Abstract

In this paper, we present a shutter-based electro-optical modulator made of two parallel nanoelectromechanical silicon nitride string resonators. These strings are covered with electrically connected gold electrodes and actuated either by Lorentz or electrostatic forces. The in-plane string vibrations modulate the width of the gap between the strings. The gold electrodes on both sides of the gap act as a mobile mirror that modulate the laser light that is focused in the middle of this gap. These electro-optical modulators can achieve an optical modulation depth of almost 100% for a driving voltage lower than 1 mV at a frequency of 314 kHz. The frequency range is determined by the string resonance frequency, which can take values of the order of a few hundred kilohertz to several megahertz. The strings are driven in the strongly nonlinear regime, which allows a frequency tuning of several kilohertz without significant effect on the optical modulation depth.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Intensity modulation of electromagnetic radiation is a ubiquitous task in modern technology and can be achieved through different techniques, such as optomechanical chopping, electro-optic modulation (EOM), or acousto-optic modulation (AOM). Optomechanical choppers are a widespread method due to the perfect modulation depth of 100% and an inherent wavelength-independence. The drawback of typical chopper wheels are their relatively low maximum modulation frequencies of only a few kilohertz. Higher modulation frequencies up to the GHz regime can be achieved with EOMs based on Pockels cells, e.g. made of $ \textrm{LiNbO}_{3} $. However, the disadvantage of EOMs are their limited wavelength range and the high required driving voltages of a few volts up to several hundreds of volts, depending on the specific configuration. AOMs are based on the modification of the refractive index of a transparent material by an oscillating mechanical strain field. Compared to EOMs, AOMs can be used over a broader spectral wavelength range but are limited to minimal modulation frequencies of a few MHz and higher.

In recent years, optomechanical systems have generated a lot of interest [13], in part because of their many applications as sensors for precision measurements [4,5], but also because of their usefulness as reconfigurable metamaterials [611] and as plasmomechanical resonators [1218]. Among nanomechanical resonators, silicon nitride (SiN) strings and membranes stand out because of their very high quality factors, which make them very useful for experimenting on cavity optomechanics [1921], or for designing sensors [15,18,22,23] and optomechanical systems [12,14,15,18]. It has been shown, that it’s possible to miniaturized optical shutters based on microelectromechanical systems (MEMS) [2427]. These micromechanical choppers reach moderate modulation frequencies of several tens of kilohertz and require relatively high driving voltages. Other MEMS-based approaches are Fabry-Perot optical modulators [28] or modulators based on deformable micromirrors [29] with the disadvantage of high driving voltages. Recently, reconfigurable metamaterials made of arrays of silicon nitride string resonators have been demonstrated as effective electro-optic modulators, where the strings were actuated using either electrostatic forces [6], Lorentz forces [9], or electrostriction [11]. However, these metamaterial-based electro-optical modulators suffer from having either low optical modulation depths [9] or requiring high driving voltages [6,11].

Here, we present a fast and low-power nanoelectromechanical shutter-like electro-optic modulator made of two gold covered and electrically connected silicon nitride string resonators [see Fig. 1(a)]. The two strings are separated by a small gap in the center, similar to the structures used by Thijssen et al. in Ref. [12], but actuated electromagnetically. Driving one of the strings at the resonance frequency of its in-plane fundamental mode changes the width of the gap between the strings. When a laser is focused in the middle of the gap, its reflection is modulate by the in-plane vibration of the string. Our optical chopper reaches modulation frequencies of the order of 100 kHz to 1 MHz with modulation depth reaching 100$\%$ for driving voltages in the mV-range. Applications e.g. in ratiometric spectroscopy measurements [30] or pump-probe experiments [31] are particularly attractive prospects.

 figure: Fig. 1.

Fig. 1. (a) SEM Image of the opto-mechanical resonator, made of two SiN strings covered with electrically-connected gold electrodes. The width of the gap at the center of the strings is between 0.55 ${\mu }$m and 1.65 ${\mu }$m depending on the sample measured. (b) The experimental setup used for our optical measurements. The strings are placed in a vacuum chamber with a static magnetic field (200 mT), and an oscillating current is sent through one of the strings. This will create Lorentz forces that will excite the in-plane mode of the string, changing the width of the gap between the strings. A tunable Ti-Sapphire laser, focused on the center of the gap between the strings, is then used to detect the string vibration through the modulation of the laser reflection on the moving mirror. A waveplate and two linear polarizers are used to adjust the laser power and its polarisation. The sample is kept in a vacuum chamber with the neodymium magnets used to create the static magnetic field. A silicon avalanche photodetector (Si APD) is used to detect the reflected optical signal. Both the APD and the sample are connected to a lock-in amplifier used to send the electrical current through the SiN string and to visualize the resulting changes in the reflected laser optical power measured by the APD.

