Abstract

Aiming at the requirement of passive terahertz imaging, we report a high-sensitivity terahertz detector based on an antenna-coupled AlGaN/GaN high-electron-mobility transistor (HEMT) at 77 K without using low-noise terahertz amplifier. The measured optical noise-equivalent power and the noise-equivalent temperature difference of the detector were about $0.3 \,\mathrm{pW/\sqrt {Hz}}$ and 370 mK in a 200 ms integration time over a bandwidth of 0.7 − 0.9 THz, respectively. By using this detector, we demonstrated passive terahertz imaging of room-temperature objects with signal-to-noise ratio up to 13 dB. Further improvement in the sensitivity may allow passive terahertz imaging using AlGaN/GaN-HEMT at room temperature.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Thanks to the high penetration of dielectrics such as cloth and plastic, millimeter wave (MMW) and terahertz wave are widely used in security inspection [17]. Compared with active imaging, passive imaging has the advantages of diffuse and natural illumination, most suitable for human vision and image processing [8]. Since passive imaging relies solely on thermal radiation which is especially weak in MMW and terahertz bands, the detectors must have extremely high sensitivity [9]. Benefiting from efficient integration of the high-gain low-noise amplifiers and the high-sensitivity detectors in the MMW region, many MMW passive imaging receivers and systems at room temperature have been developed [1015]. However, due to the limitations of device physics and technology, there is a lack of high-gain and low-noise amplifier in terahertz region above 300 GHz. Therefore, this puts forward higher requirements for the sensitivity of the terahertz detectors, and greatly limits the development of passive terahertz imaging system at room temperature. Superconducting terahertz detectors such as kinetic inductance detectors (KIDs), transition edge sensors (TESs) and hot electron bolometers (HEBs) are the present state of the art in terms of broadband sensitivity to terahertz radiation [1618]. However, the operations are confined by the superconductors’ critical temperatures which are usually below 10 K or lower, require a large & heavy cryogenic system and a high cost of the entire imaging system. Therefore, new device physics, detection mechanisms, and integration techniques for passive terahertz detectors need to be developed to further improve the sensitivity for uncooled terahertz imaging applications. In 1996, Dyakonov and Shur first proposed that field-effect transistors (FETs) can be used for sensitive detection of terahertz wave [19]. In our previous work (Ref. [20]), we demonstrated detection of incoherent terahertz radiation from hot blackbodies by using antenna-coupled AlGaN/GaN high-electron-mobility transistors (HEMTs). The results indicated a feasibility of passive imaging applications by using FET-based detectors while the sensitivity of such detectors needs to be further improved.

Here, we made a step forward for passive imaging based on an AlGaN/GaN-HEMT self-mixing detector with enhanced sensitivity. Compared with our previous work (Ref. [20]), the optical sensitivity was greatly improved by reducing the gate length from 900 nm to 300 nm and the antenna-gate gap from 650 nm to 200 nm. The measured optical noise equivalent power (NEP) and the noise equivalent temperature difference (NETD) were about $0.3~\mathrm {pW/\sqrt {Hz}}$ and 370 mK in a 200 ms integration time over a bandwidth of $0.7-0.9~\mathrm {THz}$ at 77 K, respectively. We demonstrated passive terahertz imaging of room-temperature objects based on field-effect self-mixing detection mechanism at 77 K without the need of low-noise terahertz amplifier.

2. Device information and experimental implementations

The figure of merit for passive radiometry of room temperature objects is the NETD, which corresponds to the minimum resolvable variation in the temperature over a specified post-detection integration time and a specified optical throughput. NETD can be expressed as [21]

