Abstract

We investigate theoretically the impact of Rashba spin-orbit coupling (RSOC) effect to two-photon absorption (TPA) and its dependence on the polarization direction of the incident light in monolayer black phosphorus (BP) starting from an anisotropic two band k·p model. It is found that the TPA is enhanced several times by RSOC effect which is tuned by the external electric field. And the TPA response shows highly anisotropic, changing periodically with the polarization direction of incident linearly polarized light as the function of cos4θ approximatively. The TPA coefficient reaches its maximum when the polarization direction is aligned along the armchair direction (x-direction), while falls into its minimum along the zigzag direction (y-direction).

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Black phosphorus (BP), a van der Waals-bonded two dimensional (2D) material with puckered honeycomb structure (see Fig. 1), is the most thermodynamically stable allotrope of phosphorus [13]. It is a layered semiconductor with direct band-gap tuned by the number of layers from 0.3 eV (bulk) to 2 eV (monolayer), which happens to bridge the blank between graphene with zero band gap and transition metal dichalcogenides (TMDCs) with larger band gap [4,5]. Recently, BP has received intensive attention due to its tunable band gap in visible-infrared region [6,7], its high carrier mobility [810], its intrinsic layered nature, and its highly anisotropic structures, which give rise to the highly anisotropic physical properties, such as anisotropic excitons [11], anisotropic optical response [12,13] and anisotropic plasmons etc. [14]. These make BP as a promising candidate for opto-electronics, which can be applied to photodetectors with high sensitivity [1517], field-effect transistors [18,19], optical switches, optical sensors [20] and so on. In many applications, laser excitation through two-photon absorption (TPA), which is one of the third-order nonlinear optical effects plays an important role. Compared with one-photon absorption, longer excitation wavelengths may be utilized in TPA-based applications to provide deeper penetration depths in absorptive media and higher spatial resolution [21].

Up to now, TPA and other nonlinear optical properties in BP and its related low dimensional materials have been studied intensively, in the context of both theory and experiment. Margulis et al. theoretically simulated the optical kerr effect and two-photon absorption in monolayer black phosphorus starting from the calculation of the third-order optical susceptibility χ(3) [22]. In our previous work, we displayed the TPA spectrum in monolayer BP nanoribbons with armchair edge [23]. The TPA and saturable absorption (SA) coefficients in few-layer BP nanosheets or BP quantum dots have been measured by the Z-Scan and pump-probe spectra techniques [2426]. As referring to the plasmon absorption, electrostatically tunable localized surface plasmons can generate a strong local electromagnetic field that enhances the nonlinear optical response. X. Chen and L. Wang's group has designed a large number of novel opto-electronic devices based on the terahertz technology and Plasmon excitation in 2D materials, such as phototransistor for sensitive broadband detection [16], highly sensitive and wide-band tunable field effect transistors [18], high-gain long-wavelength photodetector [19], high-Q Fano-resonnator for sensing [20] and so on.

It is known that in crystals which lack an inversion centre, electronic energy bands are split by spin orbit coupling (SOC). In the presence of the SOC, the electric field induced broken inversion symmetry leads to the Rashba spin orbit coupling (RSOC) effect [27]. As one of the relativistic effects, it is usually small and often neglected in solids, but in 2D materials it may play an important role, especially if the material is placed in an external electric field or on a polar substrate [28]. It can be predicted that some optical effects will be strengthened due to the fact that the splitting of energy levels will enhance the density of states. Anisotropic band structure also can cause a highly anisotropic Rashba splitting in monolayer BP [28].

In these prior studies, the studies on TPA and RSOC in BP have been conducted separately. However, the hybrid impact of RSOC effect on TPA in monolayer BP by tuning the external electric field as well as polarization direction of incident light has not yet been reported. In the present paper, we theoretically study the anisotropic behaviors of the TPA properties associated with the RSOC in monolayer BP by a linearly polarized light. We obtain the energy band structure of monolayer BP on the basement of the two band k·p model in the low-energy theory when the RSOC is present. Further we numerically calculate the TPA coefficient and display the TPA spectra as functions of both the external electric field and the polarization direction of the incident light. The results indicate that the RSOC effect leads to the spin splitting of energy bands, creating energy bands with spin-up and spin-down, respectively. Both the energy bands and the RSOC effect are anisotropic. It is demonstrated a linear like relation between splitting energy and the wave vector k. The TPA coefficient is enhanced by the effect of RSOC in varying extent, which is dependent on the strength of the applied electric field. The TPA also shows anisotropic, changing periodically with the polarization direction of incident linearly polarized light as the function of cos4θ approximatively with the period π. The maximum of TPA coefficient corresponds to the incident polarization aligned along x-axis while the minimum of TPA coefficient occurs aligned along y-axis. These results provide guidance on potential applications of optoelectronic nanodevices based on the anisotropic BP.

 figure: Fig. 1.

Fig. 1. (a) Side view of the monolayer BP crystal lattice. The parameter d is the nominal monolayer BP thickness of 0.53 nm. (b) Top view of the lattice of the monolayer BP.