Download Full Size | PPT Slide | PDF

2. Methods

The wafer used to fabricate our optomechanical resonators was a 380 ${\mu }$m thick silicon wafer, covered on both sides by a 300 nm thick layer of low stress (200 MPa) LPCVD Si$_3$N$_4$. The fabrication process was then done in three steps. First we deposited the gold electrodes using UV lithography, followed by thermal evaporation of a 100 nm thick gold layer and then lift-off. In the second step, the silicon nitride strings were created by UV lithography, followed by Reactive Ion Etching (RIE) of the silicon layer. The last step was to use dry etching with XeFl$_2$ to etch the silicon substrate over a depth of 6 ${\mu }$m in order to release the Si$_3$N$_4$ strings. At the end of the fabrication process, the width of the gap between the strings was between 0.55 ${\mu }$m and 1.65 ${\mu }$m depending on the sample measured [see Fig. 1(a)]. During all our measurements, the laser was initially focused on the middle of this gap between the two strings.

The experimental setup used can be seen on Fig. 1(b). The laser used is a Titanium-Sapphire laser (SolsTiS from M Squared), whose wavelength can be tuned from 730 nm to 1000 nm. The wavelength chosen for our measurements was 730 nm. The sample is placed in a vacuum chamber between two neodymium magnets that create a static magnetic field of about B = 200 mT at the center of the sample. The waveplate and linear polarizers are used to adjust the laser optical intensity as well as its polarization, which we chose to be parallel to the strings during our measurements. The laser optical power when it reaches the sample is 38 $\mu$W. A lock-in amplifier (UHFLI from Zurich Instruments) is used to send an oscillating current through one of the strings and detect the resulting variation in the reflected laser optical power using a silicon avalanche photodetector (APD410A/M from ThorLabs). A halogen lamp (HL-2000-FHSA from Ocean Optics), used as a white light source, and a camera (EO-0413C from Edmund Optics) are used to obtain an image of the sample so we can adjust the laser position and focus on it. This white light source is then turned off during the actual measurements. A dichroic mirror (DMSP650T from ThorLabs) is placed before the camera to cut most of the laser power while letting the white light in, since the laser light would otherwise saturate the camera, and another optical neutral density filter (Thorlabs NE510B-B) is placed before the photodetector in order to keep the reflected laser power below the photodetector saturation level of 1.5 $\mu$W.

3. Results

We measured three different samples using Lorentz forces actuation, with different lengths for the string resonators. The first sample had strings with a length L = 100 $\mu$m and a gap width of 0.55 $\mu$m. Its fundamental resonance frequency for the in-plane mode is 1.494 MHz, and the resonance has a quality factor of 3000. The string resistance $R$ = 140 ${\Omega }$, which gives us, for a driving voltage $V_{AC}$ = 15 mV, a maximal Lorentz force $F_L = L \times B \times V_{AC}/R$ = 2.14 nN. The displacement of the string, as measured from the change in the reflected laser power, is then large enough to present a very strong mechanical nonlinearity, as can be seen on Fig. 2(a), which shows a distortion of the resonance peak of the string typical of a nonlinear Duffing resonator [32]. However, unlike the theoretical nonlinear Duffing resonator, there seems to be a maximal driving voltage beyond which the resonance peak shape and amplitude no longer change. This maximal voltage is 15 mV here, but we observed a similar behavior for lower voltages in our other samples. We think this may correspond to the driving voltage where the gap between the strings close completely, which would prevent the string displacement from increasing even further. The width of the nonlinear resonance peak at higher driving voltages also means we can adjust the modulation frequency of our nanoelectromechanical shutter by a few kilohertz without losing much of the reflected signal amplitude.

 figure: Fig. 2.

