Abstract

It is now possible to synthesize the wurtzite crystal phase of most III-V semiconductors in the form of nanowires. This sparks interest for fundamental research and adds extra degrees of freedom for designing novel devices. However, the understanding of many properties, such as phonon dispersion, of these wurtzite semiconductors is not yet complete, despite the extensive number of studies published. The $E_2^{\textrm{L}}$ and $E_2^{\textrm{H}}$ phonon modes exist in the wurtzite crystal phase only (not in zinc blende) where the $E_2^{\textrm{H}}$ mode has been already experimentally observed in Ga and In arsenides and phosphides, while the $E_2^{\textrm{L}}$ mode has been observed in GaP, but not in GaAs or InP. In order to determine the energy of $E_2^{\textrm{L}}$ in wurtzite GaAs and InP, we performed Raman scattering measurements on wurtzite GaAs and InP nanowires. We found clear evidence of the $E_2^{\textrm{L}}$ phonon mode at 64 cm−1 and 54 cm−1, respectively. Polarization-dependent experiments revealed similar selection rules for both the $E_2^{\textrm{L}}$ and the $E_2^{\textrm{H}}$ phonon modes (as expected) where the intensity peaked with excitation and detection polarization being perpendicular to the [0001] crystallographic direction. We further find that the splitting between the E1(TO) and A1(TO) modes is around 2 cm−1 in wurtzite GaAs and below 1 cm−1 in wurtzite InP. We believe these results will be useful for a better understanding of phonons in wurtzite crystal phase of III-V semiconductors as well as for testing and improving phonon dispersion calculations.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The unique properties of semiconductor nanowires are attracting considerable amount of attention. On the one hand, their high aspect ratio and tolerance to strain allows realizing novel electronic and optoelectronic devices [1]. On the other hand, they are a good platform for fundamental physics studies [2,3]. By tuning growth parameters III-V semiconductors can preferentially crystalize in the wurtzite crystal phase while only the zinc blende phase is available in bulk [4,5]. Switching between zinc blende and wurtzite during the growth gives atomically sharp interfaces without intermixing of atoms which enables quite unique heterostructures to be studied [69].

While extensive studies of III-V semiconductor wurtzite crystal phase nanowires have given insight on many material properties [1014], there are many fundamental parameters which are still under debate. There is for instance a lack of experimental data on wurtzite specific phonon modes. The Brillouin zone in the [0001] direction of a wurtzite crystal is half the size compared to the corresponding zinc blende crystal in the [111] direction. This results in the phonon bands for wurtzite being folded back compared to zinc blende resulting in 4 additional modes $E_2^\textrm{L}$, $E_2^\textrm{H}$, $B_1^\textrm{L}$ and $B_1^\textrm{H}$ at the Γ point (Fig. 1). While the $B_1^\textrm{L}$ and the $B_1^\textrm{H}$ do not interact with incident photons and are known as silent modes, the $E_2^\textrm{L}$ and the $E_2^\textrm{H}$ modes are Raman and infrared active. The high frequency $E_2^\textrm{H}$ mode has already been experimentally observed for various III-V semiconductors and typically the energy is close to the energy of a transverse optical (TO) phonon in zinc blende of the corresponding material system [10,15,16]. In contrast, the energy of the low frequency $E_2^\textrm{L}$ mode is close to the exciting laser line making it hard to detect, and has been observed only in wurtzite GaP [17] but not in wurtzite GaAs or InP. An additional experimental difficulty is that many III-V semiconductors exhibit strong luminescence masking the weak Raman signals and making it hard to study vibrational properties of such materials. One such example is wurtzite InP where only a handful of experimental Raman scattering studies are reported [16]. This lack of experimental data has encouraged us to study the so far not observed phonon modes in wurtzite GaAs and InP nanowires. Our main contribution in this work is that we do indeed observe the $E_2^\textrm{L}$ mode in both wurtzite GaAs and InP, thus completing the knowledge of the Raman active modes in these systems.

 figure: Fig. 1.

Fig. 1. Phonon dispersion of zinc blende (black) and wurtzite (blue) GaAs. LO, TO, LA and TA represents longitudinal optical, transverse optical, longitudinal acoustic and transverse acoustic phonons.

