iyellow at various injection current.

Download Full Size | PPT Slide | PDF

Light emission from the InGaN QWs grown on semipolar planes is partially polarized due to the strain related separation of the valence bands [11]. The polarization ratio is defined by $\rho = ({I_{x^{\prime}}} - {I_{y^{\prime}}})/({I_{x^{\prime}}} + {I_{y^{\prime}}})$, where ${I_{x^{\prime}}}$ and ${I_{y^{\prime}}}$ are the maximum and minimum integrated intensities of the emission spectra that pass through the polarizer when the polarizer is aligned along $x^{\prime}$-direction and $y^{\prime}$-direction [11]. Usually, the $x^{\prime}$-direction and $y^{\prime}$-direction represent the electric field directions perpendicular to the polar c-axis and parallel to it, which is [1-210] and [10-1-4] in (20-21) plane [17]. Figure 4 shows the EL emission spectra for the phosphor-free white semipolar (20-21) LEDs with the polarizer aligned along $x^{\prime}$-direction and $y^{\prime}$-direction. The blue emission shows an optical polarization ratio of 0.34 while the yellow peak exhibits a higher polarization ratio of 0.41. The overall polarization ratio in the presented monolith white semipolar LEDs is calculated to be 0.40. Since the emission light from the c-plane LEDs is unpolarized, the high polarization ratio of 0.40 in the semipolar white LEDs results in a higher conversion efficiency in the LCDs application.

 figure: Fig. 4.

Fig. 4. EL emission spectra with the polarizer aligned along [1-210] ($x^{\prime}$-direction) and [10-1-4] ($y^{\prime}$-direction).

Download Full Size | PPT Slide | PDF

Our phosphor-free white semipolar LEDs have another potential application as a light source to enable high speed in VLC. Details on the setup used for VLC measurement can be found in [23], which is mainly consisted of a high-speed micro-probe, an optical fiber, a silicon PIN photodetector, amplifiers, and a network analyzer. To operate the devices at a high current density, µLEDs were used in the measurement. Figure 5(a) shows the standard frequency response of the square µLED with a length of 60 µm. The 3dB modulation bandwidths of all sizes µLEDs with current densities varied from 0.1 to 2 kA/cm2 are plotted in Fig. 5(b). The modulation bandwidth of the devices improves with increasing current density, which is caused by the screening of built-in electric field and the reduced carrier lifetime by a higher injected carrier density [24]. Meanwhile, the modulation bandwidths increase slightly as the device size decreases [23]. A high modulation bandwidth up to 410 MHz is achieved in the µLEDs with a length of 20 and 40 µm. Although this value is still lower than the best value reported in nonpolar blue LEDs grown on m-plane bulk GaN, there are lots of room to improve the modulation speed such as optimizing the barriers/wells thickness and the number of blue/yellow QWs, which requires a trade-off between efficiency and modulation bandwidth [25]. In general, it is promising to achieve a high luminous efficiency in monolithic white LEDs by integrating blue and yellow QWs directly grown on semipolar (20-21) GaN substrate in one growth.

 figure: Fig. 5.

Fig. 5. (a) Frequency response of µLED with a length of 60 µm and (b) 3 dB modulation bandwidths with increasing the current density from 0.1 to 2 kA/cm2 in different sizes µLEDs.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we demonstrate efficient, electrically driven, polarized, and monolithic white semipolar (20-21) LEDs directly grown on bulk GaN substrate. The regular LEDs with a size of 0.1 mm2 show high electrical and optical performance: an output power of 0.9 mW from COW and a forward voltage of 3.1 V at 20 mA. A white EL emission spectrum with two peaks located at 427 and 560 nm was achieved. The emission peak positions and intensity ratio between blue and yellow peaks can be easily and precisely controlled by adjusting the growth temperature of blue/yellow QWs. A high polarization of 0.40 was obtained in the polarized monolithic white LEDs, which show potential application in the backlighting sources of LCDs. Furthermore, the semipolar phosphor-free white µLEDs present a high modulation bandwidth of 410 MHz in VLC.

Funding

UCSB-Collaborative Research in Engineering, Science and Technology (CREST).

Acknowledgments

A portion of this work was done in the UCSB nanofabrication facility.

Disclosures

The authors declare no conflicts of interest.