Fig. 2. (a) The mechanical resonance peak of the fundamental in-plane mode of one of the 100 $\mu$m long strings, as measured from the change in the reflected laser power when an alternating driving voltage is applied to the string. The resonance peak becomes strongly nonlinear for higher driving currents, which is typical of mechanical string resonators. However, there seems to be a maximal driving voltage (15 mV here) above which the shape and amplitude of the resonance peak no longer change significantly, maybe corresponding to the voltage where the gap between the strings is completely closed. (b) The nanoelectromechanical modulation of the reflected laser power as a function of time, when driven at a frequency close to the resonance peak maximum, for the three samples we measured. These samples have different string lengths and therefore different resonance frequencies and maximal driving voltages. For the 100 $\mu$m string, we have a quasi-sinusoidal signal and an optical modulation depth of 31${\%}$. For the 300 $\mu$m and 500 $\mu$m strings, we are able to achieve an optical modulation depth of close to 100${\%}$ with a driving voltage below 1 mV, but the modulated signal is no longer quasi-sinusoidal.

Download Full Size | PPT Slide | PDF

The red curve on Fig. 2(b) represents the nanoelectromechanical modulation of the reflected laser power as a function of time, measured when driving the string with a voltage $V_{AC}$ = 15 mV and a resonance frequency of 1.497 MHz, close to the peak maximum. The modulated signal here is quasi-sinusoidal, and has an optical modulation depth of 35.4${\%}$, which is the maximum we could obtain for this sample. However, we can obtain much higher optical modulation depths at lower driving voltages if we use longer strings because of their lower effective spring constant. For example, the second sample we measured had strings with a length of 300 $\mu$m, an electrical resistance of 250 ${\Omega }$ and a gap width of 1.65 $\mu$m. The fundamental resonance frequency for the in-plane mode is then 314 kHz, with a quality factor of 6800. When driving this string at its fundamental resonance frequency with a voltage $V_{AC}$ = 1 mV (corresponding to a Lorentz force F = 240 pN), we can then obtain an optical modulation depth of 99.6${\%}$ for the reflected laser power [see the blue curve on Fig. 2(b)], although the modulated signal is no longer quasi-sinusoidal here. We had similar results for our third measured sample, which had strings with a length of 500 $\mu$m, an electrical resistance of 360 ${\Omega }$ and a gap width of 1.6 $\mu$m. This time the fundamental resonance frequency for the in-plane mode is 166 kHz, with a quality factor of 7900, and we were able to obtain an optical modulation depth of 98.9${\%}$ [see the green curve on Fig. 2(b)] for the reflected laser power, with a driving voltage of only 0.25 mV (corresponding to a Lorentz force of 70 pN).

The maximal reflected laser power we measured (for the sample with the 300 $\mu$m long strings) is 32.1 $\mu$W for an incident laser power of 38 $\mu$W, which gives us a maximal reflection coefficient of 84.5${\%}$, close to the theoretical reflectivity of gold of 90${\%}$ for a wavelength of 730 nm [33], so our nanoelectromechanical modulators seem to present very little losses. We can also note that the power consumption of our modulators is very low : $P = \frac {1}{2}V_{AC}^2/R = 0.8$ $\mu$W for $V_{AC} = 15$ mV in the case of the 100 $\mu$m long strings, $P = 2$ nW for $V_{AC} = 1$ mV in the case of the 300 $\mu$m long strings and $P = 87$ pW for $V_{AC} = 0.25$ mV in the case of the 500 $\mu$m long strings.

If we compare our nanoelectromechanical shutters to reconfigurable metamaterial-based modulators, as e.g. [9], which are also actuated using Lorentz forces, we can note that we were able to improve the optical modulation depth from a few $\%$ up to 35${\%}$ to 100${\%}$ for a driving voltage of 15 mV to 0.25 mV. Also, unlike with metamaterial-based electro-optical modulators, whose transmission and reflection coefficients strongly depend on the laser wavelength, our electro-optical modulators will in theory have a reflection coefficient and an optical modulation depth that are quasi-independent of the laser wavelength used, at least for wavelengths above 650 nm where the reflectivity of gold is always above 90$\%$ [33].

To remove the bulky pair of magnets which is used to create the magnetic field for Lorentz force actuation, we also fabricated a sample with strings that could be driven with electrostatic forces using comb-drive actuators placed between the two strings [see Fig. 3(a) for the SEM picture], since this kind of electro-optical modulators would be easier to integrate. This sample has strings of length 600 $\mu$m with a gap width of 1.25 $\mu$m. The fundamental resonance frequency for the in-plane mode is 102 kHz and its quality factor is 9800.

 figure: Fig. 3.