Download Full Size | PPT Slide | PDF

2. Results and discussion

The nanowires we have studied possess a very high crystal quality with only very few stacking defects along the c-axis [14]. In the case of wurtzite GaAs we investigated 10 different single nanowires, while in the case of wurtzite InP we studied several clusters of randomly oriented nanowires as well as 5 single nanowires to get good statistics. All measured nanowires show similar results.

To avoid strong luminescence and access low frequency phonon modes we used non-resonant Raman scattering spectroscopy where a Ti:Sapphire laser line was tuned below the bandgap of the studied material system. Excitation and detection polarization-dependent measurements allowed probing selection rules and identifying different peaks observed in the spectra. Figure 2 represents a schematic drawing of the experimental setup and the coordinate system used in the backscattering experiments. We used four different polarization configurations: $x({z,z} )\bar{x}$, $x({z,y} )\bar{x}$, $x({y,z} )\bar{x}$, $x({y,y} )\bar{x}$. This is a standard notation and can be understood in a following way: the coordinate axes outside the brackets note the direction of the incident and scattered light, while the coordinates inside the brackets represent the polarization of the incident and the scattered light.

 figure: Fig. 2.

Fig. 2. A simplified sketch of the experimental setup and the coordinate system used.

Download Full Size | PPT Slide | PDF

We start by discussing the results obtained from wurtzite GaAs nanowires. A high crystal quality, large diameter (up to 500 nm) and length (up to 3 µm) of the nanowires resulted in a relatively high signal to noise ratio under non-resonant excitation conditions. Figure 3 shows Raman scattering spectra obtained from a single nanowire using different polarization configurations. The spectra were normalized to the highest intensity value and plotted with an offset for clarity. Following the selection rules for wurtzite crystals, the scattering of light by the low frequency phonons $E_2^\textrm{L}$ is allowed only for the $x({y,y} )\bar{x}$ polarization configuration where excitation and collection polarization are perpendicular to the c-axis. Such behavior can be seen in Fig. 3(a) where a Raman line with a FWHM around 1 cm−1 is visible at 64 cm−1 (in black). For the other three polarization configurations the peak is absent. The same selection rules apply for the high frequency $E_2^\textrm{H}$ mode, which is strongest with the scattering geometry $x({y,y} )\bar{x}\; $ and vanishes for the $x({z,z} )\bar{x}$ geometry [Fig. 3(b)]. The $E_2^\textrm{H} $ mode peaks at 261 cm−1, which is a slightly higher value compared to the previous reports [10,18]. This is expected, since all of our experiments were performed at 7 K whereas previous experiments were performed at room temperature. We used low temperature measurements in order to increase the signal-to-noise ratio under non-resonant conditions.

 figure: Fig. 3.

Fig. 3. Low temperature polarization-dependent Raman scattering spectra of a single wurtzite GaAs nanowire. The spectra were normalized to the peak value and plotted with an offset.

Download Full Size | PPT Slide | PDF

To fully understand Raman scattering spectra of wurtzite materials a slight anisotropy in atomic bonds needs to be considered. A difference of force constants perpendicular and along the nanowire c-axis results in a splitting of the TO and the longitudinal optical (LO) modes and gives rise to apparently new E1(LO) and A1(TO) modes [10,19]. These modes are Raman active. Indeed, the TO mode splitting into the E1(TO) and A1(TO) modes is clearly visible in our spectra at around 270 cm−1 for cross-polarization configurations [Fig. 3(b)]. We find that the E1(TO)-A1(TO) splitting is around 2 cm−1 which is in good agreement with values reported in literature [18]. This small splitting energy can be expected from the uniaxial nature of a wurtzite crystal, electrostatic force dominance over the anisotropy in the short-range forces, and a relatively small energy difference between the TO and the LO phonon groups [18,19].

In contrast to GaAs nanowires, wurtzite InP nanowires showed a far weaker Raman scattering signal simply due to smaller nanowire size. In order to detect the low frequency $E_2^\textrm{L}$ mode we measured scattering from batches of randomly oriented nanowires since the signal from individual nanowires was simply too weak. Figure 4(a) shows the result. We observe a sharp peak (FWHM 0.6 cm−1) at around 54 cm−1, which correlates well with the predicted energy value (52 cm−1) of this phonon mode [20]. Measurements on different batches of nanowires gave identical results.

 figure: Fig. 4.