References

1. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998). [CrossRef]  

2. E. F. Schubert and J. K. Kim, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 308(5726), 1274–1278 (2005). [CrossRef]  

3. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010). [CrossRef]  

4. J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009). [CrossRef]  

5. H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013). [CrossRef]  

6. D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes,” MRS Bull. 34(5), 318–323 (2009). [CrossRef]  

7. Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010). [CrossRef]  

8. S. Mehari, D. A. Cohen, D. L. Becerra, S. Nakamura, and S. P. DenBaars, “Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 20-2-1 GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers,” Opt. Express 26(2), 1564–1572 (2018). [CrossRef]  

9. H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013). [CrossRef]  

10. S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016). [CrossRef]  

11. H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008). [CrossRef]  

12. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009). [CrossRef]  

13. A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018). [CrossRef]  

14. Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012). [CrossRef]  

15. S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010). [CrossRef]  

16. S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017). [CrossRef]  

17. S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015). [CrossRef]  

18. M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, and S. P. DenBaars, “High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition,” Opt. Express 26(16), 21324–21331 (2018). [CrossRef]  

19. H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019). [CrossRef]  

20. H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017). [CrossRef]  

21. B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017). [CrossRef]  

22. R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, “High-efficiency yellow light-emitting diodes grown on sapphire (0001) substrates,” Phys. Status Solidi C 11(3-4), 628–631 (2014). [CrossRef]  

23. M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020). [CrossRef]  

24. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017). [CrossRef]  

25. M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018). [CrossRef]  

References

  • View by:

  1. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
    [Crossref]
  2. E. F. Schubert and J. K. Kim, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 308(5726), 1274–1278 (2005).
    [Crossref]
  3. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
    [Crossref]
  4. J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
    [Crossref]
  5. H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
    [Crossref]
  6. D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes,” MRS Bull. 34(5), 318–323 (2009).
    [Crossref]
  7. Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
    [Crossref]
  8. S. Mehari, D. A. Cohen, D. L. Becerra, S. Nakamura, and S. P. DenBaars, “Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 20-2-1 GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers,” Opt. Express 26(2), 1564–1572 (2018).
    [Crossref]
  9. H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
    [Crossref]
  10. S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016).
    [Crossref]
  11. H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
    [Crossref]
  12. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  13. A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
    [Crossref]
  14. Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
    [Crossref]
  15. S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
    [Crossref]
  16. S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017).
    [Crossref]
  17. S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
    [Crossref]
  18. M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, and S. P. DenBaars, “High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition,” Opt. Express 26(16), 21324–21331 (2018).
    [Crossref]
  19. H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
    [Crossref]
  20. H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
    [Crossref]
  21. B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
    [Crossref]
  22. R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, “High-efficiency yellow light-emitting diodes grown on sapphire (0001) substrates,” Phys. Status Solidi C 11(3-4), 628–631 (2014).
    [Crossref]
  23. M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
    [Crossref]
  24. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
    [Crossref]
  25. M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
    [Crossref]

2020 (1)

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

2019 (1)

2018 (4)

M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, and S. P. DenBaars, “High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition,” Opt. Express 26(16), 21324–21331 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

S. Mehari, D. A. Cohen, D. L. Becerra, S. Nakamura, and S. P. DenBaars, “Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 20-2-1 GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers,” Opt. Express 26(2), 1564–1572 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

2017 (4)

S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017).
[Crossref]

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

2016 (1)

S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016).
[Crossref]

2015 (1)

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

2014 (1)

R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, “High-efficiency yellow light-emitting diodes grown on sapphire (0001) substrates,” Phys. Status Solidi C 11(3-4), 628–631 (2014).
[Crossref]

2013 (2)

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

2012 (1)

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

2010 (3)

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

2009 (3)

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes,” MRS Bull. 34(5), 318–323 (2009).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

2008 (1)

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[Crossref]

2005 (1)

E. F. Schubert and J. K. Kim, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 308(5726), 1274–1278 (2005).
[Crossref]

1998 (1)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref]

Alhassan, A. I.

M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, and S. P. DenBaars, “High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition,” Opt. Express 26(16), 21324–21331 (2018).
[Crossref]

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

Aragon, A.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

Aragon, A. A.

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

Azimah, E.

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

Bamiedakis, N.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Becerra, D. L.

Bonef, B.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
[Crossref]

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

Brinkley, S.

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

Catalano, M.

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

Cho, Y.-H.

S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016).
[Crossref]

Choi, J.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

Choi, S.

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

Chow, Y. C.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
[Crossref]

Chung, R. B.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Cohen, D. A.

De Mierry, P.

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

DenBaars, S. P.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
[Crossref]

M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, and S. P. DenBaars, “High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition,” Opt. Express 26(16), 21324–21331 (2018).
[Crossref]

S. Mehari, D. A. Cohen, D. L. Becerra, S. Nakamura, and S. P. DenBaars, “Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 20-2-1 GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers,” Opt. Express 26(2), 1564–1572 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017).
[Crossref]

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes,” MRS Bull. 34(5), 318–323 (2009).
[Crossref]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[Crossref]

Dupuis, R. D.