$$\mathrm{NETD}=\frac{{{i}_{\mathrm{n}}}}{R_{\mathrm{T}}}=\frac{2\times \textrm{NEP}}{kB\sqrt{2\tau}}, ~$$
where $i_{\mathrm {n}}$ is the output current noise, $R_{\mathrm {T}}=\textrm {d}{{i}}/\textrm {d}{T}$ is the thermal sensitivity representing the change in output current by the change in target temperature. Assuming the detector has a constant noise-equivalent power NEP in the whole bandwidth $B$, NETD can be expressed in terms of NEP as shown in the right part of Eq. (1) where $k$ is the Boltzmann constant and $\tau$ is the integration time. Due to the nature of our antenna-coupled detector and hence the NEP will be calibrated by using a coherent terahertz wave with its polarization in parallel to the antenna, a factor of 2 is introduced in front of NEP so that Eq. (1) is applicable for the case when the terahertz wave is non polarized, i.e., polarization is uniformly distributed in all directions. Detection and identification of concealed threat objects under clothing in uncontrolled indoor environment require a NETD of 1 K per pixel per frame or better [22].

As has been confirmed in our previous work [23,24], the short-circuit photocurrent of field-effect self-mixing detectors can be written as

$${i} = {P_0Z_0}{\bar z}\frac{{{\mathrm{d}}G}}{{{\mathrm{d}}{V_{\mathrm{g}}}}}\int_0^L{{{\dot \xi }_x}} {\dot \xi _z}\cos \phi~\mathrm{d}x, ~$$
where $P_0$ is the incident terahertz energy flux, $Z_0$ is the free-space impedance, $\bar {z}$ is the effective distance between the gate and the channel, $G$ is the conductance of the gated channel, $L$ is the length of the channel, $V_{\mathrm {g}}$ is the applied DC gate voltage. $\dot {\xi _x}$, $\dot {\xi _z}$, and $\phi$ are the horizontal and perpendicular terahertz field enhancement factors, and the phase difference between the induced fields, respectively. ${{\dot \xi }_x}{{\dot \xi }_z}\cos \phi$ represents the self-mixing factor and can be greatly enhanced by the terahertz antenna. Factor ${\mathrm {d}}G/{\mathrm {d}}{{V}_{\mathrm {g}}}$ is defined as the field-effect factor which is determined by the quantum well structure and the Schottky gate, and can be effectively tuned by the gate voltage. Simultaneous enhancement of the field-effect factor and the self-mixing factor improves the detection sensitivity. It has to be noted that Eq. 2 is derived in the quasi-static limit, i.e., electron scattering and plasma damping are ignored, no frequency-dependent self-mixing in the channel is considered.

The detector was fabricated based on AlGaN/GaN two-dimensional electron gas (2DEG) which was grown by metal organic chemical vapor deposition (MOCVD) on a 2 inch sapphire substrate as have been reported previously Ref [20]. The electron mobility and the density at 298 K were $\mu = 1880~\mathrm {cm^2/Vs}$ and $n_s=0.86\times 10^{13}~\mathrm {cm^{-2}}$, respectively. At 77 K, the electron mobility and the density were increased to $\mu = 1.54\times 10^{4}~\mathrm {cm^2/Vs}$ and $n_s=1.10\times 10^{13}~\mathrm {cm^{-2}}$, respectively. The device fabrication technique was similar to those reported in Ref [23]. The scanning-electron micrograph of the detector and the measurement setup are shown in Fig. 1(a). The terahertz antennas were designed for 850 GHz bands, as following, we named the detector as DET-850GHz. The central active region including the gate and the field-effect channel are shown in Fig. 1(b). Compared with our previous work (Ref. [20]) with a gate length of 900 nm and an antenna-gate gap of 650 nm, the gate length and the antenna-gate gap were decreased to 300 nm and 200 nm, respectively, by using electron beam lithography to further improve the sensitivity. The channel width remained at $5~\mathrm {\mu m}$. As shown in Fig. 1(c, d), to improve the coupling efficiency of the terahertz wave, the total thickness of the detector chip including substrate was reduced to $200~\mathrm {\mu m}$, and the detector was assembled in the center of the planar surface of a high-resistivity silicon hyperhemispherical lens with a diameter of 6 mm and a height of 3.87 mm. To further improve detection sensitivity, the detector module was assembled into a liquid nitrogen dewar with a temperature of 77 K. As the detector is insensitive to visible light, a 5 mm thick Polymethylpentene (TPX) disk was used as the window. For characterization and calibration, a coherent terahertz source based on a Schottky multiplier chain ($0.1-1.1$ THz) (VDI AMC 481) and a broadband incoherent terahertz wave from a temperature controllable blackbody were used in the same setup as described in Ref. [20]. A caliberated Golay cell (TYDEX GC-1P) was used to measure the terahertz power incident on the front side of the silicon lens. The output power of the coherent source was attenuated to be below $1~\mathrm {\mu W}$ so that both the detector under test and the Golay cell were in linear response region.