Fig. 4. Low temperature Raman scattering spectra of wurtzite InP nanowires. a) depicts unpolarized measurement on a batch of randomly oriented nanowires. b) shows representative single nanowire polarization-dependent measurements.

Download Full Size | PPT Slide | PDF

The scattering intensity of the rest of the phonon modes was stronger than from the $E_2^\textrm{L}$ mode, therefore, we used single nanowire measurements in our further experiments. Figure 4(b) shows the Raman scattering spectra measured using four different polarization configurations. We attribute the peak at around 308 cm−1 to the $E_2^\textrm{H}$ phonon, because it is strongest for the $x({y,y} )\bar{x}$ polarization configuration.

We were unable to detect clear evidence of the TO mode splitting in wurtzite InP nanowires despite the narrow linewidth of less than 1 cm−1 FWHM of the $E_2^\textrm{L}\; \textrm{and the}\; E_2^\textrm{H}$ modes. However, the linewidth of the TO mode is slightly larger (around 1.6 cm−1) than the linewidth of the $E_2^\textrm{L}\; \textrm{and the}\; E_2^\textrm{H}$ modes which suggests a possible superposition of the A1(TO) and the E1(TO) modes [Fig. 4(b)]. While the intensity varies significantly between the four polarization configurations the peak position stays roughly around the same energy at 304.3 cm−1, which indicates possibly very similar energies of the A1(TO) and the E1(TO) modes. This agrees well with results obtained by fitting this peak with two Lorentzian functions suggesting below 0.8 cm−1 splitting. Similar results have been reported previously, where the obtained splitting was around 0.3 cm−1 [16].

Finally, our results give insight into the LO modes of both wurtzite InP and GaAs. In this work, the experimental conditions were intentionally tuned off resonance resulting in a very small contribution from LO phonons. Despite the weak signal intensity, we observed Raman scattering from both GaAs and InP nanowires at 295 cm−1 and at 347 cm−1, respectively. A small signal-to-noise ratio and a small separation between the A1(LO) and the E1(LO) prevented us from observing the splitting.

Tables Icon

Table 1. Optical phonon modes of wurtzite GaAs and InP observed by low temperature Raman scattering spectroscopy.

In addition, both wurtzite GaAs and InP nanowires have shown a broad peak at wavenumbers below the LO mode at 289 cm−1 and at 340 cm−1, respectively, which is given in Table 1 together with a summary of the other modes.. We attribute this to surface phonons, since the relatively large diameter of our nanowires should make the surface phonon modes appear close to the LO modes as demonstrated previously [2123].

3. Summary

In summary, we have presented a non-resonant Raman scattering study of single GaAs and InP nanowires containing high quality wurtzite crystal structure. We observe a clear signature of the (previously not seen) low frequency $E_2^\textrm{L}$ phonon mode in both material systems at 64 cm−1 and 54 cm−1, respectively. We have also determined the energies of the $E_2^\textrm{H}$, TO, and LO phonons of both materials. The splitting between the A1(TO) and the E1(TO) in wurtzite GaAs is around 2 cm−1 and in wurtzite InP is below 0.8 cm−1. Our results are in good agreement with theoretically predictions as well as values reported by previous studies for the selected cases where available. Lastly, surface modes were present in the majority of the studied nanowires at slightly lower frequency compared to the LO mode as expected for large diameter nanowires.

4. Experimental section

The nanowires were grown by Metal Organic Vapor Phase Epitaxy (MOVPE) following the vapor-liquid-solid (VLS) growth mode [24] using Au aerosol particles as seeds [25]. Crystal phase selectivity, meaning just wurtzite growth, was achieved by using a very low V/III-ratio of the incoming precursor fluxes [5,26]. Two different AIXTRON MOVPE setups where used for growth, a 200/4 system for InP and a 3 × 2′′ close-coupled showerhead (CCS) system for GaAs. Before initializing the growth the Au aerosol covered, 111B-oriented, and epiready substrates where annealed in VH3/H2 atmospheres with the corresponding molar fractions of ${{\chi }_{\textrm{P}{\textrm{H}_3}}}$ = 3.9E-3 and ${{\chi }_{\textrm{As}{\textrm{H}_3}}}$ = 2.5E-3, respectively, and at set temperatures of $\textrm{T}_{\textrm{InP}}^{\textrm{anneal}}$ = 550°C and $\textrm{T}_{\textrm{GaAs}}^{\textrm{anneal}}$ = 630°C, respectively, for about 7 to 15 minutes. After reducing the temperature to the growth setting, $\textrm{T}_{\textrm{InP}}^{\textrm{growth}}$ = 480°C and $\textrm{T}_{\textrm{GaAs}}^{\textrm{growth}}$ = 540°C, the precursors were supplied for nanowire growth at molar fractions of ${{\chi }_{\textrm{P}{\textrm{H}_3}}}$ = 7.7-1.9E-4 and ${{\chi }_{\textrm{TMIn}}}$ = 2.6-1.4E-6 for InP and ${{\chi }_{\textrm{As}{\textrm{H}_3}}}$ = 4.5E-5 and ${{\chi }_{\textrm{TMGa}}}$ = 2.2E-5 for GaAs, respectively. Growth times were set to 80 minutes for InP and 150 minutes for GaAs before closing the precursor supplies and cooling down the system in H2 only.