Download Full Size | PPT Slide | PDF

2. Theory and calculation

When we consider the effect of RSOC induced by the applied electric field, the low-energy dispersion of the monolayer BP can be well described by an anisotropic two band k·p model [29]

$$H = {H_0} + {H_R} = \left( {\begin{array}{cc} {{h_c} + {H_{Rc}}}&{{h_{cv}}}\\ {h_{cv}^\ast }&{{h_v} + {H_{Rv}}} \end{array}} \right)$$
where H0 is the two-band effective Hamiltonian and the HR is the RSOC term. The H0 is given by [30]
$${H_0} = \left( {\begin{array}{cc} {{h_c}}&{{h_{cv}}}\\ {h_{cv}^\ast }&{{h_v}} \end{array}} \right) = \left( {\begin{array}{cc} {{E_c} + {\lambda_c}k_x^2 + {\eta_c}k_y^2}&{\gamma {k_x}}\\ {\gamma {k_x}}&{{E_v} - {\lambda_v}k_x^2 - {\eta_v}k_y^2} \end{array}} \right)$$
in which Ec= 0.34 eV (Ev= -1.18 eV) is the conduction (valence) band edge, γ = -5.23 eV·Å describes the interband coupling between conduction and valence bands, the band parameters λc(v) and $\hbar$c(v) are related to the effective masses by λc = $\hbar$2/2mcx, λv = $\hbar$2/2mvx, $\hbar$c = $\hbar$2/2mcy, $\hbar$v = $\hbar$2/2mvy, with mcx = 0.793me, mcy = 0.848me, mvx = 1.363me, mvy = 1.142me and the me is the free electron mass [29].

The anisotropic Rashba Hamiltonian is given by [2831]

$${H_R} = {\alpha _R}({\vec{\sigma } \times \vec{k}^{\prime}} )\cdot \hat{z} = {\alpha _R}({{{k^{\prime}}_y}{\sigma_x} - {{k^{\prime}}_x}{\sigma_y}} )$$
where ${\alpha _R} = {\hbar ^2}E|e |{({2m_e^2{c^2}} )^{ - 1}}$ is the Rashba coefficient with E the intensity of the applied electric field, $\vec{\sigma }$ is the Pauli matrix, ${k^{\prime}_i} = \sum\nolimits_j {\left( {\frac{{{m_e}}}{{m^{\prime}}}} \right)} _{ij}^2{k_j}({i,j = x,y} )$ describes the anisotropic feature of the RSOC, which is connected with the effective mass. It is easy to prove that the mass tensor can be expressed in a diagonal matrix with momentum-independent masses, so that the constant energy contours are ellipses, i.e. $\hbar$2k2x/2mx + $\hbar$2k2y/2my = const. Owing to the long wavelength limit, we ignore the effect of the interband coupling on the Rashba term. It can be inferred from the above formulas that the Rashba Hamiltonian of the conduction and the valence bands can be separately expressed as
$$\begin{array}{l} {H_{Rc}} = {\alpha _R}\left( {\frac{{m_e^2}}{{m^{\prime2}_{cy}}}{k_y}{\sigma_x} - \frac{{m_e^2}}{{m^{\prime2}_{cx}}}{k_x}{\sigma_y}} \right)\\ {H_{Rv}} = {\alpha _R}\left( {\frac{{m_e^2}}{{m^{\prime2}_{vy}}}{k_y}{\sigma_x} - \frac{{m_e^2}}{{m^{\prime2}_{vx}}}{k_x}{\sigma_y}} \right) \end{array}$$
Taking account in the influence from the external electric field, the effective masses of the carriers should be adjusted to mcx = 0.037me, mcy = 0.107me, mvx = 0.042me, mvy = 0.073me [29]. Substituting Eqs. (2) and (4) into Eq. (1), the Hamiltonian of the electrons and holes in BP transforms to a 4×4 matrix, which reads
$$ \begin{aligned} H = & \left( {\begin{array}{cc} {{E_c} + {\lambda _c}k_x^2 + {\eta _c}k_y^2}&{i{\alpha _R}m_e^2{{(m_{cx}^{\prime 2})}^{ - 1}}{k_x} + {\alpha _R}m_e^2{{(m_{cy}^{\prime 2})}^{ - 1}}{k_y}}\\ { - i{\alpha _R}m_e^2{{(m_{cx}^{\prime 2})}^{ - 1}}{k_x} + {\alpha _R}m_e^2{{(m_{cy}^{\prime 2})}^{ - 1}}{k_y}}&{{E_c} + {\lambda _c}k_x^2 + {\eta _c}k_y^2}\\ {\gamma {k_x}}&0\\ 0&{\gamma {k_x}} \end{array}} \right.\\ & \left. {\begin{array}{cc} {\gamma {k_x}}&0\\ 0&{\gamma {k_x}}\\ {{E_c} - {\lambda _v}k_x^2 - {\eta _v}k_y^2}&{i{\alpha _R}m_e^2{{(m_{vx}^{\prime 2})}^{ - 1}}{k_x} + {\alpha _R}m_e^2{{(m_{vy}^{\prime 2})}^{ - 1}}{k_y}}\\ { - i{\alpha _R}m_e^2{{(m_{vx}^{\prime 2})}^{ - 1}}{k_x} + {\alpha _R}m_e^2{{(m_{vy}^{\prime 2})}^{ - 1}}{k_y}}&{{E_c} - {\lambda _v}k_x^2 - {\eta _v}k_y^2} \end{array}} \right) \end{aligned} $$
It is convenient to get the numerical energy states of monolayer BP by diagonalizing Eq. (5).

When the monolayer BP sheet is irradiated by a linearly polarized light with frequency ω, the Perierls substitution, i.e. $\hbar$kiPi=$\hbar$ki+eAi should be used here. Then the electron- photon interaction Hamiltonian Hint can be separated by Hint = H′-H, where H′ is the total Hamiltonian including the light field. If the angle between the polarization direction and the armchair edge (x-direction) is θ, we can rewrite the electron-photon interaction Hamiltonian as