 

Fig. 1. (a) Scanning-electron micrograph of the detector with schematic measurement circuitry. (b) Zoom-in view of the central active region including the gate and the field-effect channel. (c, d) Backside and front-side views of the silicon hyperhemispherical lens with a detector chip assembled on the planar surface in a liquid nitrogen dewar with a TPX window.

Download Full Size | PPT Slide | PDF

3. Results and discussions

Firstly, we characterize the electrical characteristics of the field-effect channel and the terahertz photoelectric characteristics of the detector. The measured conductance $G$ and the field-effect factor ${\mathrm {d}}G/{\mathrm {d}}{{V}_{\mathrm {g}}}$ at 298 K and 77 K as a function of the gate voltage are shown in Figs. 2(a) and 2(b), respectively. The photocurrent tuned by the gate voltage were measured at 298 K and 77 K with an illumination power of 854 nW at 939.6 GHz from the Schottky multiplier chain as shown in Figs. 2(c) and 2(d), respectively. The maximum photocurrent at 298 K was about $173~\mathrm {nA}$ and was increased by a factor of 28.4 to about $4.91~\mathrm {\mu A}$ at 77 K. The solid curves based on the extracted field-effect factor as a function of the gate voltage agree well with the experimental data. In the fitting, except a constant factor independent on the gate voltage was used to fit the combined self-mixing factor and the efficiency, the series resistance in the source and drain leads was the other fitting parameter which is about $6.5~\mathrm {k\Omega }$ at 298 K and $1.6~\mathrm {k\Omega }$ at 77 K in total. The sensitivity of DET-850GHz was significantly improved compared with our previously reported detectors (Ref. [20]) which offered NEP in a range of $30-50~\mathrm {pW/\sqrt {Hz}}$ at room temperature and showed a signal-to-noise ratio (SNR) about 10 dB in a detection of the terahertz radiation from a blackbody with temperature about 1000 K. As shown in Figs. 2(e) and 2(f), terahertz radiation from a blackbody at 773 K was sensitively detected by DET-850GHz at 298 K and 77 K, respectively. The maximum photocurrent at 298 K was about $126~\mathrm {pA}$, and it was increased by a factor of 25.2 to about $3.18~\mathrm {nA}$ at 77 K. The solid curves representing the field-effect factor agreed well with the experiment data.

 

Fig. 2. Measured conductance and field-effect factor at (a) 298 K and (b) 77 K as a function of the gate voltage. Terahertz photocurrent at (c) 298 K and (d) 77 K as a function of the gate voltage under continuous-wave coherent irradiation power of 854 nW at 939.6 GHz. Terahertz photocurrent at (e) 298 K and (f) 77 K as a function of the gate voltage induced by incoherent broadband radiation from a blackbody at 773 K.

Download Full Size | PPT Slide | PDF

The responsivity and NEP tuned by the gate voltage were calibrated by using the coherent terahertz source at 939.6 GHz and are shown in Fig. 3. The optical responsivity at 298 K and 77 K as a function of the gate voltage are shown in Fig. 3(a), and the maximum current responsivity was about 203 mA/W and 5.7 A/W at $V_{\mathrm {g}}=-3.76~\mathrm {V}$ and $V_{\mathrm {g}}=-3.58~\mathrm {V}$, respectively. For clarity, the current responsivity at 298 K was multiplied by a factor of 28. The solid curves are fits based on the self-mixing model and agree well with the experimental data. The corresponding optical NEP at 298 K and 77 K as a function of the gate voltage are shown in Fig. 3(b), and the minimum optical NEP was as low as $5.2~\mathrm {pW/\sqrt {Hz}}$ and $0.3~\mathrm {pW/\sqrt {Hz}}$ at $V_{\mathrm {g}}=-3.86~\mathrm {V}$ and $V_{\mathrm {g}}=-3.70~\mathrm {V}$, respectively. The optical NEP at 939.6 GHz was improved by a factor of 16 as the temperature decreased from 298 K to 77 K. An increase in NEP around and a peak at $V_{\mathrm {g}}=-1.18~\mathrm {V}$ were observed since a sign flip in the photocurrent occured when the gate voltage went across the peak position. The origin of this weak but obviously negative photocurrent with $V_{\mathrm {g}}>-1.18~V$ requires further investigation.