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

Farrell, R. M.

S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017).
[Crossref]

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

Faulkner, G.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Feezell, D.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Feezell, D. F.

D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes,” MRS Bull. 34(5), 318–323 (2009).
[Crossref]

Ferreira, R. X.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Fujito, K.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

Gong, S.-H.

S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016).
[Crossref]

Hashimoto, R.

R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, “High-efficiency yellow light-emitting diodes grown on sapphire (0001) substrates,” Phys. Status Solidi C 11(3-4), 628–631 (2014).
[Crossref]

Hassan, Z.

He, X.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Hsu, P. S.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Huang, C.-Y.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Huang, S.-C.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Hwang, D.

Hwang, J.

R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, “High-efficiency yellow light-emitting diodes grown on sapphire (0001) substrates,” Phys. Status Solidi C 11(3-4), 628–631 (2014).
[Crossref]

Ichikawa, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Islim, M. S.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Iso, K.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[Crossref]

Jung, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Kang, J.

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

Kawaguchi, Y.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Kearns, J.

Keller, S.

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

Kelly, A. E.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Khoury, M.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
[Crossref]

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

Kim, H.

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

Kim, H. J.

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

Kim, J. K.

E. F. Schubert and J. K. Kim, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Kim, M. J.

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

Ko, Y.-H.

S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016).
[Crossref]

Koslow, I.

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

Kowsz, S. J.

S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017).
[Crossref]

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

Le Minh, H.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Lee, C.

Lee, K.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Ley, R.

Li, H.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
[Crossref]

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

Li, J.

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

Li, P.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

Li, Z.

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

Lim, S.-H.

S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016).
[Crossref]

Liu, J. P.

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

Lochner, Z.

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

Lund, C.

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

Masui, H.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[Crossref]

Mehari, S.

Mierry, P. D.

Mishra, U. K.

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

Monavarian, M.

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

Mughal, A. J.

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

Mukai, T.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Nakamura, S.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
[Crossref]

M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, and S. P. DenBaars, “High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition,” Opt. Express 26(16), 21324–21331 (2018).
[Crossref]

S. Mehari, D. A. Cohen, D. L. Becerra, S. Nakamura, and S. P. DenBaars, “Demonstration of enhanced continuous-wave operation of blue laser diodes on a semipolar 20-2-1 GaN substrate using indium-tin-oxide/thin-p-GaN cladding layers,” Opt. Express 26(2), 1564–1572 (2018).
[Crossref]

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017).
[Crossref]

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes,” MRS Bull. 34(5), 318–323 (2009).
[Crossref]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[Crossref]

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref]

Nami, M.

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

Narukawa, Y.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Nunoue, S.

R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, “High-efficiency yellow light-emitting diodes grown on sapphire (0001) substrates,” Phys. Status Solidi C 11(3-4), 628–631 (2014).
[Crossref]

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Oh, S. H.

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

Oh, Y.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Ohta, H.

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

Pan, C.-C.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

Penty, R. V.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Pinna, S.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

Pynn, C. D.

S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017).
[Crossref]

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

Rashidi, A.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

Rishinaramangalam, A.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

Rodriguez, C.

S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016).
[Crossref]

Ryou, J. H.

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

Saito, S.

R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, “High-efficiency yellow light-emitting diodes grown on sapphire (0001) substrates,” Phys. Status Solidi C 11(3-4), 628–631 (2014).
[Crossref]

Samsudin, M. E.

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

Sanga, D.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Sano, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Schmidt, M. C.

D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes,” MRS Bull. 34(5), 318–323 (2009).
[Crossref]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Song, J.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

Sonoda, J.

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Speck, J. S.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

S. J. Kowsz, E. C. Young, B. P. Yonkee, C. D. Pynn, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells,” Opt. Express 25(4), 3841–3849 (2017).
[Crossref]

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Tanaka, S.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Taylor, A. A.

Van de Walle, C. G.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Videv, S.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Viola, S.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Wang, G.

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

Watson, S.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

White, I. H.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Won, E. T.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Wong, M. S.

Xie, E.

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Yamada, H.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[Crossref]

Yamamoto, S.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Yan, Q.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

Yi, X.

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

Yoder, P. D.

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

Yonkee, B. P.

Young, E. C.

Zeng, L.

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Zhang, H.

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. C. Chow, P. Li, J. Kearns, A. A. Taylor, P. D. Mierry, Z. Hassan, S. Nakamura, and S. P. DenBaars, “Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template,” Opt. Express 27(17), 24154–24160 (2019).
[Crossref]

Zhang, Y.