$${H_{{\mathop{\rm int}} }} = {H_{Ax}} + {H_{Ay}}$$
where HAx and HAy are the Hamiltonians which are projected to the x-direction and the y-direction, respectively. Ignoring the second and higher-order terms, the HAx and HAy can be given by
$$\begin{array}{l} {H_{Ax}} = \left( {\begin{array}{@{}cccc@{}} {2e{\lambda_c}{k_x}{{({\hbar c} )}^{ - 1}}}&{ie{\alpha_R}m_e^2{{({\hbar cm^{\prime 2}_{cx}} )}^{ - 1}}}&{e\gamma {{({\hbar c} )}^{ - 1}}}&0\\ { - ie{\alpha_R}m_e^2{{({\hbar cm^{\prime 2}_{cx}} )}^{ - 1}}}&{2e{\lambda_c}{k_x}{{({\hbar c} )}^{ - 1}}}&0&{e\gamma {{({\hbar c} )}^{ - 1}}}\\ {e\gamma {{({\hbar c} )}^{ - 1}}}&0&{ - 2e{\lambda_v}{k_x}{{({\hbar c} )}^{ - 1}}}&{ie{\alpha_R}m_e^2{{({\hbar cm^{\prime 2}_{vx}} )}^{ - 1}}}\\ 0&{e\gamma {{({\hbar c} )}^{ - 1}}}&{ - ie{\alpha_R}m_e^2{{({\hbar cm^{\prime 2}_{vx}} )}^{ - 1}}}&{ - 2e{\lambda_v}{k_x}{{({\hbar c} )}^{ - 1}}} \end{array}} \right)A\cos \theta \\ {H_{Ay}} = \left( {\begin{array}{@{}cccc@{}} {2e{\eta_c}{k_y}{{({\hbar c} )}^{ - 1}}}&{e{\alpha_R}m_e^2{{({\hbar cm^{\prime 2}_{cy}} )}^{ - 1}}}&0&0\\ {e{\alpha_R}m_e^2{{({\hbar cm^{\prime 2}_{cy}} )}^{ - 1}}}&{2e{\eta_c}{k_y}{{({\hbar c} )}^{ - 1}}}&0&0\\ 0&0&{ - 2e{\eta_v}{k_y}{{({\hbar c} )}^{ - 1}}}&{e{\alpha_R}m_e^2{{({\hbar cm^{\prime 2}_y} )}^{ - 1}}}\\ 0&0&{ie{\alpha_R}m_e^2{{({\hbar cm^{\prime 2}_{vy}} )}^{ - 1}}}&{ - 2e{\eta_v}{k_y}{{({\hbar c} )}^{ - 1}}} \end{array}} \right)A\sin \theta \end{array}$$
Two-photon transition probability can be represented under second-order perturbation theory with respect to the electron-photo interaction as [32,33]
$$\begin{array}{l} {W^{(2 )}} = \frac{{2\pi }}{\hbar }\int {{{\sum\limits_{c,v} {|{{M_{c,v}}} |} }^2}\delta ({{E_v} - {E_c} - 2\hbar \omega } )} \frac{{{d^2}\textrm{k}}}{{{{({2\pi } )}^2}}}\\ {M_{c,v}} = \sum\limits_i {\frac{{\left\langle {{\varphi_c}} \right|{H_{{\mathop{\rm int}} }}|{{\varphi_i}} \rangle \left\langle {{\varphi_i}} \right|{H_{{\mathop{\rm int}} }}|{{\varphi_v}} \rangle }}{{{E_i} - {E_v} - \hbar \omega - i\hbar {\gamma _i}}}} \end{array}$$
where the φc, φv and φi are the wave functions of the initial, final and intermediate states of carriers, whose energies are Ec, Ev and Ei, respectively. $\hbar$γi is the relaxation energy of carrier in each excited state. The TPA coefficient is related to W(2) by
$$\beta = \frac{{4\hbar \omega {W^{(2 )}}}}{{{I^2}d}}{\left( {\frac{1}{{4\pi {\varepsilon_0}}}} \right)^2}$$
in which $I = \frac{{\varepsilon _\omega ^{{1 \mathord{\left/ {\vphantom {1 2}} \right.} 2}}{\omega ^2}{A^2}}}{{2\pi c}}$ is the incident radiation intensity with ɛω the material optical frequency permittivity and c is the speed of light, ɛ0 is the permittivity of vacuum, d is the thickness of monolayer BP sheet.

3. Result and discussion

In pristine monolayer BP, parabolic energy bands reflect anisotropy and the massive 2DEG with a direct bandgap about 1.52 eV at the Γ point. The presence of applied electric field leads to the splitting of the energy levels with the effect of RSOC. Then distinct electronic and optical properties emerge rather than being observed in hexagonal symmetric graphene. We start by demonstrating the energy dispersions of monolayer BP with and without external electric field respectively in Figs. 2(a)–2(c). The different slopes along kx and ky directions imply both the anisotropic energy dispersion relations and anisotropic effective masses of carriers in monolayer BP without external electric field [see Fig. 2(a)]. While for the situation that the external electric field is applied, it is shown in Fig. 2(b) that the conduction band and valence band split to two bands separately. In order to get a better view, we plot the energy dispersions along the wave vector kx at ky= 0 in Fig. 2(c). It is noted that the Rashba term results in the spin splitting of energy bands, creating an energy band of spin-up and spin-down, respectively. The energy dispersion along the wave vector ky at kx = 0 shows similar phenomena, which is not shown here. We can see that the spin splitting energy between the spin-up and spin-down bands is in the magnitude of µeV, which is also dependent on the wave vector k. It is obvious in Fig. 2(c) that the larger the kx, the larger the spin splitting energy. Figure 2(d) demonstrates clearly the linear like relationship between splitting energy and the wave vector k. The different slopes of kx and ky for electron and hole indicate the anisotropy and asymmetry of RSOC effect.

 figure: Fig. 2.

Fig. 2. (a) Band structure of monolayer BP without an electric field. (b) Three dimensional diagram of energy band structure for monolayer BP with an applied electric field. (c) Band structure of monolayer BP along the wave vector kx when ky = 0 at the conduction bottom and the valence top in the presence of an electric field. Here we set energy equals to zero both at the bottom of conduction band and the top of valence band. (d) Rashba splitting energy along kx or ky direction for conduction band and valence band. The electric field is 2 V/Å.