Fig. 3. (a) SEM image of the opto-mechanical resonator with with comb-drives actuators. The width of the gap at the center of the strings is 1.25 ${\mu }$m. (b) The electro-optical modulation of the reflected laser power as a function of time, when this resonator is driven at a frequency close to its resonance peak maximum, for different driving voltages. The optical modulation depth here is of 82.3${\%}$ for $V_{AC}$ = 250 mV.

Download Full Size | PPT Slide | PDF

The electrostatic force created by the Comb-Drive actuators is theoretically equal to $F_{EL} = N\epsilon _0h_{Au}/D_{El}\times V^2$, with $N = 24$ the number of electrodes, $D_{El} = 3$ $\mu$m the distance between the electrodes, $h_{Au} = 100$ nm the thickness of the gold layer and $\epsilon _0 = 8.85$ $pF/m$ the vacuum permittivity [34]. Since the electrostatic force is proportional to $V^2$, we cannot just apply directly a voltage $V = V_{AC}cos(\omega t)$ to our strings, as the force would be proportional to $V^2 = V_{AC}^2cos(\omega t)^2 = \frac {1}{2}V_{AC}^2(1+cos(2\omega t))$ and oscillate at twice the resonance frequency. By applying a DC voltage as well as a AC voltage like this : $V = V_{DC}+V_{AC}cos(\omega t)$, we can have $V^2 = V_{DC}^2+\frac {1}{2}V_{AC}^2+2V_{DC}V_{AC}cos(\omega t)+\frac {1}{2} V_{AC}^2cos(2\omega t)$, where the component of the electrostatic force in $cos(\omega t)$, the only one that can excite the fundamental in-plane mode, will be proportional to $2V_{DC}V_{AC}$. For $V_{DC} = 500$ mV and $V_{AC} = 250$ mV, this gives us an electrostatic force equal to $F_{EL} = N\epsilon _0h_{Au}/D_{El} \times 2V_{DC}V_{AC} = 1.77$ pN. This value is much lower than for the Lorentz forces, but unlike the Lorentz forces that are uniformly applied to the whole length of the string, the electrostatic forces are only applied to the middle part of the string and are therefore going to be much more efficient.

This sample was driven with a DC voltage $V_{DC} = 500$ mV and a AC voltage between 20 mV and 250 mV, this time applied to both ends of the electrode on one string, with the electrode on the other string being grounded, so no current was able to flow through the string’s electrodes. Similarly to the previous samples actuated with Lorentz forces, we could easily detect an electro-optical modulation of the reflected laser power, with an optical modulation depth of 82.3${\%}$ for $V_{AC}$ = 250 mV [see Fig. 3(b)]. As can be observed from the data, the driving amplitude does not increasing linearly driving voltage. This is due to the fact that the string is driven in the nonlinear regime (Duffing regime), where the vibrational amplitude for a fixed frequency stops being proportional to the applied force. We obtain a maximal reflection coefficient of 52.6$\%$ for the maximum drive voltage, which is still below the maximal reflection coefficient of 84.5$\%$ we measured for the samples using Lorentz forces actuation. Still, this is quite a good result, and shows that electrostatic forces would be a viable alternative to Lorentz forces for actuating these electro-optical modulators. Indeed, compared to similar reconfigurable metamaterial-based electro-optical modulators that are also actuated using electrostatic forces [6], our design constitutes a significant improvement in reversible modulation of the reflectance.

4. Conclusion

To summarize our results, we showed in this paper that electromagnetically-actuated, gold covered silicon nitride string resonators could be efficiently used to make MEMS electro-optical modulators, with an optical modulation depth easily reaching almost 100$\%$ for a driving voltage below 1 mV and a power consumption below 2 nW. The modulation frequency is determined by the length of the string resonator, but can go from 100 kHz up to 1.5 MHz. However, the shorter string resonators needed for the higher modulation frequencies also have lower quality factors and therefore lower optical modulation depths, and will need higher driving voltages as well. These electro-optical modulators can be easily fabricated with standard microfabrication techniques, which would make them easy to integrate on-chip into a wider micro-opto-electro-mechanical system.

Funding

European Research Council (Grant Agreement-716087-PLASMECS).

Acknowledgments

We would like to thank our technician Sophia Ewert for her cleanroom support. This work has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (Grant Agreement-716087-PLASMECS).

Disclosures

The authors declare no conflicts of interest.