 

Fig. 3. (a) Measured optical current responsivity and (b) NEP at 298 K and 77 K as a function of the gate voltage at 939.6 GHz. The current responsivity at 298 K is multiplied by a factor of 28 in (a). The solid fitting curves in (a) were calculated based on the field-effect factors.

Download Full Size | PPT Slide | PDF

To obtain and calibrate the response spectrum, a frequency tunable continuous-wave coherent terahertz radiation was collimated and focused with a beam diameter less than 6 mm into a Golay-cell detector and the total power was measured at different frequencies. As shown in Fig. 4, the optical current responsivity and NEP of DET-850GHz as a function of terahertz frequency were calibrated and compared at 298 K and 77 K. As shown in Fig. 4(a), a current responsivity of 0.2 A/W at $V_{\mathrm {g}}=-3.86~\mathrm {V}$ and 298 K was achieved in a frequency range from 730 GHz to 930 GHz corresponding to a bandwidth of 200 GHz. At 77 K, the optical responsivity at $V_{\mathrm {g}}=-3.70~\mathrm {V}$ was increased by a factor of 20 to about 4.0 A/W in the same frequency range. The responsivity enhancement factor by lowering the temperature was as large as 40 at 1060 GHz.

 

Fig. 4. (a) Measured current responsivity and (b) NEP of DET-850GHz as a function of the terahertz frequency at 298 K and 77 K. The ratio of the responsivity and the NEP at 77K to that at 298K is plotted to the corresponding right axis.

Download Full Size | PPT Slide | PDF

The increased optical responsivity is attributed to the enhanced electron mobility which has also direct impacts on the field-effect factor and the self-mixing efficiency. Since our model neglects the electron scattering or the plasma damping, a prefactor related to the damping is omitted in Eq. (1). Hence, the enhancement in the field-effect factor by cooling the detector does not reflect the corresponding ratio of responsivities: the measured enhancement factor of the optical responsivity is larger than the enhancement factor of the field-effect factors. By cooling the detector from 298 K to 77 K, the electron mobility at null gate voltage was significantly increased from $\mu = 1880~\mathrm {cm^2/Vs}$ to $\mu = 1.54\times 10^{4}~\mathrm {cm^2/Vs}$ while the electron density was slightly increased from $0.86\times 10^{13}~\mathrm {cm^{-2}}$ to $1.10\times 10^{13}~\mathrm {cm^{-2}}$. The electron’s relaxation time $(\tau _{\mathrm {e}}=\mu m^*/e)$ was about $0.22~\mathrm {ps}$ at 298 K and $1.75~\mathrm {ps}$ at 77 K, corresponding to a quality factor ($\omega \tau _{\mathrm {e}}$) of 1.5 and 12 at 1060 GHz, respectively. This indicates that the efficiency of self-mixing was low at 77 K and was even worse at 298 K. The measured/extracted field-effect factors of $0.35~\mathrm {mS/V}$ at 298 K and $1.33~\mathrm {mS/V}$ at 77 K yielded a ratio of the field-effect factors about 3.8 which was much less than the ratio of the responsivities of 40.