Download Full Size | PPT Slide | PDF

In Fig. 3, we plot the energy contour of the conduction Rashba splitting bands in the kx- ky plane. We can see that the energy band along the wave vector kx direction increases faster than that along the wave vector ky direction. This phenomenon will cause anisotropic nonlinear optical effects because of the more optical transitions in the x-direction than that in the y-direction.

 figure: Fig. 3.

Fig. 3. The energy contour of the Rashba splitting for the conduction band in the kx-ky plane. The electric field is 2V/Å, and a0 = 2.22Å is the in plane bond length.

Download Full Size | PPT Slide | PDF

Figures 4(a) and 4(b) present 2D plots of the TPA as a function of the incident light wavelength for the different polarization directions both in the presence and in the absence of the RSOC in monolayer BP. We demonstrate the TPA spectra with θ=0°, 30°, 45°, 60°, 90°. It is observed that the TPA spectra have two peaks, one of which is very small at the wavelength of about 825 nm and the other one is much larger at the wavelength nearly 1641 nm. We can clearly see that the TPA coefficient decreases as the polarization angle of the linearly polarized light increase from 0° to 90°. The maximum TPA occurs when the polarization direction is aligned with the x-direction. This can be explained that the density of the energy states is larger along x-direction than that along the y-direction (see the Fig. 3). So more TPA transitions occur along x-direction. This phenomenon is consistent with the results of previous studies [13,22]. It indicates that the strong anisotropic nonlinear absorption can be realized in the monolayer BP. Comparing Fig. 4(a) with 4(b), we also can find that the TPA coefficient is enhanced nearly doubly by the effect of RSOC when the external electric field is 2 V/Å, which will be enhanced much more with a stronger external electric field. Figure 4(c) shows the TPA spectra for different values of the external electric field in the presence of the RSOC when the polarization direction is along the x-direction. It can be seen that the resonant peaks of the TPA increases with the increasing of the electric field. Due to the RSOC effect caused by the external electric field, the stronger electric field leads to larger spacing spin splitting energy levels, which may make the probability of two-photon transition resonance. Then the TPA coefficient increases. Nevertheless, the Rashba splitting of the energy bands are in magnitude of µeV so that the shift of the absorption peaks is too tiny that they are hard to be observed in Fig. 4(c). In brief, we can control the strength of TPA by adjusting polarization direction as well as the external electric field. What we must clarify is that once the direction of external electric field is not perfectly perpendicular to the atom plane, the situation will become more complicated. For example, the electric field effect must be considered [19]. And then these results will not be applicable for this situation.

It is already mentioned that the nonlinear optical response of monolayer BP shows strong anisotropy with the incident light’s polarization in Figs. 4(a) and 4(b). Now in Fig. 5 we display the angular dependence of the TPA as a function of polarization direction relative to the x-axis (armchair direction) of BP varying from 0 to 2π when the wavelength is fixed at 825 nm and 1641 nm, at which there are TPA peaks. The TPA coefficient changes periodically with the polarization angle of linearly polarized light and the period is π. The maximum of TPA coefficient corresponds to an incident polarization aligned along x-axis while the minimum of TPA coefficient occurs aligned along y-axis. This periodical function relationship is consistent with the third harmonic generation (THG) in Ref. [34]. The functional relations can be fitted well by cos4θ approximatively since HAx>> HAy resulting from mcx <<mcy.

 figure: Fig. 4.

Fig. 4. (a) The TPA spectra as a function of the incident light wavelength for different polarization directions with the RSOC. The electric field is 2V/Å. (b) The TPA spectra as a function of the incident light wavelength for different polarization directions without the RSOC. (c) The TPA spectra for different values of the applied electric field in the presence of the RSOC.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. The absorption peak value plot as a function of the polarization direction when the wavelength is fixed at 825nm and 1641nm. The electric field is 2V/Å.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we have studied the anisotropic behaviors of TPA properties of monolayer BP associated with the RSOC effect by the linearly polarized light. We obtain the spin-orbit coupling splitting energy bands of monolayer BP in the low-energy theory when the RSOC effect is taken part in under an external electric field. The TPA is enhanced by the RSOC effect in different extent which is dependent on the strength of applied electric field. The TPA coefficient increases with the increase of the strength of the external electric field. Both the RSOC effect and the TPA properties are highly anisotropic. The TPA coefficient changes periodically with the polarization angle of linearly polarized light which appeared as the function cos4θ. The TPA coefficient enjoys its maximum when the polarization direction is along the x-direction (armchair direction), while falls into its lowest point when along the y-direction (zigzag direction). So we can control the strength of TPA by adjusting polarization direction as well as the external electric field. For multilayer BP, which is relatively easier to exfoliated than monolayer BP, both the RSOC effect and the electric field effect between layers will make the energy states much more complicated and many new physical properties will emerge subsequently. In our future work, we can systematically study the layer-dependence of nonlinear optical effect in multilayer BP.

Funding

National Natural Science Foundation of China (11764046, 11764047); Applied Basic Research Foundation of Yunnan Province (2017FB009).

Disclosures

The authors declare no conflicts of interest.