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck, and S. P. DenBaars, “Efficient Semipolar (11-22) 550 nm Yellow/Green InGaN Light-Emitting Diodes on Low Defect Density (11-22) GaN/Sapphire Templates,” ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017).
[Crossref]

Appl. Phys. Express (4)

H. Li, P. Li, J. Kang, Z. Li, Y. Zhang, Z. Li, J. Li, X. Yi, J. Li, and G. Wang, “Quantum efficiency enhancement of 530 nm InGaN green light-emitting diodes with shallow quantum well,” Appl. Phys. Express 6(5), 052102 (2013).
[Crossref]

Y. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S. P. DenBaars, and S. Nakamura, “30-mW-class high-power and high-efficiency blue semipolar (1011) InGaN/GaN light-emitting diodes obtained by backside roughening technique,” Appl. Phys. Express 3(10), 102101 (2010).
[Crossref]

H. Li, P. Li, J. Kang, Z. Li, Z. Li, J. Li, X. Yi, and G. Wang, “Phosphor-free, color-tunable monolithic InGaN light-emitting diodes,” Appl. Phys. Express 6(10), 102103 (2013).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20-21) GaN Substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Appl. Phys. Lett. (5)

Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P. S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells,” Appl. Phys. Lett. 100(20), 201108 (2012).
[Crossref]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of In GaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[Crossref]

B. Bonef, M. Catalano, C. Lund, S. P. Denbaars, S. Nakamura, U. K. Mishra, M. J. Kim, and S. Keller, “Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography,” Appl. Phys. Lett. 110(14), 143101 (2017).
[Crossref]

S. J. Kowsz, C. D. Pynn, S. H. Oh, R. M. Farrell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of phosphor-free polarized white light emission from monolithically integrated semipolar InGaN quantum wells,” Appl. Phys. Lett. 107(10), 101104 (2015).
[Crossref]

M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, and D. Feezell, “Trade-off between bandwidth and efficiency in semipolar (20-2-1) InGaN/GaN single- and multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 112(19), 191102 (2018).
[Crossref]

IEEE Electron Device Lett. (1)

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth,” IEEE Electron Device Lett. 39(4), 520–523 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Ryou, P. D. Yoder, J. P. Liu, Z. Lochner, H. Kim, S. Choi, H. J. Kim, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1080–1091 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Light: Sci. Appl. (1)

S.-H. Lim, Y.-H. Ko, C. Rodriguez, S.-H. Gong, and Y.-H. Cho, “Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures,” Light: Sci. Appl. 5(2), e16030 (2016).
[Crossref]

MRS Bull. (1)

D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes,” MRS Bull. 34(5), 318–323 (2009).
[Crossref]

Nano Energy (1)

M. Khoury, H. Li, P. Li, Y. C. Chow, B. Bonef, H. Zhang, M. S. Wong, S. Pinna, J. Song, J. Choi, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized monolithic white semipolar (20-21) InGaN light-emitting diodes grown on high quality (20-21) GaN/sapphire templates and its application to visible light communication,” Nano Energy 67, 104236 (2020).
[Crossref]

Opt. Express (4)

Photonics Res. (1)

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, and A. E. Kelly, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5(2), A35–A43 (2017).
[Crossref]

Phys. Status Solidi C (1)

R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, “High-efficiency yellow light-emitting diodes grown on sapphire (0001) substrates,” Phys. Status Solidi C 11(3-4), 628–631 (2014).
[Crossref]

Science (2)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 956–961 (1998).
[Crossref]

E. F. Schubert and J. K. Kim, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 308(5726), 1274–1278 (2005).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Side view distribution of In, Al and Ga in the active region and (b) The distribution of bin compositions of In and comparison with the binomial distribution in the blue and yellow QWs.
Fig. 2.
Fig. 2. Output power-current-voltage characteristics for the regular LEDs with a size of 0.1 mm2. The power is measured from the chips on wafer.
Fig. 3.
Fig. 3. (a) EL spectra versus current from 10 to 100 mA; (b) The peak wavelength of blue and yellow QWs and Iblue/Iyellow at various injection current.
Fig. 4.
Fig. 4. EL emission spectra with the polarizer aligned along [1-210] ($x^{\prime}$-direction) and [10-1-4] ($y^{\prime}$-direction).
Fig. 5.
Fig. 5. (a) Frequency response of µLED with a length of 60 µm and (b) 3 dB modulation bandwidths with increasing the current density from 0.1 to 2 kA/cm2 in different sizes µLEDs.

Metrics