As shown in Fig. 4(b), NEP at 298 K was about $4.5~\mathrm {pW/\sqrt {Hz}}$ at $V_{\mathrm {g}}=-3.86~\mathrm {V}$ in a frequency range from 730 GHz to 930 GHz corresponding to a bandwidth of 200 GHz. At 77 K, the NEP at $V_{\mathrm {g}}=-3.70~\mathrm {V}$ was reduced by a factor of 15 to about $0.3~\mathrm {pW/\sqrt {Hz}}$ in the same frequency range. Compared with our previous detectors with a gate length of 900 nm and an antenna-gate gap of 650 nm [20], the optical NEP of DET-850GHz was reduced by 7 times at 298 K and 4 times at 77 K. It is also seen that at higher frequencies the enhancement factor became larger, e.g., a factor of 30 at 1060 GHz. This infers that enhancement in the efficiency of self-mixing is more pronounced at higher frequencies within the bandwidth of the antenna. The optical sensitivity of DET-850GHz at 77 K has exceeded that of SBD detectors at room temperature and that of a commercialized silicon bolometer at 4.2 K in the same frequency range.

With NEP below $1~\mathrm {pW/\sqrt {Hz}}$, the detector at 77 K was able to sense blackbody radiation. Hence, the NETD was measured directly from the noise in the measured photocurrent and the change of photocurrent due to a known temperature difference of the blackbody, according to the left part of Eq. (1). As shown in Fig. 5, we got the terahertz photocurrent as a function of the blackbody temperature. As expected, the photocurrent was proportional to the blackbody temperature since terahertz wave lies within the Rayleigh-Jeans region of the spectrum [25]. By fitting the experiment data, the terahertz photocurrent can be expressed as $i=5.1\times 10^{-12}(T-298\mathrm {K})~\rm (A)$, which yielded a thermal sensitivity of $R_{\mathrm {T}}=5.1~\mathrm {pA/K}$. The measured output current noise of the detector was $i_{\mathrm {n}}=1.9~\mathrm {pA}$ in an integration time of $\tau =200~\mathrm {ms}$. Substituting the thermal sensitivity and the current noise into Eq. (1), we got the NETD of 370 mK at 77 K. Since the antenna is of dipole style, the detector has a maximum response to terahertz waves with the electric field polarized along the dipole direction, as shown in the inset of Fig. 5, the detector only receives half of the terahertz power from the blackbody. A rough estimation of NETD based on the right part of Eq. (1) yielded 344 mK at 77 K with $\mathrm {NEP}=0.3~\mathrm {pW/\sqrt {Hz}}$, $B=200~\mathrm {GHz}$ obtained from Fig. 4(b) and $\tau =200~\mathrm {ms}$. This estimated NETD was comparable with the measured value of 370 mK. The difference came from many aspects such as the error in NEP calibration, the under estimated bandwidth and the varying NEP at different frequencies.

 

Fig. 5. Terahertz photocurrent as a function of the blackbody temperature. The inset shows the polarization characteristics of DET-850GHz.

Download Full Size | PPT Slide | PDF

The NETD of the detector as low as 370 mK in a 200 ms integration time allowed us to perform high quality passive terahertz imaging. Due to terahertz radiation of objects with different materials and shapes has a distinct difference, we built a setup for the raster-scan passive imaging as shown in Fig. 6. The objects being imaged were placed in front of a piece of blackbody foam at room temperature, and the raster scan was realized by placing the objects on a two-axis step-motorized stage. The terahertz radiation was collected and focused by a pair off-axis parabolic mirrors (OAPs). The terahertz wave penetrating through a light aperture with a diameter of 0.5 mm was collected by another pair of OAP mirrors and focused onto a high-resistivity silicon hyperhemispherical lens with DET-850GHz mounted on its backside. The detector with lens was cooled at 77 K. To minimize the readout noise, the terahertz wave was modulated by a mechanical chopper and the detector signal was amplified by a current preamplifier and then read out by a lock-in amplifier with an integration time of 200 ms.

 

Fig. 6. Setup for the raster-scan passive imaging.

Download Full Size | PPT Slide | PDF

A toy car and a surgical knife were used for raster-scanned passive imaging. In the scans, the total number of pixels was $100 \times 50$ and $160 \times 30$ for the toy car and the surgical knife, respectively. The step size was $1~\mathrm {mm} \times 1~\mathrm {mm}$ and the total scan time was about 20 minutes for both scans. As shown in Fig. 7, the raster-scanned passive images revealed clearly the details of the corresponding objects which reflected the surface temperature and/or the emissivity. The SNR was up to 13 dB.