References

1. S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012). [CrossRef]  

2. X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018). [CrossRef]  

3. S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014). [CrossRef]  

4. V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014). [CrossRef]  

5. J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014). [CrossRef]  

6. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014). [CrossRef]  

7. T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014). [CrossRef]  

8. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014). [CrossRef]  

9. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 5458 (2014). [CrossRef]  

10. Y. Liu, T. Low, and P. P. Ruden, “Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities,” Phys. Rev. B 93(16), 165402 (2016). [CrossRef]  

11. A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015). [CrossRef]  

12. F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017). [CrossRef]  

13. M. Yang, H.-J. Duan, and R.-Q. Wang, “The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field,” Phys. Scr. 91(10), 105801 (2016). [CrossRef]  

14. X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017). [CrossRef]  

15. X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017). [CrossRef]  

16. C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018). [CrossRef]  

17. L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of mid-infrared surface Plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018). [CrossRef]  

18. L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015). [CrossRef]  

19. C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018). [CrossRef]  

20. W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016). [CrossRef]  

21. G. S. He, K. T. Yong, Q. D. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007). [CrossRef]  

22. V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical Kerr effect and two-photon absorption in monolayer black phosphorus,” J. Opt. 20(5), 055503 (2018). [CrossRef]  

23. Y. Liu, X. Feng, Y. Qin, and Q. Wang, “Width dependent two-photon absorption in monolayer Black Phosphorus nanoribbons,” Appl. Sci. 9(10), 2014 (2019). [CrossRef]  

24. R. Chen, Y. Tang, X. Zheng, and T. Jiang, “Giant nonlinear absorption and excited carrier dynamics of black phosphorus few-layer nanosheet in broadband spectra,” Appl. Opt. 55(36), 10307–10312 (2016). [CrossRef]  

25. Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017). [CrossRef]  

26. X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017). [CrossRef]  

27. A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015). [CrossRef]  

28. Z. S. Popović, J. M. Kurdestany, and S. Satpathy, “Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus,” Phys. Rev. B 92(3), 035135 (2015). [CrossRef]  

29. Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018). [CrossRef]  

30. X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015). [CrossRef]  

31. K. V. Shanavas, Z. S. Popović, and S. Satpathy, “Theoretical model for Rashba spin-orbit interaction indelectrons,” Phys. Rev. B 90(16), 165108 (2014). [CrossRef]  

32. A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54(12), 8627–8632 (1996). [CrossRef]  

33. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2(2), 294–316 (1985). [CrossRef]  

34. N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017). [CrossRef]  

References

  • View by:

  1. S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012).
    [Crossref]
  2. X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018).
    [Crossref]
  3. S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
    [Crossref]
  4. V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
    [Crossref]
  5. J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014).
    [Crossref]
  6. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
    [Crossref]
  7. T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
    [Crossref]
  8. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
    [Crossref]
  9. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 5458 (2014).
    [Crossref]
  10. Y. Liu, T. Low, and P. P. Ruden, “Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities,” Phys. Rev. B 93(16), 165402 (2016).
    [Crossref]
  11. A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015).
    [Crossref]
  12. F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
    [Crossref]
  13. M. Yang, H.-J. Duan, and R.-Q. Wang, “The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field,” Phys. Scr. 91(10), 105801 (2016).
    [Crossref]
  14. X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
    [Crossref]
  15. X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
    [Crossref]
  16. C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
    [Crossref]
  17. L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of mid-infrared surface Plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
    [Crossref]
  18. L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
    [Crossref]
  19. C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
    [Crossref]
  20. W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
    [Crossref]
  21. G. S. He, K. T. Yong, Q. D. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
    [Crossref]
  22. V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical Kerr effect and two-photon absorption in monolayer black phosphorus,” J. Opt. 20(5), 055503 (2018).
    [Crossref]
  23. Y. Liu, X. Feng, Y. Qin, and Q. Wang, “Width dependent two-photon absorption in monolayer Black Phosphorus nanoribbons,” Appl. Sci. 9(10), 2014 (2019).
    [Crossref]
  24. R. Chen, Y. Tang, X. Zheng, and T. Jiang, “Giant nonlinear absorption and excited carrier dynamics of black phosphorus few-layer nanosheet in broadband spectra,” Appl. Opt. 55(36), 10307–10312 (2016).
    [Crossref]
  25. Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
    [Crossref]
  26. X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
    [Crossref]
  27. A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015).
    [Crossref]
  28. Z. S. Popović, J. M. Kurdestany, and S. Satpathy, “Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus,” Phys. Rev. B 92(3), 035135 (2015).
    [Crossref]
  29. Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018).
    [Crossref]
  30. X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
    [Crossref]
  31. K. V. Shanavas, Z. S. Popović, and S. Satpathy, “Theoretical model for Rashba spin-orbit interaction indelectrons,” Phys. Rev. B 90(16), 165108 (2014).
    [Crossref]
  32. A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54(12), 8627–8632 (1996).
    [Crossref]
  33. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2(2), 294–316 (1985).
    [Crossref]
  34. N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017).
    [Crossref]

2019 (1)

Y. Liu, X. Feng, Y. Qin, and Q. Wang, “Width dependent two-photon absorption in monolayer Black Phosphorus nanoribbons,” Appl. Sci. 9(10), 2014 (2019).
[Crossref]

2018 (6)

Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical Kerr effect and two-photon absorption in monolayer black phosphorus,” J. Opt. 20(5), 055503 (2018).
[Crossref]

X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of mid-infrared surface Plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

2017 (6)

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref]

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017).
[Crossref]

2016 (4)

R. Chen, Y. Tang, X. Zheng, and T. Jiang, “Giant nonlinear absorption and excited carrier dynamics of black phosphorus few-layer nanosheet in broadband spectra,” Appl. Opt. 55(36), 10307–10312 (2016).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

M. Yang, H.-J. Duan, and R.-Q. Wang, “The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field,” Phys. Scr. 91(10), 105801 (2016).
[Crossref]

Y. Liu, T. Low, and P. P. Ruden, “Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities,” Phys. Rev. B 93(16), 165402 (2016).
[Crossref]

2015 (5)

A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015).
[Crossref]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
[Crossref]

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015).
[Crossref]

Z. S. Popović, J. M. Kurdestany, and S. Satpathy, “Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus,” Phys. Rev. B 92(3), 035135 (2015).
[Crossref]

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

2014 (8)

K. V. Shanavas, Z. S. Popović, and S. Satpathy, “Theoretical model for Rashba spin-orbit interaction indelectrons,” Phys. Rev. B 90(16), 165108 (2014).
[Crossref]

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014).
[Crossref]

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 5458 (2014).
[Crossref]

2012 (1)

S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012).
[Crossref]

2007 (1)

1996 (1)

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54(12), 8627–8632 (1996).
[Crossref]

1985 (1)

Appalakondaiah, S.