Raman scattering experiments were realized in back scattering configuration. We used a tunable Ti:sapphire laser with the excitation wavelength tuned below the bandgap of InP and GaAs, respectively, to reduce the luminescence background. The excitation wavelength was accurately monitored by a wavelength meter having a spectral resolution of 0.02 nm. The laser was focused via a long working distance 20X objective onto the sample. The Raman signal was collected by the same objective and then dispersed by a triple monochromator system onto a thermoelectrically cooled charge coupled device (CCD). Polarization of the incident laser was controlled by an achromatic λ/2 plate while detection polarization was selected by a polarizer (see Fig. 2). All the experiments were performed at low temperature (7K), which was ensured by a continuous flow liquid helium cryostat. Scanning electron microscopy (SEM) as well as bright and dark field optical microscopy were used to correlate the orientation of nanowires with the lab coordinate system for polarization-dependent Raman measurements. The acquired Raman spectra were fitted with Lorentzian functions.

Funding

Knut och Alice Wallenbergs Stiftelse; Stiftelsen för Strategisk Forskning; Vetenskapsrådet; NanoLund.

Disclosures

The authors declare no conflicts of interest.

References

1. F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006). [CrossRef]  

2. M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017). [CrossRef]  

3. P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019). [CrossRef]  

4. M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992). [CrossRef]  

5. H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010). [CrossRef]  

6. N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014). [CrossRef]  

7. N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010). [CrossRef]  

8. N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015). [CrossRef]  

9. S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017). [CrossRef]  

10. I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009). [CrossRef]  

11. B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011). [CrossRef]  

12. G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014). [CrossRef]  

13. A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015). [CrossRef]  

14. N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018). [CrossRef]  

15. M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011). [CrossRef]  

16. E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013). [CrossRef]  

17. J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013). [CrossRef]  

18. S. Crankshaw, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Polarized zone-center phonon modes of wurtzite GaAs,” Phys. Rev. B 81(23), 233303 (2010). [CrossRef]  

19. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Phys. Rev. 181(3), 1351–1363 (1969). [CrossRef]  

20. N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, “Dynamic properties of III–V polytypes from density-functional theory,” J. Appl. Phys. 121(12), 125701 (2017). [CrossRef]  

21. M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990). [CrossRef]  

22. D. Spirkoska, G. Abstreiter, and A. F. i Morral, “Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy,” Nanotechnology 19(43), 435704 (2008). [CrossRef]  

23. O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010). [CrossRef]  

24. R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4(5), 89–90 (1964). [CrossRef]  

25. M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999). [CrossRef]  

26. S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006).
    [Crossref]
  2. M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
    [Crossref]
  3. P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
    [Crossref]
  4. M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992).
    [Crossref]
  5. H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010).
    [Crossref]
  6. N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
    [Crossref]
  7. N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010).
    [Crossref]
  8. N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
    [Crossref]
  9. S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
    [Crossref]
  10. I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
    [Crossref]
  11. B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011).
    [Crossref]
  12. G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
    [Crossref]
  13. A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
    [Crossref]
  14. N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
    [Crossref]
  15. M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
    [Crossref]
  16. E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
    [Crossref]
  17. J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
    [Crossref]
  18. S. Crankshaw, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Polarized zone-center phonon modes of wurtzite GaAs,” Phys. Rev. B 81(23), 233303 (2010).
    [Crossref]
  19. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
    [Crossref]
  20. N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, “Dynamic properties of III–V polytypes from density-functional theory,” J. Appl. Phys. 121(12), 125701 (2017).
    [Crossref]
  21. M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990).
    [Crossref]
  22. D. Spirkoska, G. Abstreiter, and A. F. i Morral, “Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy,” Nanotechnology 19(43), 435704 (2008).
    [Crossref]
  23. O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
    [Crossref]
  24. R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
    [Crossref]
  25. M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999).
    [Crossref]
  26. S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013).
    [Crossref]