References

1. I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009). [CrossRef]  

2. J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014). [CrossRef]  

3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014). [CrossRef]  

4. T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014). [CrossRef]  

5. M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

6. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013). [CrossRef]  

7. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016). [CrossRef]  

8. B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016). [CrossRef]  

9. J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015). [CrossRef]  

10. N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016). [CrossRef]  

11. A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019). [CrossRef]  

12. R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013). [CrossRef]  

13. R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014). [CrossRef]  

14. R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015). [CrossRef]  

15. S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014). [CrossRef]  

16. D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016). [CrossRef]  

17. L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

18. B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016). [CrossRef]  

19. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009). [CrossRef]  

20. S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013). [CrossRef]  

21. S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014). [CrossRef]  

22. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012). [CrossRef]  

23. T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013). [CrossRef]  

24. V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

25. M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994). [CrossRef]  

26. G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

27. H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995). [CrossRef]  

28. H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001). [CrossRef]  

29. T. K. Chan and J. E. Ford, “Retroreflecting optical modulator using an MEMS deformable micromirror array,” J. Lightwave Technol. 24(1), 516–525 (2006). [CrossRef]  

30. A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016). [CrossRef]  

31. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-khz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014). [CrossRef]  

32. R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).

33. O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972). [CrossRef]  

34. O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

References

  • View by:

  1. I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
    [Crossref]
  2. J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
    [Crossref]
  3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  4. T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
    [Crossref]
  5. M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.
  6. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref]
  7. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
    [Crossref]
  8. B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
    [Crossref]
  9. J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
    [Crossref]
  10. N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
    [Crossref]
  11. A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
    [Crossref]
  12. R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
    [Crossref]
  13. R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
    [Crossref]
  14. R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
    [Crossref]
  15. S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
    [Crossref]
  16. D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
    [Crossref]
  17. L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).
  18. B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
    [Crossref]
  19. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
    [Crossref]
  20. S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
    [Crossref]
  21. S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
    [Crossref]
  22. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
    [Crossref]
  23. T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
    [Crossref]
  24. V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.
  25. M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
    [Crossref]
  26. G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.
  27. H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
    [Crossref]
  28. H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
    [Crossref]
  29. T. K. Chan and J. E. Ford, “Retroreflecting optical modulator using an MEMS deformable micromirror array,” J. Lightwave Technol. 24(1), 516–525 (2006).
    [Crossref]
  30. A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
    [Crossref]
  31. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-khz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
    [Crossref]
  32. R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).
  33. O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972).
    [Crossref]
  34. O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

2019 (1)

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

2016 (6)

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref]

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

2015 (2)

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

2014 (7)

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-khz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

2013 (4)

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

2012 (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

2009 (2)

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

2006 (1)

2001 (1)

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

1995 (1)

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

1994 (1)

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

1972 (1)

O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972).
[Crossref]

. Moret, J.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Aksyuk, V. A.

B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
[Crossref]

Alzina, F.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Amato, B.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Andersen, A. J.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

Andresen, T. L.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

Appel, J.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Bagci, T.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Bek, A.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Boisen, A.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Brand, O.

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

Brennen, R. A.

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

Brixner, T.

Cassidy, M. C.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Chan, T. K.

Chavez, E.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Chen, X.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Chien, M.-H.

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

Ching, M. T.

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

Cross, M.

R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).

Dal Zilio, S.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

de Rooij, N. F.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Djafari-Rouhani, B.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Dong, B.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Drechsler, U.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Dufour, I.

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

Eck, R.

El-Jallal, S.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Favero, I.

I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Ford, J. E.

Fujita, H.

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

Gholipour, B.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

Gomis-Bresco, J.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Greco, S.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Griol, A.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Gruber, C.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Guillermo Villanueva, L.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Hansen, O.

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Heinrich, S.

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

Herring, P. K.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Herrmann, L. O.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Jaecklin, V. P.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Josse, F.

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

Kanal, F.

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Karvounis, A.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

Ke, J.

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Keiber, S.

Kimble, H. J.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Kippenberg, T. J.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

Kloeck, B.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

Kong, J.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Lai, Z.

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Larsen, P. E.

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

Larsen, T.

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Lazzarino, M.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Linder, C.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Lishitz, R.

R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).

Loebich, O.

O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972).
[Crossref]

Lörtscher, E.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Luhmann, N.

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

MacDonald, K. F.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

Mao, H.

