Abstract

A tunable multifunctional modulator of the stacked graphene-based hyperbolic metamaterial (HM) cells is proposed. The dielectric constant and group index of HM are theoretically investigated. The calculated results show that, for the cell structure, a transmission window in the reflection zone (TWRZ) can be obtained at the normal incidence, but all reflections are converted to the transmission when the incident angle is near 82°. Concurrently, a single frequency absorption in the transmission zone (SFATZ) is realized, which can be adjusted by the chemical potential of graphene. For the whole structure composed of cell structures with different chemical potentials, the ultra-wideband absorption and transmission window in the absorption zone (TWAZ) can be achieved, which can work in different frequency bands if the given structural parameters can be tailored. Those computed results can apply for switchable frequency-dependent and angle-dependent reflection-transmission modulations, single frequency and ultra-wideband absorbers, and a logic switch based on the TWAZ.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Graphene [13], like a honeycomb lattice, is a two-dimensional carbon nanomaterial with a single-layer carbon atom thickness. The graphene was first separated from graphite in 2004 [4], whose excellent electrical and optical properties applied to light modulators [5,6], photodetectors [7,8], and saturated absorbent [9,10] have attracted the interest of researchers.

Unfortunately, the single-pass absorptivity of the monolayer undoped graphene is about 2.3% in the wider band, which is related to the fine structure constant [11,12]. Therefore, the enhanced graphene absorption [1315] has become a critical research topic. The absorption enhancement of monolayer graphene in the near-infrared was demonstrated numerically by Chen et al. [16]. Their work indicates that the absorption of monolayer graphene can be modulated substantially by bias voltage to make the interband transition of monolayer graphene close to magnetic dipole resonance, and the electrical switching effect can be realized. Different from the single-layer graphene, graphene films with large area possess unusual low-energy electronic structure, whose optical properties vary with their thickness. The band gap of graphene can be adjusted from 0 to 0.25 eV when a voltage is applied to the field-effect transistor of dual gate double-layer graphene at room temperature [17]. Lin et al. [18] experimentally proved a 12.5 cm2, 90-nm-thick graphene metamaterial with an unpolarized absorption rate of about 85% and a spectral range of 300–2500 nm. These results have opened up a new way for the application of photonic devices with large-area strong absorption based on two-dimensional materials.

With the development of nanofabrication technology [19,20], optical metamaterials [2125] provide more possibilities for controlling the transmission of electromagnetic waves. Hyperbolic metamaterials (HMs) [2628] highly anisotropic artificial composite electromagnetic materials can be obtained by mixing and superimposing metal [29,30] and graphene [31,32] with a dielectric substrate, which shows a hyperbolic dispersion relation for specific electromagnetic waves. In the terahertz (THz) and near-infrared frequency regions, the unique near-field manipulation characteristics of electromagnetic wave for HMs enable a great application prospect in the image of sub-wavelength [33,34], improvement of photon density [3537], and enhancement of spontaneous radiation [38,39]. A broadband THz absorption material composed of a graphene-dielectric multilayer frustum pyramids array was designed by He et al. [40]. The multilayered graphene can be regarded as a homogeneous metamaterial with hyperbolic dispersion and anisotropic dielectric constant. They explained that the absorption of electromagnetic waves at different frequencies is due to the compression effect of slow waves [41,42] in the tapered waveguide, and the surface plasmonic waves are excited. Kieliszczyk et al. [43] proposed the possibility of forming the reflectivity characteristics of tunable HMs. The existence of spectral and spatial functions of narrow-band filters and edge dynamically controlled in the spectral range of 3–5 µm is proved.

In recent years, the use of nonlinear materials (BBO [44,45], LiNO3 [46,47]), and physical effects (Kerr [48,49], Pockels [50,51]) for switch and modulation [5254] has become a new research hotspot. Du et al. [55] focused on the nonlinear saturation absorption of ReSe2. The few-layer ReSe2 was prepared by mechanical exfoliation method, and its nonlinear optical response with ambient stability and all-optical adjustable potential were verified at 1.55 µm. A switchable reflection modulator based on HMs with graphene was presented by Pianelli et al. [56]. Theoretical analysis showed that adjusting the chemical potential of graphene from 0.2 eV to 0.8 eV resulted in a blue shift of reflectivity up to 2.3 µm. In the transverse electric (TE) / transverse magnetic (TM) modes, there is a blue/red-shift and reflectivity switch at different incident angles. The proposed reversible tunable graphene-based HMs can be used in the next generation of nonlinear switchable devices in the mid-infrared range. Employing an all-fiber Michelson interferometer, Wang et al. [57] constructed the few-layer bismuthene structure and verified its all-optical phase and intensity modulation with the excellent photothermal effect firstly. There are many interesting reports on the phase, high-order harmonic, and transmission modulation. However, the coexistence of absorption and transmission has always been a bottleneck that caused by the properties of materials. In this paper, a novel method to realize controllable multi-function absorption-transmission modulation is proposed.

Here, the characteristics of the stacked HMs with graphene cells are studied and a fresh multifunctional modulator [58] is demonstrated. The frequency-dependent and angle-dependent modulations and SFATZ can be realized in the unit cell structure, and the ultra-wideband absorption and TWAZ can be achieved in the whole stacked structure. Besides, the effects of the incident angle on the reflection-transmission modulation and the chemical potential on the SFATZ and TWAZ are also discussed systematically. The proposed multifunctional modulator can be used as a THz waveguide with reflection-transmission and absorption-transmission switch, optical shield.

2. Theoretical model and method

The cell structure of the proposed HMs with graphene is schematically displayed in Fig. 1. The setting of TM wave and coordinate axis can be found in Fig. 1. θ is the incident angle and the background medium is air. A and B represent layers with refractive indices of nA = $\sqrt {\textrm{51}} $ and nB = 1, whose thicknesses are written as dA = 2 µm and dB = 8 µm, respectively. HG represents HM consisting of the common dielectric C (ɛC = 11.1) and graphene, and their thicknesses are written as dC = 60 nm, dG = 1 nm. The proposed structure is arranged in the order of ‘A-HG-B’, and it's period constant is N = 3. The thicknesses of dielectrics A, B, HG are optimal values.

 figure: Fig. 1.

Fig. 1. The schematic cell structure of the proposed HMs with graphene.

Download Full Size | PPT Slide | PDF

For the cell structure of the proposed HMs with graphene, the reflectance and transmittance can be calculated by the transfer matrix method [59]. The whole derivation process is as follows. Graphene is a frequency-dependent medium, whose surface conductivity σ can be expressed as the sum of the interband σinter and the intraband σintra [56]:

$$\begin{aligned} \sigma &= \frac{{i{e^2}{k_B}T}}{{\pi {\hbar ^2}(\omega + i/\tau )}}(\frac{\mu }{{{k_B}T}} + \textrm{2}\ln (\textrm{exp} ( - \frac{\mu }{{{k_B}T}}) + 1))\\ &\quad + \frac{{i{e^2}}}{{4\pi {\hbar ^2}}}\ln \left|{\frac{{2\mu - \hbar (\omega + i/\tau )}}{{2\mu + \hbar (\omega + i/\tau )}}} \right|. \end{aligned}$$
where e denotes the electron charge, kB represents the Boltzmann constant, T describes the temperature that we set the value as T = 300 K, $\hbar $ indicates the reduced Plank constant, ω refers to the angular frequency of the incident electromagnetic wave, and τ signifies the phenomenological scattering rate. µ is the chemical potential, which is a correlation with the applied voltage Vg and can be written as [56]:
$$|\mu |= \hbar {v_F}\sqrt {\pi |{{a_0}({V_g} - {V_D})} |} .$$
where vF corresponds to the Fermi velocity of graphene and its value is set as 106 m/s. a0 is an empirical constant and a0 = 9·1016 m−1V−1. VD belongs to the offset bias voltage and it is assumed to be 0 V. Assuming that the electronic band structure of the graphene sheet is not affected by adjacent materials, the effective dielectric constant of the graphene can be expressed as [56]:
$${\varepsilon _G} = \textrm{1} + \frac{{i\sigma }}{{\omega {\varepsilon _0}{d_G}}}.$$
where ɛ0 and dG represent the dielectric constant of the vacuum and the thickness of the graphene, respectively.

Graphene-based HMs are anisotropic mediums and possess uniaxial dielectric tensor components, which can be approximately written as [56]:

$$\varepsilon = \left[ {\begin{array}{{ccc}} {{\varepsilon_{xx}}}&0&0\\ 0&{{\varepsilon_{yy}}}&0\\ 0&0&{{\varepsilon_{zz}}} \end{array}} \right].$$
$${\varepsilon _{xx}} = {\varepsilon _{yy}} = {\varepsilon _{||}} = \frac{{{\varepsilon _G}{d_G} + {\varepsilon _C}{d_C}}}{{{d_G} + {d_C}}}.$$
$${\varepsilon _{zz}} = {\varepsilon _ \bot } = \frac{{{\varepsilon _G}{\varepsilon _C}({d_G} + {d_C})}}{{{\varepsilon _G}{d_C} + {\varepsilon _C}{d_G}}}.$$
where ${\varepsilon _{\textrm{|}|}}$ and ${\varepsilon _ \bot }$ denote the parallel part and vertical part of the relative permittivity, respectively. Group indices can be computed from Snell’s law at the incident angle θ and can be expressed as [60]:
$${n_g} = \sqrt {\frac{{\varepsilon _ \bot ^2}}{{{\varepsilon _{||}}}} - \frac{{{\varepsilon _ \bot }}}{{{\varepsilon _{||}}}}(1 - \frac{{{\varepsilon _{||}}}}{{{\varepsilon _ \bot }}})\textrm{si}{\textrm{n}^2}\theta } .$$

The transfer matrix can be written as [59]:

$${{\boldsymbol {M}}_{j = \textrm{A},\textrm{ HG, B}}} = \left[ {\begin{array}{{cc}} {\textrm{cos}{\delta_j}}&{ - \frac{i}{{{\eta_j}}}\textrm{sin}{\delta_j}}\\ { - i{\eta_j}\textrm{sin}{\delta_j}}&{\textrm{cos}{\delta_j}} \end{array}} \right].$$

Where ηj = njcosθj, δj = ωnjdjcosθj/c, nj indicates the refractive index of the layer j. di and θi signify the thickness and the incident angle of the layer j, respectively.