2019 (1)

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

2018 (1)

N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
[Crossref]

2017 (3)

N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, “Dynamic properties of III–V polytypes from density-functional theory,” J. Appl. Phys. 121(12), 125701 (2017).
[Crossref]

M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
[Crossref]

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

2015 (2)

N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
[Crossref]

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

2014 (2)

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

2013 (3)

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref]

2011 (2)

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011).
[Crossref]

2010 (4)

S. Crankshaw, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Polarized zone-center phonon modes of wurtzite GaAs,” Phys. Rev. B 81(23), 233303 (2010).
[Crossref]

N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref]

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

2009 (1)

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

2008 (1)

D. Spirkoska, G. Abstreiter, and A. F. i Morral, “Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy,” Nanotechnology 19(43), 435704 (2008).
[Crossref]

2006 (1)

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006).
[Crossref]

1999 (1)

M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999).
[Crossref]

1992 (1)

M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992).
[Crossref]

1990 (1)

M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990).
[Crossref]

1969 (1)

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[Crossref]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Abstreiter, G.

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

D. Spirkoska, G. Abstreiter, and A. F. i Morral, “Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy,” Nanotechnology 19(43), 435704 (2008).
[Crossref]

Akopian, N.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

Arbiol, J.

B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011).
[Crossref]

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

Arguello, C. A.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[Crossref]

Arnot, H. E. G.

M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990).
[Crossref]

Assali, S.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

Bakkers, E. P. A. M.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

Beaumont, S. P.

M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990).
[Crossref]

Benyahia, N.

N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, “Dynamic properties of III–V polytypes from density-functional theory,” J. Appl. Phys. 121(12), 125701 (2017).
[Crossref]

Bleuse, J.

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Bovin, J.-O.

M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999).
[Crossref]

Brandt, O.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Cantarero, A.

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

Capizzi, M.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

Chang-Hasnain, C.

S. Crankshaw, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Polarized zone-center phonon modes of wurtzite GaAs,” Phys. Rev. B 81(23), 233303 (2010).
[Crossref]

Chen, I.-J.

M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
[Crossref]

Chiaramonte, T.

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

Chuang, L. C.

S. Crankshaw, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Polarized zone-center phonon modes of wurtzite GaAs,” Phys. Rev. B 81(23), 233303 (2010).
[Crossref]

Conesa-Boj, S.

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

Corfdir, P.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Cotta, M. A.

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

Crankshaw, S.

S. Crankshaw, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Polarized zone-center phonon modes of wurtzite GaAs,” Phys. Rev. B 81(23), 233303 (2010).
[Crossref]

Dacal, L. C. O.

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

de Lima, M. M.

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

De Luca, M.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

Demichel, O.

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Deppert, K.

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref]

M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999).
[Crossref]

Dheeraj, D. L.

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Dick, K. A.

N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
[Crossref]

M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
[Crossref]

N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
[Crossref]

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Ercolani, D.

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

Ferhat, M.

N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, “Dynamic properties of III–V polytypes from density-functional theory,” J. Appl. Phys. 121(12), 125701 (2017).
[Crossref]

Fomin, V. M.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Fonseka, H. A.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

Fontcuberta i Morral, A.

B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011).
[Crossref]

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

Gadret, E. G.

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

Gagliano, L.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

Gao, Q.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref]

Geelhaar, L.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Gemmi, M.

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

Glas, F.

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006).
[Crossref]

Gotsmann, B.

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Gustafsson, A.

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

Harmand, J.-C.

N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

Haverkort, J. E. M.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

Heiss, M.

B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011).
[Crossref]

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Hiruma, K.

M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992).
[Crossref]

Husanu, E.

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

i Morral, A. F.