 

Fig. 7. Passive imaging of (a) a toy car and (b) a surgical knife by using DET-850GHz at 77 K.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we introduced a passive terahertz imaging detector by using an antenna-coupled AlGaN/GaN-HEMT with a gate length of 300 nm and an antenna-gate gap of 200 nm. The terahertz response characteristics were well described by the self-mixing model examined by using both coherent and incoherent terahertz sources. The measured optical NEP was about $4.5~\mathrm {pW/\sqrt {Hz}}$ at 298 K and $0.3~\mathrm {pW/\sqrt {Hz}}$ at 77 K in the band of $0.7-0.9~\mathrm {THz}$. Compared with our previous detectors with a gate length of 900 nm and an antenna-gate gap of 650 nm [20], the NEP was reduced by 7 times at 298 K and 4 times at 77 K, respectively. The NETD of the detector at 77 K directly measured by using incoherent terahertz radiation at different blackbody temperatures was about 370 mK in a 200 ms integration time. Passive terahertz imaging of room-temperature objects with SNR up to 13 dB was realized by cooling the detector at 77 K without using low-noise terahertz amplifier. A further improvement in the sensitivity may allow passive terahertz imaging using AlGaN/GaN-HEMT at room temperature.

Funding

National Natural Science Foundation of China (61771466, 61775231, 61975227); Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017372); Six Talent Peaks Project in Jiangsu Province (XXRJ-079).

Disclosures

The authors declare no conflicts of interest.

References

1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]  

2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716 (1995). [CrossRef]  

3. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003). [CrossRef]  

4. Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009). [CrossRef]  

5. R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007). [CrossRef]  

6. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004). [CrossRef]  

7. M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425 (2016). [CrossRef]  

8. E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106 (2010). [CrossRef]  

9. J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008). [CrossRef]  

10. S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016). [CrossRef]  

11. C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013). [CrossRef]  

12. D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015). [CrossRef]  

13. B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012). [CrossRef]  

14. L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011). [CrossRef]  

15. L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011). [CrossRef]  

16. S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016). [CrossRef]  

17. E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015). [CrossRef]  

18. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007). [CrossRef]  

19. M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996). [CrossRef]  

20. H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017). [CrossRef]  

21. J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010). [CrossRef]  

22. A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010). [CrossRef]  

23. J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012). [CrossRef]  

24. J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012). [CrossRef]  

25. A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716 (1995).
    [Crossref]
  3. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
    [Crossref]
  4. Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009).
    [Crossref]
  5. R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
    [Crossref]
  6. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004).
    [Crossref]
  7. M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425 (2016).
    [Crossref]
  8. E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106 (2010).
    [Crossref]
  9. J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
    [Crossref]
  10. S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
    [Crossref]
  11. C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
    [Crossref]
  12. D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
    [Crossref]
  13. B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
    [Crossref]
  14. L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
    [Crossref]
  15. L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
    [Crossref]
  16. S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
    [Crossref]
  17. E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
    [Crossref]
  18. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
    [Crossref]
  19. M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
    [Crossref]
  20. H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
    [Crossref]
  21. J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
    [Crossref]
  22. A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
    [Crossref]
  23. J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
    [Crossref]
  24. J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
    [Crossref]
  25. A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
    [Crossref]

2017 (1)

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

2016 (3)

M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425 (2016).
[Crossref]

S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
[Crossref]

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

2015 (2)

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
[Crossref]

2013 (1)

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

2012 (3)

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

2011 (2)

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

2010 (3)

E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106 (2010).
[Crossref]

J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
[Crossref]

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

2009 (1)

Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009).
[Crossref]

2008 (1)

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

2007 (3)

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

2006 (1)

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

2004 (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004).
[Crossref]

2003 (1)

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

1996 (1)

M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
[Crossref]

1995 (1)

Ade, P. A. R.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Ala-Laurinaho, J.

Anders, S.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Anderton, R. N.

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

Appleby, R.

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004).
[Crossref]

Ardalan, S.