S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012).
[Crossref]

Avouris, P.

A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015).
[Crossref]

Baev, A.

Bai, R.

Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018).
[Crossref]

Baranov, A. V.

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54(12), 8627–8632 (1996).
[Crossref]

Blanter, S. I.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Buscema, M.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Çakir, D.

A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015).
[Crossref]

Carvalho, A.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Castellanos-Gomez, A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Castro Neto, A. H.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Chang, K.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Chaves, A.

A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015).
[Crossref]

Chen, G.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

Chen, R.

Chen, X.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of mid-infrared surface Plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref]

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
[Crossref]

Chen, X. H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Cheng, F.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Christensen, N. E.

S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012).
[Crossref]

Deng, B.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Ding, J.

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
[Crossref]

Doganov, R. A.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Duan, H.-J.

M. Yang, H.-J. Duan, and R.-Q. Wang, “The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field,” Phys. Scr. 91(10), 105801 (2016).
[Crossref]

Duine, R. A.

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015).
[Crossref]

Fan, D. Y.

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

Fedorov, A. V.

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54(12), 8627–8632 (1996).
[Crossref]

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Feng, X.

Y. Liu, X. Feng, Y. Qin, and Q. Wang, “Width dependent two-photon absorption in monolayer Black Phosphorus nanoribbons,” Appl. Sci. 9(10), 2014 (2019).
[Crossref]

Frolov, S. M.

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015).
[Crossref]

Gaiduk, E. A.

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical Kerr effect and two-photon absorption in monolayer black phosphorus,” J. Opt. 20(5), 055503 (2018).
[Crossref]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Ge, Y.

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

Groenendijk, D. J.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Guenther, A. H.

Guo, W.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

Guo, Z.

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

Han, L.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of mid-infrared surface Plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

He, G. S.

Hu, Z. X.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014).
[Crossref]

Huang, F.

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

Inoue, K.

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54(12), 8627–8632 (1996).
[Crossref]

Ji, W.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014).
[Crossref]

Jia, Y.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 5458 (2014).
[Crossref]

Jiang, T.

Jiang, X.

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

Jiang, X. F.

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

Jiang, Y.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Koenig, S. P.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Kong, X.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014).
[Crossref]

Koo, H. C.

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015).
[Crossref]

Kurdestany, J. M.

Z. S. Popović, J. M. Kurdestany, and S. Satpathy, “Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus,” Phys. Rev. B 92(3), 035135 (2015).
[Crossref]

Lebègue, S.

S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012).
[Crossref]

Li, C.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Li, M.

N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017).
[Crossref]

Li, S.

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

Li, X.

Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018).
[Crossref]

Li, X. J.

X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018).
[Crossref]

Li, Y.

Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018).
[Crossref]

Liang, Y.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Liu, C.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Liu, Y.

Y. Liu, X. Feng, Y. Qin, and Q. Wang, “Width dependent two-photon absorption in monolayer Black Phosphorus nanoribbons,” Appl. Sci. 9(10), 2014 (2019).
[Crossref]

Y. Liu, T. Low, and P. P. Ruden, “Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities,” Phys. Rev. B 93(16), 165402 (2016).
[Crossref]

Lou, W. K.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Low, T.

N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017).
[Crossref]

Y. Liu, T. Low, and P. P. Ruden, “Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities,” Phys. Rev. B 93(16), 165402 (2016).
[Crossref]

A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Lu, W.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
[Crossref]

Lu, X.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Luo, K.

X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018).
[Crossref]

Manchon, A.

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015).
[Crossref]

Margulis, V. A.

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical Kerr effect and two-photon absorption in monolayer black phosphorus,” J. Opt. 20(5), 055503 (2018).
[Crossref]

Mitra, S. S.

Muryumin, E. E.

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical Kerr effect and two-photon absorption in monolayer black phosphorus,” J. Opt. 20(5), 055503 (2018).
[Crossref]

Nathan, V.

Naveh, D.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Nemilentsau, A.

N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017).
[Crossref]

Ni, X.

Nitta, J.

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015).
[Crossref]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Özyilmaz, B.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Peeters, F. M.

A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015).
[Crossref]

Peng, R.

N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017).
[Crossref]

Politano, A.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

Popovic, Z. S.

Z. S. Popović, J. M. Kurdestany, and S. Satpathy, “Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus,” Phys. Rev. B 92(3), 035135 (2015).
[Crossref]

K. V. Shanavas, Z. S. Popović, and S. Satpathy, “Theoretical model for Rashba spin-orbit interaction indelectrons,” Phys. Rev. B 90(16), 165108 (2014).
[Crossref]

Prasad, P. N.

Qiao, J.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014).
[Crossref]

Qin, S.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Qin, Y.

Y. Liu, X. Feng, Y. Qin, and Q. Wang, “Width dependent two-photon absorption in monolayer Black Phosphorus nanoribbons,” Appl. Sci. 9(10), 2014 (2019).
[Crossref]

Rodin, A. S.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

Ruden, P. P.

Y. Liu, T. Low, and P. P. Ruden, “Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities,” Phys. Rev. B 93(16), 165402 (2016).
[Crossref]

Ryasnyanskiy, A. I.

Sahoo, Y.

Satpathy, S.