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

D. Spirkoska, G. Abstreiter, and A. F. i Morral, “Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy,” Nanotechnology 19(43), 435704 (2008).
[Crossref]

Iikawa, F.

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

Jacobsson, D.

N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
[Crossref]

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref]

Jagadish, C.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref]

Jahn, U.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Jöns, K. D.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

Joyce, H. J.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref]

Kakibayashi, H.

M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992).
[Crossref]

Karg, S.

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Katsuyama, T.

M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992).
[Crossref]

Ketterer, B.

B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011).
[Crossref]

Khomyakov, P. A.

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Koguchi, M.

M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992).
[Crossref]

Kubitza, S.

N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
[Crossref]

Lähnemann, J.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

Lehmann, S.

N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
[Crossref]

M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
[Crossref]

N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
[Crossref]

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref]

Lewis, R. B.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Li, A.

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

Liu, L.

N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

Lörtscher, E.

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Madouri, D.

N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, “Dynamic properties of III–V polytypes from density-functional theory,” J. Appl. Phys. 121(12), 125701 (2017).
[Crossref]

Madureira, J. R.

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

Magnusson, M. H.

M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999).
[Crossref]

Malm, J.-O.

M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999).
[Crossref]

Mariette, H.

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Marquardt, O.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Maulerova, V.

M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
[Crossref]

Miriametro, A.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

Moewe, M.

S. Crankshaw, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Polarized zone-center phonon modes of wurtzite GaAs,” Phys. Rev. B 81(23), 233303 (2010).
[Crossref]

Möller, M.

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

Morante, J. R.

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

Nilsson, M.

M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
[Crossref]

Panda, J. K.

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

Patriarche, G.

N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

Peiro, F.

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

Pistol, M.-E.

N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
[Crossref]

N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
[Crossref]

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

Polimeni, A.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

Porto, S. P. S.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[Crossref]

Ramsteiner, M.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Riel, H.

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Rousseau, D. L.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[Crossref]

Roy, A.

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

Samuelson, L.

N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
[Crossref]

N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
[Crossref]

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999).
[Crossref]

Signorello, G.

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Sinito, C.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Sorba, L.

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

Spirkoska, D.

D. Spirkoska, G. Abstreiter, and A. F. i Morral, “Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy,” Nanotechnology 19(43), 435704 (2008).
[Crossref]

Tan, H. H.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref]

Tedeschi, D.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

Thelander, C.

M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
[Crossref]

Torres, C. M. S.

M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990).
[Crossref]

Trampert, A.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Uccelli, E.

B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011).
[Crossref]

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

Vainorius, N.

N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
[Crossref]

N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
[Crossref]

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

Verheijen, M. A.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

Vu, T. T. T.

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Wallentin, J.

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref]

Watt, M.

M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990).
[Crossref]

Weman, H.

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Wong-Leung, J.

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref]

Yazawa, M.

M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992).
[Crossref]

Zaoui, A.

N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, “Dynamic properties of III–V polytypes from density-functional theory,” J. Appl. Phys. 121(12), 125701 (2017).
[Crossref]

Zardo, I.

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

Zilli, A.

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

Zwiller, V.

N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

ACS Nano (2)

B. Ketterer, M. Heiss, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, “Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy,” ACS Nano 5(9), 7585–7592 (2011).
[Crossref]

A. Zilli, M. De Luca, D. Tedeschi, H. A. Fonseka, A. Miriametro, H. H. Tan, C. Jagadish, M. Capizzi, and A. Polimeni, “Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires,” ACS Nano 9(4), 4277–4287 (2015).
[Crossref]

Adv. Mater. (1)

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic Aharonov–Bohm Oscillations in Core–Shell Nanowires,” Adv. Mater. 31(3), 1805645 (2019).
[Crossref]

Appl. Phys. Lett. (4)

E. G. Gadret, M. M. de Lima, J. R. Madureira, T. Chiaramonte, M. A. Cotta, F. Iikawa, and A. Cantarero, “Optical phonon modes of wurtzite InP,” Appl. Phys. Lett. 102(12), 122101 (2013).
[Crossref]

J. K. Panda, A. Roy, M. Gemmi, E. Husanu, A. Li, D. Ercolani, and L. Sorba, “Electronic band structure of wurtzite GaP nanowires via temperature dependent resonance Raman spectroscopy,” Appl. Phys. Lett. 103(2), 023108 (2013).
[Crossref]