The transmission matrix of the designed HM structure based on graphene can be written as [59]:

$${\boldsymbol {M}}\textrm{ } = \prod\limits_{j = 1}^n {{{\boldsymbol {M}}_j}} = \left( {\begin{array}{{cc}} {{M_{11}}}&{{M_{12}}}\\ {{M_{21}}}&{{M_{22}}} \end{array}} \right).$$

Finally, the reflection coefficient r and transmission coefficient t can be obtained as [59]:

$$r = \frac{{({M_{11}} + {M_{12}}{\eta _0}){\eta _0} - ({M_{21}} + {M_{22}}{\eta _0})}}{{({M_{11}} + {M_{12}}{\eta _0}){\eta _0} + ({M_{21}} + {M_{22}}{\eta _0})}}.$$
$$t = \frac{{2{\eta _0}}}{{({M_{11}} + {M_{12}}{\eta _0}){\eta _0} + ({M_{21}} + {M_{22}}{\eta _0})}}.$$

Where η0 = n0cosθ0 (TE wave), η0 = n0 /cosθ0 (TM wave), n0 describes the refractive index of air. The absorptance A(ω) can be written as

$$A(\omega ) = 1 - R(\omega ) - T(\omega ).$$
where reflectivity R(ω)=|r|2 and transmittance T(ω)=|t|2.

3. Results and discussion

3.1 Properties of the dielectric constant and group index for the proposed HMs with graphene

The real parts ${\varepsilon _ \bot }$ and ${\varepsilon _{||}}$ of the proposed HMs based on the graphene with different frequencies are presented in Fig. 2. The designed structure parameters are dC = 60 nm, τ = 5·10−12 s, µ = 0.1 eV. It can be seen from Fig. 2 that the real of ${\varepsilon _ \bot }$ beyonds 0 in the whole frequency domain and the real of ${\varepsilon _{||}}$ changes from negative to positive at 7.07 THz. It is well known that the material exhibits hyperbolic properties at $Re({\varepsilon _ \bot })Re({\varepsilon _{\textrm{||}}}) < 0$ and c3onventional medium properties at $Re({\varepsilon _ \bot })Re({\varepsilon _{\textrm{||}}}) > 0$. One can observe from Fig. 2 that material properties alter from hyperbolic medium to ordinary medium at 7.07 THz.

 figure: Fig. 2.

Fig. 2. The real parts of ${\varepsilon _ \bot }$ (a) and ${\varepsilon _{||}}$ (b) of the HMs with graphene.

Download Full Size | PPT Slide | PDF

The group index ng of the HMs with graphene is shown in Fig. 3. It can be found that both the real part and imaginary part of ng have extreme value points, the former is a maximum value at 7.08 THz, and the latter is a minimum value at 7.06 THz. These noted frequency points play a critical role in controlling the transmission modulation of electromagnetic waves.

 figure: Fig. 3.

Fig. 3. The real and imaginary parts of ng of the HMs with graphene.

Download Full Size | PPT Slide | PDF

To investigate the effects of the phenomenological scattering rates τ, chemical potential µ, thickness of dielectric C dC on the performance of HMs properties, the relationships between three parameters and ng are given in Figs. 46, respectively.

 figure: Fig. 4.

Fig. 4. (a) The real and (b) imaginary parts of ng with different phenomenological scattering rates τ.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. (a) The real and (b) imaginary parts of ng with different chemical potentials µ.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. (a) The real and (b) imaginary parts of ng with different thicknesses of dielectric C dC.

Download Full Size | PPT Slide | PDF

The real part and imaginary part of ng with different phenomenological scattering rates of τ = 10−12 s, τ = 10−13 s, and τ = 10−14 s are plotted in Fig. 4. It can be observed from Figs. 4(a) and (b) that the maximum value of the real part of ng becomes smaller and shifts to the higher frequencies when τ is decreased, while the minimum value of the imaginary part of ng becomes larger and moves to the lower frequencies, which indicates that the phenomenological scattering rate can markedly affect the properties of HMs.

The real part and imaginary part of ng with different chemical potentials and thicknesses of dielectric C are plotted in Fig. 5 and Fig. 6, respectively. It can be noticed that increasing the value of µ and dC can significantly affect ng, and all the extreme points of ng are blue-shifted, which shows that µ and dC can adjust the properties of HMs as well as τ and should be optimized in structural design.

3.2 Features of the cell structure for the proposed HMs with graphene

The reflectance, transmittance, and absorptance diagrams of TM wave for the proposed cell structure at θ = 0° and θ = 82° are illustrated in Fig. 7. The designed structure parameters are dC = 60 nm, τ = 5·10−12 s, µ = 0.1 eV, N = 3. In Fig. 7, the blue dash-dot line, red dash line, and dark solid line denote the curves of transmittance, reflectance, and absorptance, respectively. In Fig. 7(a), the TWRZ can be found that a transmission band (the transmittance beyond 0.9) is located at 9.74 - 10.78 THz, and the reflection bands (the reflectance beyond 0.9) are situated at 4 - 9.40 THz and 11.16 - 16 THz, except for an absorption peak at 7.10 THz. The phenomenon of absorption peak can be explained by the strong absorbing properties of the graphene. Combined with the results in Figs. 46, it can also be seen that the absorption peak appears near the frequency point of the extreme value of ng, so the position of absorption frequency point can be controlled by adjusting τ, µ, and dC. These simulated results show that the designed structure can be used as a frequency-dependent switchable reflection-transmission modulator and a tunable single-frequency absorber. In order to discuss the angle characteristics of the designed structure, the reflection, transmission, and absorption diagrams of TM wave at θ = 82° are described in Fig. 7(b). It can be noticed from Fig. 7(b) that the designed structure exhibits transmission characteristics in the whole frequency domain, except for the absorption peak at 7.05 THz and the reflection peak at 7.09 THz when θ = 82°, which means that the designed structure can be applied as an angle-dependent switchable reflection-transmission modulator with the function of reflected at a small angle and transmitted at a large angle.

 figure: Fig. 7.

Fig. 7. The reflectance, transmittance and absorptance diagrams of TM wave for the proposed cell structure with different incident angles. (a) θ = 0°, (b) θ = 82°.

Download Full Size | PPT Slide | PDF

The reflectance diagrams of TM wave for the designed structure under different angles θ are placed in detail in Fig. 8. It can be found that there are obvious angular stable reflection region (RR) and absorption region (AR) in the range of 0° - 50°, and the transmission region (TR) becomes wider slightly with the increase of θ, which indicates that the frequency-dependent reflection-transmission modulator possesses angular stability within a certain range. In Fig. 8(b), it can be observed that when θ is 80° - 85°, there is a TR with frequency-independent, except the reflection and absorption region (RAAR) around 7 THz, and we can state that the angle-dependent reflection-transmission modulator can be achieved within a specific angle.

 figure: Fig. 8.

Fig. 8. The reflectance diagrams of TM wave for the proposed cell structure at different incident angles θ.

Download Full Size | PPT Slide | PDF

The phenomenon of broadband transmission can be explained by Brewster’s angle θB. Derived from Brewster’s law, we can understand that the TM wave will be transmitted by the structure at θB, and the TE wave will be reflected. θB can be written as

$${\theta _B} = \textrm{ }arctan\textrm{ }({n_2}/{n_1}).$$
where n1 and n2 represent the refractive indices of dielectrics. The incident direction is set from medium 1 to medium 2. In this work, the background medium and dielectric B are air. Because the thickness of HMs layer is thin, the dielectric constants of dielectric A and the HMs can be equivalent to an effective dielectric constant [60].
$${\varepsilon _{eff}} = \frac{{{\varepsilon _\textrm{A}}{d_\textrm{A}} + {\varepsilon _{\textrm{HG}}}{d_{\textrm{HG}}}}}{{{d_\textrm{A}} + {d_{\textrm{HG}}}}}.$$
where ɛA = 51, ɛHG and dHG represent the relative permittivity and thickness of HMs, respectively and dHG = 61 nm. It can be viewed from Figs. 5 and 6 that the real part of ng is around 0 - 5 except the maximum value. Suppose ɛHG = 6.25, we can get ɛeff ≈ 49.68 and θB = arctan ($\sqrt {49.68} $/ 1) ≈ 82°. Since ɛeff is equivalent and ng of HMs is frequency-dependent, there is a broadband transmission around 82°. To sum up, the broadband transmission can be realized reasonably for the designed cell structure.