Z. S. Popović, J. M. Kurdestany, and S. Satpathy, “Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus,” Phys. Rev. B 92(3), 035135 (2015).
[Crossref]

K. V. Shanavas, Z. S. Popović, and S. Satpathy, “Theoretical model for Rashba spin-orbit interaction indelectrons,” Phys. Rev. B 90(16), 165108 (2014).
[Crossref]

Schmidt, H.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Shanavas, K. V.

K. V. Shanavas, Z. S. Popović, and S. Satpathy, “Theoretical model for Rashba spin-orbit interaction indelectrons,” Phys. Rev. B 90(16), 165108 (2014).
[Crossref]

Shao, Y.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Sinai, O.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Soklaski, R.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Steele, G. A.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Sun, J. P.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Svane, A.

S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012).
[Crossref]

Tang, W.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Tang, Y.

Taniguchi, T.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Tran, V.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Tredicucci, A.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

Vaitheeswaran, G.

S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012).
[Crossref]

van der Zant, H. S.

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Wan, Q.

Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018).
[Crossref]

Wang, H.

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 5458 (2014).
[Crossref]

Wang, J.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

Wang, L.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of mid-infrared surface Plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

X. Ni, L. Wang, J. Zhu, X. Chen, and W. Lu, “Surface plasmons in a nanostructured black phosphorus flake,” Opt. Lett. 42(13), 2659–2662 (2017).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
[Crossref]

Wang, Q.

Y. Liu, X. Feng, Y. Qin, and Q. Wang, “Width dependent two-photon absorption in monolayer Black Phosphorus nanoribbons,” Appl. Sci. 9(10), 2014 (2019).
[Crossref]

Wang, R.-Q.

M. Yang, H.-J. Duan, and R.-Q. Wang, “The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field,” Phys. Scr. 91(10), 105801 (2016).
[Crossref]

Watanabe, K.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Wei, D.

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

Wen, Z. C.

Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018).
[Crossref]

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Wu, Z. H.

X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018).
[Crossref]

Xia, F.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 5458 (2014).
[Crossref]

Xing, H.

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of mid-infrared surface Plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

Xiong, F.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Xu, Q.

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

Xu, Q. H.

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

Xu, Y.

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

Yang, F.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014).
[Crossref]

Yang, L.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Yang, M.

M. Yang, H.-J. Duan, and R.-Q. Wang, “The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field,” Phys. Scr. 91(10), 105801 (2016).
[Crossref]

Yang, W.

X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018).
[Crossref]

Ye, G. J.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Yong, K. T.

Youngblood, N.

N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017).
[Crossref]

Yu, A.

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
[Crossref]

Yu, J. H.

X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018).
[Crossref]

Yu, X. F.

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Yuan, S.

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Yuan, X.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Zeng, Z.

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

Zhai, F.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Zhang, D.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Zhang, H.

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

Zhang, J.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Zhang, R.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Zhang, Y.

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Zheng, Q. D.

Zheng, X.

Zhou, G. H.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Zhou, J.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

Zhou, X. Y.

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Zhu, J.

Zhu, Z.

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

ACS Photonics (2)

L. Han, L. Wang, H. Xing, and X. Chen, “Active tuning of mid-infrared surface Plasmon resonance and its hybridization in black phosphorus sheet array,” ACS Photonics 5(9), 3828–3837 (2018).
[Crossref]

N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li, “Layer-tunable third-harmonic generation in multilayer black phosphorus,” ACS Photonics 4(1), 8–14 (2017).
[Crossref]

Adv. Opt. Mater. (1)

C. Liu, L. Wang, X. Chen, A. Politano, D. Wei, G. Chen, W. Tang, W. Lu, and A. Tredicucci, “Room-temperature high-gain long-wavelength photodetector via optical–electrical controlling of hot Carriers in graphene,” Adv. Opt. Mater. 6(24), 1800836 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Appl. Sci. (1)

Y. Liu, X. Feng, Y. Qin, and Q. Wang, “Width dependent two-photon absorption in monolayer Black Phosphorus nanoribbons,” Appl. Sci. 9(10), 2014 (2019).
[Crossref]

J. Mater. Chem. C (1)

Y. Xu, X. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. Xu, H. Zhang, X. F. Yu, and D. Y. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics,” J. Mater. Chem. C 5(12), 3007–3013 (2017).
[Crossref]

J. Opt. (2)

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical Kerr effect and two-photon absorption in monolayer black phosphorus,” J. Opt. 20(5), 055503 (2018).
[Crossref]

F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (1)

X. F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, and Q. H. Xu, “Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses,” Materials 10(2), 210 (2017).
[Crossref]

Nano Lett. (1)

M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 3347–3352 (2014).
[Crossref]

Nanoscale (2)

C. Liu, L. Wang, X. Chen, J. Zhou, W. Tang, W. Guo, J. Wang, and W. Lu, “Top-gated black phosphorus phototransistor for sensitive broadband detection,” Nanoscale 10(13), 5852–5858 (2018).
[Crossref]

W. Tang, L. Wang, X. Chen, C. Liu, A. Yu, and W. Lu, “Dynamic metamaterial based on the graphene split ring high-Q fano-resonnator for sensing applications,” Nanoscale 8(33), 15196–15204 (2016).
[Crossref]

Nanotechnology (1)

X. J. Li, J. H. Yu, K. Luo, Z. H. Wu, and W. Yang, “Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice,” Nanotechnology 29(17), 174001 (2018).
[Crossref]

Nat. Commun. (3)

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5(1), 5475 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5(1), 5458 (2014).
[Crossref]

X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. Xia, “Widely tunable black phosphorus mid-infrared photodetector,” Nat. Commun. 8(1), 1672 (2017).
[Crossref]

Nat. Mater. (1)

A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin–orbit coupling,” Nat. Mater. 14(9), 871–882 (2015).
[Crossref]

Nat. Nanotechnol. (1)

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. E (1)