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. i Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

J. Appl. Phys. (1)

N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, “Dynamic properties of III–V polytypes from density-functional theory,” J. Appl. Phys. 121(12), 125701 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2061–2065 (1992).
[Crossref]

Nano Lett. (6)

H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, “Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters,” Nano Lett. 10(3), 908–915 (2010).
[Crossref]

N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, “Crystal Phase Quantum Dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

N. Vainorius, S. Lehmann, D. Jacobsson, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Confinement in Thickness-Controlled GaAs Polytype Nanodots,” Nano Lett. 15(4), 2652–2656 (2015).
[Crossref]

S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers, and J. E. M. Haverkort, “Crystal Phase Quantum Well Emission with Digital Control,” Nano Lett. 17(10), 6062–6068 (2017).
[Crossref]

M. Nilsson, I.-J. Chen, S. Lehmann, V. Maulerova, K. A. Dick, and C. Thelander, “Parallel-Coupled Quantum Dots in InAs Nanowires,” Nano Lett. 17(12), 7847–7852 (2017).
[Crossref]

S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, “A General Approach for Sharp Crystal Phase Switching in InAs, GaAs, InP, and GaP Nanowires Using Only Group V Flow,” Nano Lett. 13(9), 4099–4105 (2013).
[Crossref]

Nanoscale (1)

N. Vainorius, S. Kubitza, S. Lehmann, L. Samuelson, K. A. Dick, and M.-E. Pistol, “Temperature dependent electronic band structure of wurtzite GaAs nanowires,” Nanoscale 10(3), 1481–1486 (2018).
[Crossref]

Nanostruct. Mater. (1)

M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, “Size-selected gold nanoparticles by aerosol technology,” Nanostruct. Mater. 12(1-4), 45–48 (1999).
[Crossref]

Nanotechnology (1)

D. Spirkoska, G. Abstreiter, and A. F. i Morral, “Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy,” Nanotechnology 19(43), 435704 (2008).
[Crossref]

Nat. Commun. (1)

G. Signorello, E. Lörtscher, P. A. Khomyakov, S. Karg, D. L. Dheeraj, B. Gotsmann, H. Weman, and H. Riel, “Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress,” Nat. Commun. 5(1), 3655 (2014).
[Crossref]

Phys. Rev. (1)

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Phys. Rev. 181(3), 1351–1363 (1969).
[Crossref]

Phys. Rev. B (5)

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B 74(12), 121302 (2006).
[Crossref]

M. Möller, M. M. de Lima, A. Cantarero, L. C. O. Dacal, J. R. Madureira, F. Iikawa, T. Chiaramonte, and M. A. Cotta, “Polarized and resonant Raman spectroscopy on single InAs nanowires,” Phys. Rev. B 84(8), 085318 (2011).
[Crossref]

S. Crankshaw, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Polarized zone-center phonon modes of wurtzite GaAs,” Phys. Rev. B 81(23), 233303 (2010).
[Crossref]

I. Zardo, S. Conesa-Boj, F. Peiro, J. R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, and A. Fontcuberta i Morral, “Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects,” Phys. Rev. B 80(24), 245324 (2009).
[Crossref]

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick, L. Samuelson, and M.-E. Pistol, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Phys. Rev. B 89(16), 165423 (2014).
[Crossref]

Semicond. Sci. Technol. (1)

M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Phonon dispersion of zinc blende (black) and wurtzite (blue) GaAs. LO, TO, LA and TA represents longitudinal optical, transverse optical, longitudinal acoustic and transverse acoustic phonons.
Fig. 2.
Fig. 2. A simplified sketch of the experimental setup and the coordinate system used.
Fig. 3.
Fig. 3. Low temperature polarization-dependent Raman scattering spectra of a single wurtzite GaAs nanowire. The spectra were normalized to the peak value and plotted with an offset.
Fig. 4.
Fig. 4. Low temperature Raman scattering spectra of wurtzite InP nanowires. a) depicts unpolarized measurement on a batch of randomly oriented nanowires. b) shows representative single nanowire polarization-dependent measurements.

Tables (1)

Tables Icon

Table 1. Optical phonon modes of wurtzite GaAs and InP observed by low temperature Raman scattering spectroscopy.

Metrics