S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
[Crossref]

Atesal, Y. A.

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

Barry, P.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Bideaud, A.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Born, D.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Brien, T.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Cai, Y.

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Cetinoneri, B.

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

Chang, D. C.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Chen, Z. M.

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

Chris, Mann

Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009).
[Crossref]

Dietlein, C.

Dodd, C.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Doyle, S.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Dunscombe, C.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Dyakonov, M. I.

M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
[Crossref]

Fung, A.

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

Garcia, P.

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

Gilreath, L.

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

Grainger, W.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Gronberg, L.

Gronholm, M.

Grossman, E.

Grossman, E. N.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Hargrave, P.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Heinz, E.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Helistö, P.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Heydari, P.

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

House, J.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Hu, B. B.

Hughes, B.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Imayama, K.

Jain, V.

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

Kato, M.

Kawase, K.

Ko, C. L.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Kuo, M. C.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Lappalainen, P.

Leivo, M.

Lewis, R. A.

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Li, C. H.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Li, X.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Li, X. X.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Luo, M. C.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Luukanen, A.

E. Grossman, C. Dietlein, J. Ala-Laurinaho, M. Leivo, L. Gronberg, M. Gronholm, P. Lappalainen, A. Rautiainen, A. Tamminen, and A. Luukanen, “Passive terahertz camera for standoff security screening,” Appl. Opt. 49(19), E106 (2010).
[Crossref]

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Lynch, J. J.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Mauskopf, P.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

May, J. W.

J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
[Crossref]

May, T.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Meyer, H. G.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Miller, A. J.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Moghadami, S.

S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
[Crossref]

Moseley, P.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Moyer, H. P.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Murate, K.

NanKuo, C.

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

Nuss, M. C.

Papageorgio, A.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Pascale, E.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Penttilä, J. S.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Qin, H.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

Rautiainen, A.

Rebeiz, G. M.

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
[Crossref]

Reynaert, P.

D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
[Crossref]

Rowe, S.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Royter, Y.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Schäffel, C.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Schaffner, J. H.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Schulman, J. N.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Seppä, H.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Shur, M. S.

M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
[Crossref]

Sipola, H.

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

Sokolich, M.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Spencer, L.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Sudiwala, R.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Sun, J. D.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Sun, Y. F.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

Tamminen, A.

Tomkins, A.

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tripathi, S. R.

Tucker, C.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Voinigescu, S. P.

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

Walker, I.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Wallace, H. B.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

Wang, C. C.

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

Wood, K.

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Wu, D. M.

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Yoon, Y. J.

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

Yu, Y.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

Zakosarenko, V.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Zhang, B. S.

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Zhang, X. Y.

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

Zhang, Z. P.

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

Zhao, D. X.

D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
[Crossref]

Zhou, L.

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

Zieger, G.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Qin, X. Li, J. D. Sun, Z. P. Zhang, Y. F. Sun, Y. Yu, X. X. Li, and M. C. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110(17), 171109 (2017).
[Crossref]

J. D. Sun, Y. F. Sun, D. M. Wu, Y. Cai, H. Qin, and B. S. Zhang, “High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor,” Appl. Phys. Lett. 100(1), 013506 (2012).
[Crossref]

J. D. Sun, H. Qin, R. A. Lewis, Y. F. Sun, X. Y. Zhang, Y. Cai, D. M. Wu, and B. S. Zhang, “Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector,” Appl. Phys. Lett. 100(17), 173513 (2012).
[Crossref]

IEEE J. Solid-State Circuits (3)

A. Tomkins, P. Garcia, and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010).
[Crossref]

L. Zhou, C. C. Wang, Z. M. Chen, and P. Heydari, “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits 46(2), 378–391 (2011).
[Crossref]

L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver,” IEEE J. Solid-State Circuits 46(10), 2240–2252 (2011).
[Crossref]

IEEE Microw. Mag. (1)

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4(3), 39–50 (2003).
[Crossref]

IEEE Microw. Wireless Compon. Lett. (2)

S. Moghadami and S. Ardalan, “A 205 GHz amplifier with 10.5 dB gain and −1.6 dBm saturated power using 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett. 26(3), 207–209 (2016).
[Crossref]