3.3 Analysis of the SFATZ

The SFATZ can be found in Fig. 7, while a reflection defect is undesirable. After parameter optimization, a perfect filter can be obtained in Fig. 9. The parameters are dC = 60 nm, τ = 5·10−12 s, µ = 0.04 eV, N = 3.

 figure: Fig. 9.

Fig. 9. The transmittance and absorptance diagrams of TM wave when µ = 0.04 eV and θ = 82°.

Download Full Size | PPT Slide | PDF

In Fig. 9, a high absorption peak can be observed at 4.89 THz (the absorptance is greater than 0.9), and the cell structure shows transmission characteristics in the whole frequency band. To verify the correctness of the simulated results, the electric field distributions of the absorption frequency point (4.89 THz) and transmission frequency point (12 THz) are also given in Fig. 9. One can clearly see from the electric field distribution of 4.89 THz that the color of the electric field in the last few layers turns to dark blue, which means that the energy of the electromagnetic wave is basically absorbed. For the electric field distribution of 12 THz, there are different phenomena. The color of the electric field is light blue in the last few layers, which indicates that the electromagnetic wave passes through the cell structure. In addition, the interference pattern can be observed in Fig. 9, which can be interpreted as the incident wave and reflected wave redistribute the light intensity to form interference. Because the incident angle is large and the component of the wave vector on the x-axis possesses a large value, there will be obvious an interference pattern in the x-axis direction in Fig. 9. According to the analyses of Fig. 9, the obtained results are consistent. Finally, we can conclude that a single frequency absorption in the transmission band (SFATB) can be realized in the proposed cell structure.

To discuss the effect of chemical potential µ on the SFATB, the transmittance and absorptance diagrams of TM wave at different µ are plotted in Fig. 10.

 figure: Fig. 10.

Fig. 10. The transmittance and absorptance diagrams of TM wave at different µ. (a) µ = 0.01 eV, (b) µ = 0.03 eV, (c) µ = 0.05 eV, and (d) µ = 0.07 eV.

Download Full Size | PPT Slide | PDF

The parameters are dC = 60 nm, τ = 5·10−12 s, θ = 82°, N = 3. Figures 10(a)-(d) are the transmittance and absorptance curves of the proposed cell structure with different µ of 0.01 eV, 0.03 eV, 0.05 eV and 0.07 eV, respectively. It can be noticed from Fig. 10 that if µ increases, the position of the absorption peak will move towards the higher frequencies, and these absorption frequencies are located at 3.79 THz, 4.55 THz, 5.25 THz, and 5.98 THz, respectively. The calculated results show that µ plays a vital role in adjusting SFATB, which can greatly change the position of the absorption peak.

3.4 Realization of the ultra-wideband absorption and TWAZ

The position of the absorption peak can be controlled by µ. Suppose that we can discretize a segment of µ closely, and assign them to different cell structures, and splice cell structures together, so that the continuous absorption peaks can be obtained. In order to verify this hypothesis, the cell structures with different µ are stacked. The overall structure is shown in Fig. 11. Here, µ is adopted. µ can be controlled more conveniently than τ and dC, and only the applied voltage Vg needs to be changed.

 figure: Fig. 11.

Fig. 11. The schematic whole structure of the proposed HMs with graphene.

Download Full Size | PPT Slide | PDF

Two kinds of devices with ultra-wideband absorption in different frequency bands are designed by using the proposed stacked structure. The simulation results are shown in Fig. 12. For Fig. 12(a), the structure parameters are dA = 2 µm, dB = 8 µm, dC = 60 nm, τ = 5·10−12 s, θ = 82°, N = 2. µn is treated as the discrete value of µ, which is expressed as µn = (0.001 + 0.001×(n - 1)) eV (n = 1 - 120, and n is an integer). The value of µn changes from µn = 0.001 eV to µn = 0.12 eV, and the step length is 0.001 eV. It can be observed from Fig. 12(a) that the absorption band is situated at 3.95 - 7.72 THz, whose bandwidth is 3.77 THz and its relative bandwidth (RB) is 32.31%, which is an ultra-wideband absorption. For Fig. 12(b), the structure parameters are dA = 0.5 µm, dB = 9 µm, dC = 60 nm, τ = 5·10−12 s, θ = 82°, N = 2. µn is written as µn = (0.12 + 0.0019×(n - 1)) eV (n = 1 - 158, and n is an integer). The value of µn converts from µn = 0.12 eV to µn = 0.4183 eV, and the step length is 0.0019 eV. It can be noticed from Fig. 12(b) that the absorption band covers 7.89 - 14.65 THz, and its bandwidth and RB are 6.76 THz and 29.99%, respectively. It is also an ultra-wideband absorption. According to the results of Fig. 12, it can be concluded that an ultra-wideband absorption can be realized in the proposed stacked whole structure, and it can work in different frequency bands by adjusting structural parameters.

 figure: Fig. 12.

Fig. 12. The diagrams of ultra-wideband absorption with different frequency bands. (a) 3.95 - 7.72 THz, (b) 7.89 - 14.65 THz.

Download Full Size | PPT Slide | PDF

Furthermore, we can also reprocess the above-stacked structure. Suppose that a part of the discrete µ is set as the µ1 of the first cell structure, and the original absorption band of this part will act on the absorption frequency point of the first cell structure at the same time, and then the original absorption of this part will be converted to transmission, and the transmission window in the absorption zone (TWAZ) will be obtained in the proposed multi-stack structure. The simulation results are shown in Fig. 13.

 figure: Fig. 13.

Fig. 13. The diagrams of the TWAZ with different frequency bands. (a) 4.59 - 5.33 THz, (b) 5.70 - 6.36 THz.

Download Full Size | PPT Slide | PDF

Two different transmission windows in the ultra-wideband absorption band (3.95 - 7.72 THz) of Fig. 12(a) are designed, as shown in Fig. 13. For Fig. 13(a), the structure parameters are dA = 2 µm, dB = 8 µm, dC = 60 nm, τ = 5·10−12 s, θ = 82°, N = 2. The partial µn can be expressed as µn = (0.001 + 0.001×(n - 1)) eV (n = 1 - 25, 60 - 120). The step length is 0.001. The remaining µn can be expressed as µn = 0.001 eV (n = 26 - 59). One can observe from Fig. 13(a) that the transmission window is laid at 4.59 - 5.33 THz, whose bandwidth is 0.74 THz and RB is 7.46%.

For Fig. 13(b), the structure parameters are dA = 2 µm, dB = 8 µm, dC = 60 nm, τ = 5·10−12 s, θ = 82°, N = 2. The integrant µn can be written as µn = (0.001 + 0.001×(n - 1)) eV (n = 1 - 55, 90 - 120). The step length is 0.001. The rest µn can be written as µn = 0.001 eV (n = 56 - 89). It can be seen from Fig. 13(b) that the transmission window is seated at 5.70 - 6.36 THz, and its bandwidth is 0.66 THz and the RB is 5.47%. From the above results, it can be known that the TWAZ can be achieved in different frequency bands in the proposed multi-stack HMs with graphene.

4. Conclusions

In short, a periodic cell structure of graphene-based HM is constructed and the whole structure is designed by stacking the cell structures with different µ. The properties of the frequency-dependent and angle-dependent reflection-transmission switch, ultra-wideband absorption, SFATZ, and TWAZ are theoretically calculated, and the effects of µ, τ, and dC on the ng of HM are also investigated. Numerical simulations indicate that the TWRZ can be found when θ is 0° - 50°, and the reflection alters to transmission in the whole frequency domain at θ = 80° - 85°. The SFATB can be regulated by µ, whose absorption peak is blue-shifted as µ is increased. The ultra-wideband absorptions (3.95 - 7.72 THz, 7.89 - 14.65 THz.) and TWABs (4.59 - 5.33 THz, 5.70 - 6.36 THz) can be realized in the stacked unit cells by assigning different µ functions. The proposed stacked graphene-based HM cells can be employed to design the tunable multifunctional modulators including reflection-transmission modulation with frequency-dependent and the angle-dependent, absorption-transmission switches, and filters.

Funding

Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_0807); Open Research Program in China’s State Key Laboratory of Millimeter Waves (K201927); Shenzhen Science and Technology Plan Basic Research Project (JCYJ20180305164708625).

Disclosures

The authors declare no conflicts of interest.