Y. Li, X. Li, Q. Wan, R. Bai, and Z. C. Wen, “Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene,” Phys. E 98, 33–38 (2018).
[Crossref]

Phys. Rev. B (8)

K. V. Shanavas, Z. S. Popović, and S. Satpathy, “Theoretical model for Rashba spin-orbit interaction indelectrons,” Phys. Rev. B 90(16), 165108 (2014).
[Crossref]

A. V. Fedorov, A. V. Baranov, and K. Inoue, “Two-photon transitions in systems with semiconductor quantum dots,” Phys. Rev. B 54(12), 8627–8632 (1996).
[Crossref]

Z. S. Popović, J. M. Kurdestany, and S. Satpathy, “Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus,” Phys. Rev. B 92(3), 035135 (2015).
[Crossref]

Y. Liu, T. Low, and P. P. Ruden, “Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities,” Phys. Rev. B 93(16), 165402 (2016).
[Crossref]

A. Chaves, T. Low, P. Avouris, D. Çakır, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 91(15), 155311 (2015).
[Crossref]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and A. H. Castro Neto, “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B 90(7), 075434 (2014).
[Crossref]

S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, and A. Svane, “Effect of van der Waals interactions on the structural and elastic properties of black phosphorus,” Phys. Rev. B 86(3), 035105 (2012).
[Crossref]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Phys. Scr. (1)

M. Yang, H.-J. Duan, and R.-Q. Wang, “The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field,” Phys. Scr. 91(10), 105801 (2016).
[Crossref]

Sci. Rep. (2)

L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, “Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors,” Sci. Rep. 4(1), 5470 (2015).
[Crossref]

X. Y. Zhou, R. Zhang, J. P. Sun, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, and K. Chang, “Landau levels and magneto-transport property of monolayer phosphorene,” Sci. Rep. 5(1), 12295 (2015).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Side view of the monolayer BP crystal lattice. The parameter d is the nominal monolayer BP thickness of 0.53 nm. (b) Top view of the lattice of the monolayer BP.
Fig. 2.
Fig. 2. (a) Band structure of monolayer BP without an electric field. (b) Three dimensional diagram of energy band structure for monolayer BP with an applied electric field. (c) Band structure of monolayer BP along the wave vector kx when ky = 0 at the conduction bottom and the valence top in the presence of an electric field. Here we set energy equals to zero both at the bottom of conduction band and the top of valence band. (d) Rashba splitting energy along kx or ky direction for conduction band and valence band. The electric field is 2 V/Å.
Fig. 3.
Fig. 3. The energy contour of the Rashba splitting for the conduction band in the kx-ky plane. The electric field is 2V/Å, and a0 = 2.22Å is the in plane bond length.
Fig. 4.
Fig. 4. (a) The TPA spectra as a function of the incident light wavelength for different polarization directions with the RSOC. The electric field is 2V/Å. (b) The TPA spectra as a function of the incident light wavelength for different polarization directions without the RSOC. (c) The TPA spectra for different values of the applied electric field in the presence of the RSOC.
Fig. 5.
Fig. 5. The absorption peak value plot as a function of the polarization direction when the wavelength is fixed at 825nm and 1641nm. The electric field is 2V/Å.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H = H 0 + H R = ( h c + H R c h c v h c v h v + H R v )
H 0 = ( h c h c v h c v h v ) = ( E c + λ c k x 2 + η c k y 2 γ k x γ k x E v λ v k x 2 η v k y 2 )
H R = α R ( σ × k ) z ^ = α R ( k y σ x k x σ y )
H R c = α R ( m e 2 m c y 2 k y σ x m e 2 m c x 2 k x σ y ) H R v = α R ( m e 2 m v y 2 k y σ x m e 2 m v x 2 k x σ y )
H = ( E c + λ c k x 2 + η c k y 2 i α R m e 2 ( m c x 2 ) 1 k x + α R m e 2 ( m c y 2 ) 1 k y i α R m e 2 ( m c x 2 ) 1 k x + α R m e 2 ( m c y 2 ) 1 k y E c + λ c k x 2 + η c k y 2 γ k x 0 0 γ k x γ k x 0 0 γ k x E c λ v k x 2 η v k y 2 i α R m e 2 ( m v x 2 ) 1 k x + α R m e 2 ( m v y 2 ) 1 k y i α R m e 2 ( m v x 2 ) 1 k x + α R m e 2 ( m v y 2 ) 1 k y E c λ v k x 2 η v k y 2 )
H int = H A x + H A y
H A x = ( 2 e λ c k x ( c ) 1 i e α R m e 2 ( c m c x 2 ) 1 e γ ( c ) 1 0 i e α R m e 2 ( c m c x 2 ) 1 2 e λ c k x ( c ) 1 0 e γ ( c ) 1 e γ ( c ) 1 0 2 e λ v k x ( c ) 1 i e α R m e 2 ( c m v x 2 ) 1 0 e γ ( c ) 1 i e α R m e 2 ( c m v x 2 ) 1 2 e λ v k x ( c ) 1 ) A cos θ H A y = ( 2 e η c k y ( c ) 1 e α R m e 2 ( c m c y 2 ) 1 0 0 e α R m e 2 ( c m c y 2 ) 1 2 e η c k y ( c ) 1 0 0 0 0 2 e η v k y ( c ) 1 e α R m e 2 ( c m y 2 ) 1 0 0 i e α R m e 2 ( c m v y 2 ) 1 2 e η v k y ( c ) 1 ) A sin θ
W ( 2 ) = 2 π c , v | M c , v | 2 δ ( E v E c 2 ω ) d 2 k ( 2 π ) 2 M c , v = i φ c | H int | φ i φ i | H int | φ v E i E v ω i γ i
β = 4 ω W ( 2 ) I 2 d ( 1 4 π ε 0 ) 2

Metrics