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Marcus, C. M.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Martínez, A.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Naumenko, D.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Navarro-Urrios, D.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Novotny, L.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Olziersky, A.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Ou, J.-Y.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Oudich, M.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Papp, S. B.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Pennec, Y.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Perregaux, G.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

Piller, M.

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

Plum, E.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Polman, A.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

Polzik, E. S.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Pramodkumar, E.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

Puebla-Hellmann, G.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Puerto, D.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Regal, C. A.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Rindzevicius, T.

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
[Crossref]

Schliesser, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Schmid, S.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

Shin, Y. C.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Simonsen, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Sorensen, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Sørensen, A. S.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Sun, C.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Taylor, J. M.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Thiebaud, J. P.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

Thijssen, R.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

Toffoli, V.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Torres, C. M. S.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Toshiyoshi, H.

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

Ueda, T.

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

Usami, K.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Valente, J.

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

Venkatesan, K.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Verhagen, E.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

Villanueva, L. G.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

von Arx, T.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Vuilleumier, R.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Vuilliomenet, H.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

Wang, C.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Weiss, P.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

White, R. M.

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

Wilson, D. J.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Wu, K.

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

Xing, P.

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Yamada, S.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Youngs, I. J.

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

Zeuthen, E.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Zhang, H. F.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Zhang, J.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Zheludev, N. I.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Zhou, F.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

ACS Nano (1)

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

ACS Photonics (1)

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

Adv. Mater. (2)

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

Anal. Chem. (1)

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Appl. Phys. Lett. (1)

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Gold Bull. (1)

O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972).
[Crossref]

J. Appl. Phys. (1)

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (2)

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Nano Lett. (4)

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Nat. Commun. (3)

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
[Crossref]

Nat. Nanotechnol. (3)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Nat. Photonics (1)

I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Nature (1)

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Opt. Eng. (1)

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Sens. Actuators, B (1)

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

Other (6)

R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) SEM Image of the opto-mechanical resonator, made of two SiN strings covered with electrically-connected gold electrodes. The width of the gap at the center of the strings is between 0.55 ${\mu }$m and 1.65 ${\mu }$m depending on the sample measured. (b) The experimental setup used for our optical measurements. The strings are placed in a vacuum chamber with a static magnetic field (200 mT), and an oscillating current is sent through one of the strings. This will create Lorentz forces that will excite the in-plane mode of the string, changing the width of the gap between the strings. A tunable Ti-Sapphire laser, focused on the center of the gap between the strings, is then used to detect the string vibration through the modulation of the laser reflection on the moving mirror. A waveplate and two linear polarizers are used to adjust the laser power and its polarisation. The sample is kept in a vacuum chamber with the neodymium magnets used to create the static magnetic field. A silicon avalanche photodetector (Si APD) is used to detect the reflected optical signal. Both the APD and the sample are connected to a lock-in amplifier used to send the electrical current through the SiN string and to visualize the resulting changes in the reflected laser optical power measured by the APD.
Fig. 2.
Fig. 2. (a) The mechanical resonance peak of the fundamental in-plane mode of one of the 100 $\mu$m long strings, as measured from the change in the reflected laser power when an alternating driving voltage is applied to the string. The resonance peak becomes strongly nonlinear for higher driving currents, which is typical of mechanical string resonators. However, there seems to be a maximal driving voltage (15 mV here) above which the shape and amplitude of the resonance peak no longer change significantly, maybe corresponding to the voltage where the gap between the strings is completely closed. (b) The nanoelectromechanical modulation of the reflected laser power as a function of time, when driven at a frequency close to the resonance peak maximum, for the three samples we measured. These samples have different string lengths and therefore different resonance frequencies and maximal driving voltages. For the 100 $\mu$m string, we have a quasi-sinusoidal signal and an optical modulation depth of 31${\%}$. For the 300 $\mu$m and 500 $\mu$m strings, we are able to achieve an optical modulation depth of close to 100${\%}$ with a driving voltage below 1 mV, but the modulated signal is no longer quasi-sinusoidal.
Fig. 3.
Fig. 3. (a) SEM image of the opto-mechanical resonator with with comb-drives actuators. The width of the gap at the center of the strings is 1.25 ${\mu }$m. (b) The electro-optical modulation of the reflected laser power as a function of time, when this resonator is driven at a frequency close to its resonance peak maximum, for different driving voltages. The optical modulation depth here is of 82.3${\%}$ for $V_{AC}$ = 250 mV.

Metrics