References

1. X. Hu and J. Wang, “Design of graphene-based polarization-insensitive optical modulator,” Nanophotonics 7(3), 651–658 (2018). [CrossRef]  

2. S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018). [CrossRef]  

3. M. S. Ukhtary and R. Saito, “Surface plasmon in graphene and carbon nanotubes,” Carbon 167, 455–474 (2020). [CrossRef]  

4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef]  

5. Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020). [CrossRef]  

6. F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018). [CrossRef]  

7. Q. Lv, F. Yan, X. Wei, and K. Wang, “High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction,” Adv. Opt. Mater. 6(2), 1700490 (2018). [CrossRef]  

8. H. Mitra, A. Vahid, and E. H. Majid, “Schottky graphene/Si photodetector based on metal-dielectric hybrid hollow-core photonic crystal fibers,” Opt. Lett. 42(24), 5066–5069 (2017). [CrossRef]  

9. J. Xu, X. Li, Y. Wu, X. Hao, J. He, and K. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36(10), 1948–1950 (2011). [CrossRef]  

10. Y. Wang, B. Zhang, H. Yang, J. Hou, X. Su, Z. Sun, and J. He, “Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror,” J. Lightwave Technol. 37(13), 2927–2931 (2019). [CrossRef]  

11. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef]  

12. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008). [CrossRef]  

13. B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018). [CrossRef]  

14. E. S. Lari, Z. Vafapour, and H. Ghahraloud, “Optically tunable triple-band perfect absorber for nonlinear optical liquids sensing,” IEEE Sens. J. 20(17), 10130–10137 (2020). [CrossRef]  

15. Z. Vafapour, “Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications,” IEEE Trans.on Nanobioscience 18(4), 622–627 (2019). [CrossRef]  

16. J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020). [CrossRef]  

17. Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009). [CrossRef]  

18. H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019). [CrossRef]  

19. B. Ipaves, J. F. Justo, and L. V. C. Assali, “Carbon-related bilayers: nanoscale building blocks for self-assembly nanomanufacturing,” J. Phys. Chem. C 123(37), 23195–23204 (2019). [CrossRef]  

20. L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018). [CrossRef]  

21. Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020). [CrossRef]  

22. Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019). [CrossRef]  

23. M. R. Forouzeshfard, S. Ghafari, and Z. Vafapour, “Solute concentration sensing in two aqueous solution using an optical metamaterial sensor,” J. Lumin. 230, 117734 (2021). [CrossRef]  

24. P. Pitchappa, C. P. Ho, L. Dhakar, and C. Lee, “Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region,” Optica 2(6), 571–578 (2015). [CrossRef]  

25. N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018). [CrossRef]  

26. X. L. Liu, R. Zhang, and Z. M. Zhang, “Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes,” Appl. Phys. Lett. 103(21), 213102 (2013). [CrossRef]  

27. I. Ivan, I. S. Mukhin, I. V. Shadrivov, and P. A. Belov, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013). [CrossRef]  

28. L. Ferrari, C. Wu, D. Lepage, and X. Zhang, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015). [CrossRef]  

29. J. S. T. Smalley, F. Vallini, S. Shahin, B. Kante, and Y. Fainman, “Gain-enhanced high-k transmission through metal-semiconductor hyperbolic metamaterials,” Opt. Mater. Express 5(10), 2300–2312 (2015). [CrossRef]  

30. M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016). [CrossRef]  

31. Y. C. Chang, C. H. Liu, C. H. Liu, and S. Zhang, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016). [CrossRef]  

32. S. K. Valiyaveedu, A. D. Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013). [CrossRef]  

33. J. Sun and N. M. Litchinitser, “The route to visible light photolithography using hyperlens,” J. Opt. 20(4), 044008 (2018). [CrossRef]  

34. R. Yu, R. Alaee, R. W. Boyd, and J. Abajo, “Ultrafast topological engineering in metamaterials,” Phys. Rev. Lett. 125(3), 037403 (2020). [CrossRef]  

35. A. N. Poddubny, I. V. Iorsh, and A. A. Sukhorukov, “Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials,” Phys. Rev. Lett. 117(12), 123901 (2016). [CrossRef]  

36. E. Narimanov and A. Kildishev, “Metamaterials: Naturally hyperbolic,” Nat. Photonics 9(4), 214–216 (2015). [CrossRef]  

37. H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012). [CrossRef]  

38. D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014). [CrossRef]  

39. A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, and A. A. Orlov, “Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials,” Phys. Rev. A 93(3), 033855 (2016). [CrossRef]  

40. S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013). [CrossRef]  

41. Q. Wang, H. X. Gao, S. W. Chu, W. Peng, and L. Yu, “Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application,” Opt. Express 27(24), 35012–35026 (2019). [CrossRef]  

42. Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018). [CrossRef]  

43. M. Kieliszczyk, B. Janaszek, and A. T. Zawadzka, “Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials,” Appl. Opt. 57(5), 1182–1187 (2018). [CrossRef]  

44. M. J. Shi, G. Zhang, B. X. Li, R. F. Li, T. Yan, M. Luo, and N. Ye, “Efficient frequency conversion for cubic harmonic generation at 266 nm in centrosymmetric alpha-BBO crystal,” Opt. Lett. 43(8), 1734–1737 (2018). [CrossRef]  

45. A. Kessel, S. A. Trushin, N. Karpowicz, and C. Skrobol, “Generation of multi-octave spanning high-energy pulses by cascaded nonlinear processes in BBO,” Opt. Express 24(5), 5628–5637 (2016). [CrossRef]  

46. R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020). [CrossRef]  

47. C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017). [CrossRef]  

48. T. Higo, H. Man, D. B. Gopman, and L. Wu, “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal,” Nat. Photonics 12(2), 73–78 (2018). [CrossRef]  

49. C. G. Bottenfield, V. A. Thomas, and S. E. Ralph, “Silicon photonic modulator linearity and optimization for microwave photonic links,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–10 (2019). [CrossRef]  

50. G. Hepner, “Digital light deflector with prisms and polarization switch based on the pockels effect with transverse field,” IEEE J. Quantum Electron. 8(2), 169–173 (1972). [CrossRef]  

51. H. Y. Jiang, L. S. Yan, W. Pan, and B. Luo, “Ultra-high speed RF filtering switch based on stimulated Brillouin scattering,” Opt. Lett. 43(2), 279–282 (2018). [CrossRef]  

52. S. Ghafari, M. R. Forouzeshfard, and Z. Vafapour, “Thermo optical switching and sensing applications of an infrared metamaterial,” IEEE Sens. J. 20(6), 3235–3241 (2020). [CrossRef]  

53. S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019). [CrossRef]  

54. O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020). [CrossRef]  

55. L. Du, G. B. Jiang, L. Miao, and B. Huang, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018). [CrossRef]  

56. A. Pianelli, R. Kowerdziej, M. Dudek, and K. Sielezin, “Graphene-based hyperbolic metamaterial as a switchable reflection modulator,” Opt. Express 28(5), 6708–6718 (2020). [CrossRef]  

57. Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019). [CrossRef]  

58. J. Ji, S. Y. Zhou, W. J. Wang, Y. Liu, J. Q. Yao, C. Y. Luo, and F. Ling, “Active multifunctional terahertz modulator based on plasmonic metasurface,” Opt. Express 27(3), 2363–2373 (2019). [CrossRef]  

59. L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010). [CrossRef]  

60. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012). [CrossRef]  

References

  • View by:

  1. X. Hu and J. Wang, “Design of graphene-based polarization-insensitive optical modulator,” Nanophotonics 7(3), 651–658 (2018).
    [Crossref]
  2. S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
    [Crossref]
  3. M. S. Ukhtary and R. Saito, “Surface plasmon in graphene and carbon nanotubes,” Carbon 167, 455–474 (2020).
    [Crossref]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref]
  5. Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
    [Crossref]
  6. F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
    [Crossref]
  7. Q. Lv, F. Yan, X. Wei, and K. Wang, “High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction,” Adv. Opt. Mater. 6(2), 1700490 (2018).
    [Crossref]
  8. H. Mitra, A. Vahid, and E. H. Majid, “Schottky graphene/Si photodetector based on metal-dielectric hybrid hollow-core photonic crystal fibers,” Opt. Lett. 42(24), 5066–5069 (2017).
    [Crossref]
  9. J. Xu, X. Li, Y. Wu, X. Hao, J. He, and K. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36(10), 1948–1950 (2011).
    [Crossref]
  10. Y. Wang, B. Zhang, H. Yang, J. Hou, X. Su, Z. Sun, and J. He, “Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror,” J. Lightwave Technol. 37(13), 2927–2931 (2019).
    [Crossref]
  11. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref]
  12. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
    [Crossref]
  13. B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
    [Crossref]
  14. E. S. Lari, Z. Vafapour, and H. Ghahraloud, “Optically tunable triple-band perfect absorber for nonlinear optical liquids sensing,” IEEE Sens. J. 20(17), 10130–10137 (2020).
    [Crossref]
  15. Z. Vafapour, “Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications,” IEEE Trans.on Nanobioscience 18(4), 622–627 (2019).
    [Crossref]
  16. J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
    [Crossref]
  17. Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
    [Crossref]
  18. H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
    [Crossref]
  19. B. Ipaves, J. F. Justo, and L. V. C. Assali, “Carbon-related bilayers: nanoscale building blocks for self-assembly nanomanufacturing,” J. Phys. Chem. C 123(37), 23195–23204 (2019).
    [Crossref]
  20. L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
    [Crossref]
  21. Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
    [Crossref]
  22. Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).
    [Crossref]
  23. M. R. Forouzeshfard, S. Ghafari, and Z. Vafapour, “Solute concentration sensing in two aqueous solution using an optical metamaterial sensor,” J. Lumin. 230, 117734 (2021).
    [Crossref]
  24. P. Pitchappa, C. P. Ho, L. Dhakar, and C. Lee, “Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region,” Optica 2(6), 571–578 (2015).
    [Crossref]
  25. N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
    [Crossref]
  26. X. L. Liu, R. Zhang, and Z. M. Zhang, “Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes,” Appl. Phys. Lett. 103(21), 213102 (2013).
    [Crossref]
  27. I. Ivan, I. S. Mukhin, I. V. Shadrivov, and P. A. Belov, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
    [Crossref]
  28. L. Ferrari, C. Wu, D. Lepage, and X. Zhang, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  29. J. S. T. Smalley, F. Vallini, S. Shahin, B. Kante, and Y. Fainman, “Gain-enhanced high-k transmission through metal-semiconductor hyperbolic metamaterials,” Opt. Mater. Express 5(10), 2300–2312 (2015).
    [Crossref]
  30. M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
    [Crossref]
  31. Y. C. Chang, C. H. Liu, C. H. Liu, and S. Zhang, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
    [Crossref]
  32. S. K. Valiyaveedu, A. D. Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
    [Crossref]
  33. J. Sun and N. M. Litchinitser, “The route to visible light photolithography using hyperlens,” J. Opt. 20(4), 044008 (2018).
    [Crossref]
  34. R. Yu, R. Alaee, R. W. Boyd, and J. Abajo, “Ultrafast topological engineering in metamaterials,” Phys. Rev. Lett. 125(3), 037403 (2020).
    [Crossref]
  35. A. N. Poddubny, I. V. Iorsh, and A. A. Sukhorukov, “Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials,” Phys. Rev. Lett. 117(12), 123901 (2016).
    [Crossref]
  36. E. Narimanov and A. Kildishev, “Metamaterials: Naturally hyperbolic,” Nat. Photonics 9(4), 214–216 (2015).
    [Crossref]
  37. H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref]
  38. D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
    [Crossref]
  39. A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, and A. A. Orlov, “Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials,” Phys. Rev. A 93(3), 033855 (2016).
    [Crossref]
  40. S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
    [Crossref]
  41. Q. Wang, H. X. Gao, S. W. Chu, W. Peng, and L. Yu, “Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application,” Opt. Express 27(24), 35012–35026 (2019).
    [Crossref]
  42. Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
    [Crossref]
  43. M. Kieliszczyk, B. Janaszek, and A. T. Zawadzka, “Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials,” Appl. Opt. 57(5), 1182–1187 (2018).
    [Crossref]
  44. M. J. Shi, G. Zhang, B. X. Li, R. F. Li, T. Yan, M. Luo, and N. Ye, “Efficient frequency conversion for cubic harmonic generation at 266 nm in centrosymmetric alpha-BBO crystal,” Opt. Lett. 43(8), 1734–1737 (2018).
    [Crossref]
  45. A. Kessel, S. A. Trushin, N. Karpowicz, and C. Skrobol, “Generation of multi-octave spanning high-energy pulses by cascaded nonlinear processes in BBO,” Opt. Express 24(5), 5628–5637 (2016).
    [Crossref]
  46. R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
    [Crossref]
  47. C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
    [Crossref]
  48. T. Higo, H. Man, D. B. Gopman, and L. Wu, “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal,” Nat. Photonics 12(2), 73–78 (2018).
    [Crossref]
  49. C. G. Bottenfield, V. A. Thomas, and S. E. Ralph, “Silicon photonic modulator linearity and optimization for microwave photonic links,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–10 (2019).
    [Crossref]
  50. G. Hepner, “Digital light deflector with prisms and polarization switch based on the pockels effect with transverse field,” IEEE J. Quantum Electron. 8(2), 169–173 (1972).
    [Crossref]
  51. H. Y. Jiang, L. S. Yan, W. Pan, and B. Luo, “Ultra-high speed RF filtering switch based on stimulated Brillouin scattering,” Opt. Lett. 43(2), 279–282 (2018).
    [Crossref]
  52. S. Ghafari, M. R. Forouzeshfard, and Z. Vafapour, “Thermo optical switching and sensing applications of an infrared metamaterial,” IEEE Sens. J. 20(6), 3235–3241 (2020).
    [Crossref]
  53. S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019).
    [Crossref]
  54. O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020).
    [Crossref]
  55. L. Du, G. B. Jiang, L. Miao, and B. Huang, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
    [Crossref]
  56. A. Pianelli, R. Kowerdziej, M. Dudek, and K. Sielezin, “Graphene-based hyperbolic metamaterial as a switchable reflection modulator,” Opt. Express 28(5), 6708–6718 (2020).
    [Crossref]
  57. Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
    [Crossref]
  58. J. Ji, S. Y. Zhou, W. J. Wang, Y. Liu, J. Q. Yao, C. Y. Luo, and F. Ling, “Active multifunctional terahertz modulator based on plasmonic metasurface,” Opt. Express 27(3), 2363–2373 (2019).
    [Crossref]
  59. L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010).
    [Crossref]
  60. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
    [Crossref]

2021 (1)

M. R. Forouzeshfard, S. Ghafari, and Z. Vafapour, “Solute concentration sensing in two aqueous solution using an optical metamaterial sensor,” J. Lumin. 230, 117734 (2021).
[Crossref]

2020 (10)

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

R. Yu, R. Alaee, R. W. Boyd, and J. Abajo, “Ultrafast topological engineering in metamaterials,” Phys. Rev. Lett. 125(3), 037403 (2020).
[Crossref]

M. S. Ukhtary and R. Saito, “Surface plasmon in graphene and carbon nanotubes,” Carbon 167, 455–474 (2020).
[Crossref]

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

E. S. Lari, Z. Vafapour, and H. Ghahraloud, “Optically tunable triple-band perfect absorber for nonlinear optical liquids sensing,” IEEE Sens. J. 20(17), 10130–10137 (2020).
[Crossref]

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
[Crossref]

S. Ghafari, M. R. Forouzeshfard, and Z. Vafapour, “Thermo optical switching and sensing applications of an infrared metamaterial,” IEEE Sens. J. 20(6), 3235–3241 (2020).
[Crossref]

O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020).
[Crossref]

A. Pianelli, R. Kowerdziej, M. Dudek, and K. Sielezin, “Graphene-based hyperbolic metamaterial as a switchable reflection modulator,” Opt. Express 28(5), 6708–6718 (2020).
[Crossref]

2019 (10)

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

J. Ji, S. Y. Zhou, W. J. Wang, Y. Liu, J. Q. Yao, C. Y. Luo, and F. Ling, “Active multifunctional terahertz modulator based on plasmonic metasurface,” Opt. Express 27(3), 2363–2373 (2019).
[Crossref]

S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019).
[Crossref]

C. G. Bottenfield, V. A. Thomas, and S. E. Ralph, “Silicon photonic modulator linearity and optimization for microwave photonic links,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–10 (2019).
[Crossref]

Q. Wang, H. X. Gao, S. W. Chu, W. Peng, and L. Yu, “Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application,” Opt. Express 27(24), 35012–35026 (2019).
[Crossref]

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

B. Ipaves, J. F. Justo, and L. V. C. Assali, “Carbon-related bilayers: nanoscale building blocks for self-assembly nanomanufacturing,” J. Phys. Chem. C 123(37), 23195–23204 (2019).
[Crossref]

Z. Vafapour, “Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications,” IEEE Trans.on Nanobioscience 18(4), 622–627 (2019).
[Crossref]

Y. Wang, B. Zhang, H. Yang, J. Hou, X. Su, Z. Sun, and J. He, “Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror,” J. Lightwave Technol. 37(13), 2927–2931 (2019).
[Crossref]

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).
[Crossref]

2018 (14)

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

J. Sun and N. M. Litchinitser, “The route to visible light photolithography using hyperlens,” J. Opt. 20(4), 044008 (2018).
[Crossref]

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Q. Lv, F. Yan, X. Wei, and K. Wang, “High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction,” Adv. Opt. Mater. 6(2), 1700490 (2018).
[Crossref]

X. Hu and J. Wang, “Design of graphene-based polarization-insensitive optical modulator,” Nanophotonics 7(3), 651–658 (2018).
[Crossref]

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
[Crossref]

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
[Crossref]

M. Kieliszczyk, B. Janaszek, and A. T. Zawadzka, “Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials,” Appl. Opt. 57(5), 1182–1187 (2018).
[Crossref]

M. J. Shi, G. Zhang, B. X. Li, R. F. Li, T. Yan, M. Luo, and N. Ye, “Efficient frequency conversion for cubic harmonic generation at 266 nm in centrosymmetric alpha-BBO crystal,” Opt. Lett. 43(8), 1734–1737 (2018).
[Crossref]

T. Higo, H. Man, D. B. Gopman, and L. Wu, “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal,” Nat. Photonics 12(2), 73–78 (2018).
[Crossref]

L. Du, G. B. Jiang, L. Miao, and B. Huang, “Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator,” Opt. Mater. Express 8(4), 926–935 (2018).
[Crossref]

H. Y. Jiang, L. S. Yan, W. Pan, and B. Luo, “Ultra-high speed RF filtering switch based on stimulated Brillouin scattering,” Opt. Lett. 43(2), 279–282 (2018).
[Crossref]

2017 (2)

C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
[Crossref]

H. Mitra, A. Vahid, and E. H. Majid, “Schottky graphene/Si photodetector based on metal-dielectric hybrid hollow-core photonic crystal fibers,” Opt. Lett. 42(24), 5066–5069 (2017).
[Crossref]

2016 (5)

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Y. C. Chang, C. H. Liu, C. H. Liu, and S. Zhang, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

A. N. Poddubny, I. V. Iorsh, and A. A. Sukhorukov, “Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials,” Phys. Rev. Lett. 117(12), 123901 (2016).
[Crossref]

A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, and A. A. Orlov, “Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials,” Phys. Rev. A 93(3), 033855 (2016).
[Crossref]

A. Kessel, S. A. Trushin, N. Karpowicz, and C. Skrobol, “Generation of multi-octave spanning high-energy pulses by cascaded nonlinear processes in BBO,” Opt. Express 24(5), 5628–5637 (2016).
[Crossref]

2015 (4)

2014 (1)

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref]

2013 (4)

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

X. L. Liu, R. Zhang, and Z. M. Zhang, “Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes,” Appl. Phys. Lett. 103(21), 213102 (2013).
[Crossref]

I. Ivan, I. S. Mukhin, I. V. Shadrivov, and P. A. Belov, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

S. K. Valiyaveedu, A. D. Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

2012 (2)

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

2011 (1)

2010 (1)

L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010).
[Crossref]

2009 (1)

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

2008 (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

1972 (1)

G. Hepner, “Digital light deflector with prisms and polarization switch based on the pockels effect with transverse field,” IEEE J. Quantum Electron. 8(2), 169–173 (1972).
[Crossref]

Abajo, J.