A. Luukanen, E. N. Grossman, A. J. Miller, P. Helistö, J. S. Penttilä, H. Sipola, and H. Seppä, “An ultra-low noise superconducting antenna-coupled microbolometer with a room-temperature read-out,” IEEE Microw. Wireless Compon. Lett. 16(8), 464–466 (2006).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55(11), 2944–2956 (2007).
[Crossref]

IEEE Trans. Electron Devices (1)

M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Devices 43(3), 380–387 (1996).
[Crossref]

IEEE Trans. Microwave Theory Tech. (5)

J. W. May and G. M. Rebeiz, “Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging,” IEEE Trans. Microwave Theory Tech. 58(5), 1420–1430 (2010).
[Crossref]

C. L. Ko, C. H. Li, C. NanKuo, M. C. Kuo, and D. C. Chang, “A 210-GHz amplifier in 40-nm digital CMOS technology,” IEEE Trans. Microwave Theory Tech. 61(6), 2438–2446 (2013).
[Crossref]

D. X. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microwave Theory Tech. 63(2), 683–690 (2015).
[Crossref]

B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, “Band amplifiers with 6 dB noise figure and milliwatt-level 170–200 GHz doublers in 45-nm CMOS,” IEEE Trans. Microwave Theory Tech. 60(3), 692–701 (2012).
[Crossref]

J. J. Lynch, H. P. Moyer, J. H. Schaffner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, “Passive millimeter-wave imaging module with preamplified zero-bias detection,” IEEE Trans. Microwave Theory Tech. 56(7), 1592–1600 (2008).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “passive 350 GHz video imaging systems for security applications,” J. Infrared, Millimeter, Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phil. Trans. R. Soc. A (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362(1815), 379–393 (2004).
[Crossref]

Proc. IEEE (1)

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

Proc. SPIE (1)

Mann Chris, “First demonstration of a vehicle mounted 250 GHz real time passive imager,” Proc. SPIE 7311, 73110Q1–73110Q7 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P. Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, “A passive terahertz video camera based on lumped element kinetic inductance detectors,” Rev. Sci. Instrum. 87(3), 033105 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Scanning-electron micrograph of the detector with schematic measurement circuitry. (b) Zoom-in view of the central active region including the gate and the field-effect channel. (c, d) Backside and front-side views of the silicon hyperhemispherical lens with a detector chip assembled on the planar surface in a liquid nitrogen dewar with a TPX window.
Fig. 2.
Fig. 2. Measured conductance and field-effect factor at (a) 298 K and (b) 77 K as a function of the gate voltage. Terahertz photocurrent at (c) 298 K and (d) 77 K as a function of the gate voltage under continuous-wave coherent irradiation power of 854 nW at 939.6 GHz. Terahertz photocurrent at (e) 298 K and (f) 77 K as a function of the gate voltage induced by incoherent broadband radiation from a blackbody at 773 K.
Fig. 3.
Fig. 3. (a) Measured optical current responsivity and (b) NEP at 298 K and 77 K as a function of the gate voltage at 939.6 GHz. The current responsivity at 298 K is multiplied by a factor of 28 in (a). The solid fitting curves in (a) were calculated based on the field-effect factors.
Fig. 4.
Fig. 4. (a) Measured current responsivity and (b) NEP of DET-850GHz as a function of the terahertz frequency at 298 K and 77 K. The ratio of the responsivity and the NEP at 77K to that at 298K is plotted to the corresponding right axis.
Fig. 5.
Fig. 5. Terahertz photocurrent as a function of the blackbody temperature. The inset shows the polarization characteristics of DET-850GHz.
Fig. 6.
Fig. 6. Setup for the raster-scan passive imaging.
Fig. 7.
Fig. 7. Passive imaging of (a) a toy car and (b) a surgical knife by using DET-850GHz at 77 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N E T D = i n R T = 2 × NEP k B 2 τ ,  
i = P 0 Z 0 z ¯ d G d V g 0 L ξ ˙ x ξ ˙ z cos ϕ   d x ,  

Metrics