R. Yu, R. Alaee, R. W. Boyd, and J. Abajo, “Ultrafast topological engineering in metamaterials,” Phys. Rev. Lett. 125(3), 037403 (2020).
[Crossref]

Alaee, R.

R. Yu, R. Alaee, R. W. Boyd, and J. Abajo, “Ultrafast topological engineering in metamaterials,” Phys. Rev. Lett. 125(3), 037403 (2020).
[Crossref]

Assali, L. V. C.

B. Ipaves, J. F. Justo, and L. V. C. Assali, “Carbon-related bilayers: nanoscale building blocks for self-assembly nanomanufacturing,” J. Phys. Chem. C 123(37), 23195–23204 (2019).
[Crossref]

Atwater, H. A.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
[Crossref]

Babicheva, V. E.

A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, and A. A. Orlov, “Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials,” Phys. Rev. A 93(3), 033855 (2016).
[Crossref]

Badiceanu, M.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Bazgan, S.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Belov, P. A.

I. Ivan, I. S. Mukhin, I. V. Shadrivov, and P. A. Belov, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Bottenfield, C. G.

C. G. Bottenfield, V. A. Thomas, and S. E. Ralph, “Silicon photonic modulator linearity and optimization for microwave photonic links,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–10 (2019).
[Crossref]

Boyd, R. W.

R. Yu, R. Alaee, R. W. Boyd, and J. Abajo, “Ultrafast topological engineering in metamaterials,” Phys. Rev. Lett. 125(3), 037403 (2020).
[Crossref]

Brar, V. W.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
[Crossref]

Buchnev, O.

O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020).
[Crossref]

Campione, S.

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Capolino, F.

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Chang, Y.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Chang, Y. C.

Y. C. Chang, C. H. Liu, C. H. Liu, and S. Zhang, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Chebykin, A. V.

A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, and A. A. Orlov, “Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials,” Phys. Rev. A 93(3), 033855 (2016).
[Crossref]

Chen, A.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Chen, C.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Chen, J.

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

Chen, L.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Chen, P.

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Chen, S.

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

Chen, T.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

Chen, Y.

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).
[Crossref]

Chen, Y. Q.

C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
[Crossref]

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Cheng, G.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Chong, T. K.

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Chu, S. W.

Ciobanu, N.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Crommie, M. F.

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Dai, Y.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Dhakar, L.

Dong, B.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Du, C.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Du, L.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Dudek, M.

Edison, R. A.

R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
[Crossref]

Enaki, N.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Fainman, Y.

Farhat, M.

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Fedotov, V. A.

O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020).
[Crossref]

Fengb, N.

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).
[Crossref]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, and X. Zhang, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Forouzeshfard, M. R.

M. R. Forouzeshfard, S. Ghafari, and Z. Vafapour, “Solute concentration sensing in two aqueous solution using an optical metamaterial sensor,” J. Lumin. 230, 117734 (2021).
[Crossref]

S. Ghafari, M. R. Forouzeshfard, and Z. Vafapour, “Thermo optical switching and sensing applications of an infrared metamaterial,” IEEE Sens. J. 20(6), 3235–3241 (2020).
[Crossref]

Fullerton, E. E.

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref]

Gao, H. X.

Gao, X.

L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

George, P.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Ghafari, S.

M. R. Forouzeshfard, S. Ghafari, and Z. Vafapour, “Solute concentration sensing in two aqueous solution using an optical metamaterial sensor,” J. Lumin. 230, 117734 (2021).
[Crossref]

S. Ghafari, M. R. Forouzeshfard, and Z. Vafapour, “Thermo optical switching and sensing applications of an infrared metamaterial,” IEEE Sens. J. 20(6), 3235–3241 (2020).
[Crossref]

Ghahraloud, H.

E. S. Lari, Z. Vafapour, and H. Ghahraloud, “Optically tunable triple-band perfect absorber for nonlinear optical liquids sensing,” IEEE Sens. J. 20(17), 10130–10137 (2020).
[Crossref]

Girit, C.

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Gopman, D. B.

T. Higo, H. Man, D. B. Gopman, and L. Wu, “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal,” Nat. Photonics 12(2), 73–78 (2018).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Gu, P.

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

Guclu, C.

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Hajizadegan, M.

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Hao, H.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Hao, X.

Hao, Z.

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

He, J.

He, S.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

Heller, A.

R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
[Crossref]

Hepner, G.

G. Hepner, “Digital light deflector with prisms and polarization switch based on the pockels effect with transverse field,” IEEE J. Quantum Electron. 8(2), 169–173 (1972).
[Crossref]

Higo, T.

T. Higo, H. Man, D. B. Gopman, and L. Wu, “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal,” Nat. Photonics 12(2), 73–78 (2018).
[Crossref]

Ho, C. P.

Hou, J.

Hu, X.

X. Hu and J. Wang, “Design of graphene-based polarization-insensitive optical modulator,” Nanophotonics 7(3), 651–658 (2018).
[Crossref]

Huang, B.

Huang, W. C.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Iorsh, I. V.

A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, and A. A. Orlov, “Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials,” Phys. Rev. A 93(3), 033855 (2016).
[Crossref]

A. N. Poddubny, I. V. Iorsh, and A. A. Sukhorukov, “Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials,” Phys. Rev. Lett. 117(12), 123901 (2016).
[Crossref]

Ipaves, B.

B. Ipaves, J. F. Justo, and L. V. C. Assali, “Carbon-related bilayers: nanoscale building blocks for self-assembly nanomanufacturing,” J. Phys. Chem. C 123(37), 23195–23204 (2019).
[Crossref]

Ivan, I.

I. Ivan, I. S. Mukhin, I. V. Shadrivov, and P. A. Belov, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Jacob, Z.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref]

Janaszek, B.

Jang, M. S.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
[Crossref]

Ji, J.

Jia, B. H.

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Jiang, G. B.

Jiang, H. Y.

Justo, J. F.

B. Ipaves, J. F. Justo, and L. V. C. Assali, “Carbon-related bilayers: nanoscale building blocks for self-assembly nanomanufacturing,” J. Phys. Chem. C 123(37), 23195–23204 (2019).
[Crossref]

Kaltenecker, K.

O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020).
[Crossref]

Kan, J. J.

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref]

Kante, B.

Karpowicz, N.

Kessel, A.

Kieliszczyk, M.

Kildishev, A.

E. Narimanov and A. Kildishev, “Metamaterials: Naturally hyperbolic,” Nat. Photonics 9(4), 214–216 (2015).
[Crossref]

Kim, L.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
[Crossref]

Kim, S.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
[Crossref]

Kim, S. H.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Kowerdziej, R.

Kretzschmar, I.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref]

Krishnamoorthy, H. N.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref]

La, F.

L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010).
[Crossref]

Lari, E. S.

E. S. Lari, Z. Vafapour, and H. Ghahraloud, “Optically tunable triple-band perfect absorber for nonlinear optical liquids sensing,” IEEE Sens. J. 20(17), 10130–10137 (2020).
[Crossref]

Lee, C.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

P. Pitchappa, C. P. Ho, L. Dhakar, and C. Lee, “Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region,” Optica 2(6), 571–578 (2015).
[Crossref]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, and X. Zhang, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Li, B. X.

Li, J. Q.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Li, R. F.

Li, X.

Li, X. F.

C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
[Crossref]

Lin, H.

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Lin, K.

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Ling, F.

Litchinitser, N. M.

J. Sun and N. M. Litchinitser, “The route to visible light photolithography using hyperlens,” J. Opt. 20(4), 044008 (2018).
[Crossref]

Liu, B.

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

Liu, C. H.

Y. C. Chang, C. H. Liu, C. H. Liu, and S. Zhang, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Y. C. Chang, C. H. Liu, C. H. Liu, and S. Zhang, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Liu, J.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Liu, Q. H.

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).
[Crossref]

Liu, X.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Liu, X. L.

X. L. Liu, R. Zhang, and Z. M. Zhang, “Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes,” Appl. Phys. Lett. 103(21), 213102 (2013).
[Crossref]

Liu, Y.

Liu, Z.

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

Liu, Z. W.

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref]

Lu, D.

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref]

Lu, X. C.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Luca, A. D.

S. K. Valiyaveedu, A. D. Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Luo, B.

Luo, C. Y.

Luo, M.

Lv, Q.

Q. Lv, F. Yan, X. Wei, and K. Wang, “High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction,” Adv. Opt. Mater. 6(2), 1700490 (2018).
[Crossref]

Ma, T. B.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Ma, Y.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Majid, E. H.

Man, H.

T. Higo, H. Man, D. B. Gopman, and L. Wu, “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal,” Nat. Photonics 12(2), 73–78 (2018).
[Crossref]

Martin, M. C.

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Mauser, K. W.

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
[Crossref]

Menon, V. M.

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref]

Miao, L.

Mihailescu, I. N.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Mitra, H.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Mukhin, I. S.

I. Ivan, I. S. Mukhin, I. V. Shadrivov, and P. A. Belov, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Mullins, C. B.

R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Narimanov, E.

E. Narimanov and A. Kildishev, “Metamaterials: Naturally hyperbolic,” Nat. Photonics 9(4), 214–216 (2015).
[Crossref]

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref]

Nie, C.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Nistreanu, A.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Orlov, A. A.

A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, and A. A. Orlov, “Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials,” Phys. Rev. A 93(3), 033855 (2016).
[Crossref]

Pan, W.

Park, G.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

Paslari, T.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Peng, W.

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Pianelli, A.

Pitchappa, P.

Poddubny, A. N.

A. N. Poddubny, I. V. Iorsh, and A. A. Sukhorukov, “Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials,” Phys. Rev. Lett. 117(12), 123901 (2016).
[Crossref]

Podoliak, N.

O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020).
[Crossref]

Profir, A.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Qi, L. M.

L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010).
[Crossref]

Qian, L. M.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Qu, C.

C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
[Crossref]

Ralph, S. E.

C. G. Bottenfield, V. A. Thomas, and S. E. Ralph, “Silicon photonic modulator linearity and optimization for microwave photonic links,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–10 (2019).
[Crossref]

Rana, F.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Ren, Z.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Ristoscu, C.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Rodriguez, R.

R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
[Crossref]

Ron Shen, Y.

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Saito, R.

M. S. Ukhtary and R. Saito, “Surface plasmon in graphene and carbon nanotubes,” Carbon 167, 455–474 (2020).
[Crossref]

Sakhdari, M.

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Shadrivov, I. V.

I. Ivan, I. S. Mukhin, I. V. Shadrivov, and P. A. Belov, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Shahin, S.

Shan, Y.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Shen, J.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Shen, T.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Shi, L.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Shi, M. J.

Shi, Z. J.

L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010).
[Crossref]

Shih, K.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Sielezin, K.

Skrobol, C.

Smalley, J. S. T.

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Starodub, E.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Stephens, R. M.

R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
[Crossref]

Sterke, C. M. D.

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Strait, J.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Strangi, G.

S. K. Valiyaveedu, A. D. Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Sturmberg, B. C. P.

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Su, X.

Sukhorukov, A. A.

A. N. Poddubny, I. V. Iorsh, and A. A. Sukhorukov, “Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials,” Phys. Rev. Lett. 117(12), 123901 (2016).
[Crossref]

Sun, F.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Sun, H. H.

R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
[Crossref]

Sun, J.

J. Sun and N. M. Litchinitser, “The route to visible light photolithography using hyperlens,” J. Opt. 20(4), 044008 (2018).
[Crossref]

Sun, Z.

Tang, C.

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

Tang, H.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

Tang, T.

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Thomas, V. A.

C. G. Bottenfield, V. A. Thomas, and S. E. Ralph, “Silicon photonic modulator linearity and optimization for microwave photonic links,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–10 (2019).
[Crossref]

Tian, J. P.

S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019).
[Crossref]

Trushin, S. A.

Turcan, M.

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Ukhtary, M. S.

M. S. Ukhtary and R. Saito, “Surface plasmon in graphene and carbon nanotubes,” Carbon 167, 455–474 (2020).
[Crossref]

Vafapour, Z.

M. R. Forouzeshfard, S. Ghafari, and Z. Vafapour, “Solute concentration sensing in two aqueous solution using an optical metamaterial sensor,” J. Lumin. 230, 117734 (2021).
[Crossref]

E. S. Lari, Z. Vafapour, and H. Ghahraloud, “Optically tunable triple-band perfect absorber for nonlinear optical liquids sensing,” IEEE Sens. J. 20(17), 10130–10137 (2020).
[Crossref]

S. Ghafari, M. R. Forouzeshfard, and Z. Vafapour, “Thermo optical switching and sensing applications of an infrared metamaterial,” IEEE Sens. J. 20(6), 3235–3241 (2020).
[Crossref]

Z. Vafapour, “Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications,” IEEE Trans.on Nanobioscience 18(4), 622–627 (2019).
[Crossref]

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
[Crossref]

Vahid, A.

Valiyaveedu, S. K.

S. K. Valiyaveedu, A. D. Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Vallini, F.

Veksler, D.

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Walther, M.

O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020).
[Crossref]

Wang, C.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Wang, F.

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Wang, J.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

X. Hu and J. Wang, “Design of graphene-based polarization-insensitive optical modulator,” Nanophotonics 7(3), 651–658 (2018).
[Crossref]

Wang, J. Y.

S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019).
[Crossref]

Wang, K.

Q. Lv, F. Yan, X. Wei, and K. Wang, “High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction,” Adv. Opt. Mater. 6(2), 1700490 (2018).
[Crossref]

Wang, Q.

Wang, W. J.

Wang, Y.

Wang, Y. Z.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Wei, D.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Wei, X.

Q. Lv, F. Yan, X. Wei, and K. Wang, “High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction,” Adv. Opt. Mater. 6(2), 1700490 (2018).
[Crossref]

Wen, J. L.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, and X. Zhang, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wu, H.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Wu, L.

T. Higo, H. Man, D. B. Gopman, and L. Wu, “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal,” Nat. Photonics 12(2), 73–78 (2018).
[Crossref]

Wu, S.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Wu, Y.

Xia, L.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Xia, Y.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Xie, N.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

Xie, Y.

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).
[Crossref]

Xu, J.

Xu, J. P.

S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019).
[Crossref]

Xu, Z.

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

Yan, F.

Q. Lv, F. Yan, X. Wei, and K. Wang, “High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction,” Adv. Opt. Mater. 6(2), 1700490 (2018).
[Crossref]

Yan, L. S.

Yan, T.

Yan, Z.

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

Yang, H.

Yang, K.

Yang, R. C.

S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019).
[Crossref]

Yang, X. F.

C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
[Crossref]

Yang, Y.

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Yang, Z. Q.

L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010).
[Crossref]

Yao, J. Q.

Ye, N.

Yin, S.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Yu, B. J.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Yu, L.

Yu, R.

R. Yu, R. Alaee, R. W. Boyd, and J. Abajo, “Ultrafast topological engineering in metamaterials,” Phys. Rev. Lett. 125(3), 037403 (2020).
[Crossref]

Yuan, S.

S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019).
[Crossref]

Zawadzka, A. T.

Zettl, A.

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Zhang, B.

Zhang, F.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Zhang, G.

Zhang, H.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Zhang, H. M.

C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
[Crossref]

Zhang, H. Z.

C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
[Crossref]

Zhang, M.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Zhang, P.

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Zhang, R.

X. L. Liu, R. Zhang, and Z. M. Zhang, “Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes,” Appl. Phys. Lett. 103(21), 213102 (2013).
[Crossref]

Zhang, S.

Y. C. Chang, C. H. Liu, C. H. Liu, and S. Zhang, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, and X. Zhang, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Zhang, Y.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

Zhang, Z. M.

X. L. Liu, R. Zhang, and Z. M. Zhang, “Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes,” Appl. Phys. Lett. 103(21), 213102 (2013).
[Crossref]

Zhao, J. L.

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

Zheng, X.

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Zhou, S. Y.

Zhu, J.

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).
[Crossref]

Zhu, X.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

Zi, J.

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Zou, Y.

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

ACS Photonics (1)

O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, and V. A. Fedotov, “Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications,” ACS Photonics 7(11), 3199–3206 (2020).
[Crossref]

Adv. Opt. Mater. (3)

Y. Xia, J. Wang, Y. Zhang, Y. Shan, Y. Dai, A. Chen, T. Shen, S. Wu, X. Liu, L. Shi, and J. Zi, “Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure,” Adv. Opt. Mater. 8(18), 2000264 (2020).
[Crossref]

Q. Lv, F. Yan, X. Wei, and K. Wang, “High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction,” Adv. Opt. Mater. 6(2), 1700490 (2018).
[Crossref]

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS technologies for optical metamaterials applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

X. L. Liu, R. Zhang, and Z. M. Zhang, “Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes,” Appl. Phys. Lett. 103(21), 213102 (2013).
[Crossref]

S. K. Valiyaveedu, A. D. Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Q. Chen, “Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,” Appl. Phys. Lett. 93(13), 131905 (2008).
[Crossref]

Carbon (2)

J. Chen, S. Chen, P. Gu, Z. Yan, C. Tang, Z. Xu, B. Liu, and Z. Liu, “Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials,” Carbon 162, 187–194 (2020).
[Crossref]

M. S. Ukhtary and R. Saito, “Surface plasmon in graphene and carbon nanotubes,” Carbon 167, 455–474 (2020).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Hepner, “Digital light deflector with prisms and polarization switch based on the pockels effect with transverse field,” IEEE J. Quantum Electron. 8(2), 169–173 (1972).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Bottenfield, V. A. Thomas, and S. E. Ralph, “Silicon photonic modulator linearity and optimization for microwave photonic links,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–10 (2019).
[Crossref]

IEEE Sens. J. (2)

S. Ghafari, M. R. Forouzeshfard, and Z. Vafapour, “Thermo optical switching and sensing applications of an infrared metamaterial,” IEEE Sens. J. 20(6), 3235–3241 (2020).
[Crossref]

E. S. Lari, Z. Vafapour, and H. Ghahraloud, “Optically tunable triple-band perfect absorber for nonlinear optical liquids sensing,” IEEE Sens. J. 20(17), 10130–10137 (2020).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

IEEE Trans.on Nanobioscience (1)

Z. Vafapour, “Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications,” IEEE Trans.on Nanobioscience 18(4), 622–627 (2019).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

M. R. Forouzeshfard, S. Ghafari, and Z. Vafapour, “Solute concentration sensing in two aqueous solution using an optical metamaterial sensor,” J. Lumin. 230, 117734 (2021).
[Crossref]

J. Mater. Chem. A (1)

R. Rodriguez, R. A. Edison, R. M. Stephens, H. H. Sun, A. Heller, and C. B. Mullins, “Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition,” J. Mater. Chem. A 8(7), 3999–4006 (2020).
[Crossref]

J. Mater. Chem. C (1)

Y. Z. Wang, W. C. Huang, J. L. Zhao, H. Hao, F. Zhang, J. Q. Li, H. Zhang, C. Wang, J. Liu, and M. Zhang, “A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect,” J. Mater. Chem. C 7(4), 871–878 (2019).
[Crossref]

J. Opt. (1)

J. Sun and N. M. Litchinitser, “The route to visible light photolithography using hyperlens,” J. Opt. 20(4), 044008 (2018).
[Crossref]

J. Phys. Chem. C (1)

B. Ipaves, J. F. Justo, and L. V. C. Assali, “Carbon-related bilayers: nanoscale building blocks for self-assembly nanomanufacturing,” J. Phys. Chem. C 123(37), 23195–23204 (2019).
[Crossref]

J. Phys. D: Appl. Phys. (1)

N. Enaki, A. Profir, N. Ciobanu, S. Bazgan, A. Nistreanu, M. Turcan, E. Starodub, T. Paslari, C. Ristoscu, M. Badiceanu, and I. N. Mihailescu, “Optical metamaterials for decontamination of translucent liquids and gases,” J. Phys. D: Appl. Phys. 51(38), 385101 (2018).
[Crossref]

Mater. Res. Express (1)

S. Yuan, R. C. Yang, J. P. Xu, J. Y. Wang, and J. P. Tian, “Photoexcited switchable single-/dual-band terahertz metamaterial absorber,” Mater. Res. Express 6(7), 075807 (2019).
[Crossref]

Nano Energy (2)

C. Qu, Y. Q. Chen, X. F. Yang, H. Z. Zhang, X. F. Li, and H. M. Zhang, “LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium,” Nano Energy 39, 262–272 (2017).
[Crossref]

M. Sakhdari, M. Hajizadegan, M. Farhat, and P. Chen, “Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials,” Nano Energy 26, 371–381 (2016).
[Crossref]

Nano Lett. (1)

S. Kim, M. S. Jang, V. W. Brar, K. W. Mauser, L. Kim, and H. A. Atwater, “Electronically tunable perfect absorption in graphene,” Nano Lett. 18(2), 971–979 (2018).
[Crossref]

Nanophotonics (1)

X. Hu and J. Wang, “Design of graphene-based polarization-insensitive optical modulator,” Nanophotonics 7(3), 651–658 (2018).
[Crossref]

Nanoscale (1)

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. H. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).
[Crossref]

Nanoscale Res. Lett. (1)

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 1–7 (2018).
[Crossref]

Nanotechnology (1)

F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, and C. Du, “The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure,” Nanotechnology 29(13), 135201 (2018).
[Crossref]

Nat. Commun. (2)

L. Chen, J. L. Wen, P. Zhang, B. J. Yu, C. Chen, T. B. Ma, X. C. Lu, S. H. Kim, and L. M. Qian, “Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions,” Nat. Commun. 9(1), 1542 (2018).
[Crossref]

Y. C. Chang, C. H. Liu, C. H. Liu, and S. Zhang, “Realization of mid-infrared graphene hyperbolic metamaterials,” Nat. Commun. 7(1), 10568 (2016).
[Crossref]

Nat. Nanotechnol. (1)

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, and L. Ferrari, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref]

Nat. Photonics (3)

E. Narimanov and A. Kildishev, “Metamaterials: Naturally hyperbolic,” Nat. Photonics 9(4), 214–216 (2015).
[Crossref]

T. Higo, H. Man, D. B. Gopman, and L. Wu, “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal,” Nat. Photonics 12(2), 73–78 (2018).
[Crossref]

H. Lin, B. C. P. Sturmberg, K. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. D. Sterke, and B. H. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13(4), 270–276 (2019).
[Crossref]

Nature (1)

Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (2)

Optica (1)

Phys. Plasmas (1)

L. M. Qi, Z. Q. Yang, F. La, X. Gao, and Z. J. Shi, “Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals,” Phys. Plasmas 17(4), 042501 (2010).
[Crossref]

Phys. Rev. A (1)

A. V. Chebykin, V. E. Babicheva, I. V. Iorsh, and A. A. Orlov, “Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials,” Phys. Rev. A 93(3), 033855 (2016).
[Crossref]

Phys. Rev. B (2)

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

I. Ivan, I. S. Mukhin, I. V. Shadrivov, and P. A. Belov, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013).
[Crossref]

Phys. Rev. Lett. (2)

R. Yu, R. Alaee, R. W. Boyd, and J. Abajo, “Ultrafast topological engineering in metamaterials,” Phys. Rev. Lett. 125(3), 037403 (2020).
[Crossref]

A. N. Poddubny, I. V. Iorsh, and A. A. Sukhorukov, “Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials,” Phys. Rev. Lett. 117(12), 123901 (2016).
[Crossref]

Proc. SPIE (1)

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” Proc. SPIE 10535, 105352A (2018).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, and X. Zhang, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Science (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref]

H. N. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. The schematic cell structure of the proposed HMs with graphene.
Fig. 2.
Fig. 2. The real parts of ${\varepsilon _ \bot }$ (a) and ${\varepsilon _{||}}$ (b) of the HMs with graphene.
Fig. 3.
Fig. 3. The real and imaginary parts of ng of the HMs with graphene.
Fig. 4.
Fig. 4. (a) The real and (b) imaginary parts of ng with different phenomenological scattering rates τ.
Fig. 5.
Fig. 5. (a) The real and (b) imaginary parts of ng with different chemical potentials µ.
Fig. 6.
Fig. 6. (a) The real and (b) imaginary parts of ng with different thicknesses of dielectric C dC.
Fig. 7.
Fig. 7. The reflectance, transmittance and absorptance diagrams of TM wave for the proposed cell structure with different incident angles. (a) θ = 0°, (b) θ = 82°.
Fig. 8.
Fig. 8. The reflectance diagrams of TM wave for the proposed cell structure at different incident angles θ.
Fig. 9.
Fig. 9. The transmittance and absorptance diagrams of TM wave when µ = 0.04 eV and θ = 82°.
Fig. 10.
Fig. 10. The transmittance and absorptance diagrams of TM wave at different µ. (a) µ = 0.01 eV, (b) µ = 0.03 eV, (c) µ = 0.05 eV, and (d) µ = 0.07 eV.
Fig. 11.
Fig. 11. The schematic whole structure of the proposed HMs with graphene.
Fig. 12.
Fig. 12. The diagrams of ultra-wideband absorption with different frequency bands. (a) 3.95 - 7.72 THz, (b) 7.89 - 14.65 THz.
Fig. 13.
Fig. 13. The diagrams of the TWAZ with different frequency bands. (a) 4.59 - 5.33 THz, (b) 5.70 - 6.36 THz.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ = i e 2 k B T π 2 ( ω + i / τ ) ( μ k B T + 2 ln ( exp ( μ k B T ) + 1 ) ) + i e 2 4 π 2 ln | 2 μ ( ω + i / τ ) 2 μ + ( ω + i / τ ) | .
| μ | = v F π | a 0 ( V g V D ) | .
ε G = 1 + i σ ω ε 0 d G .
ε = [ ε x x 0 0 0 ε y y 0 0 0 ε z z ] .
ε x x = ε y y = ε | | = ε G d G + ε C d C d G + d C .
ε z z = ε = ε G ε C ( d G + d C ) ε G d C + ε C d G .
n g = ε 2 ε | | ε ε | | ( 1 ε | | ε ) si n 2 θ .
M j = A ,  HG, B = [ cos δ j i η j sin δ j i η j sin δ j cos δ j ] .
M   = j = 1 n M j = ( M 11 M 12 M 21 M 22 ) .
r = ( M 11 + M 12 η 0 ) η 0 ( M 21 + M 22 η 0 ) ( M 11 + M 12 η 0 ) η 0 + ( M 21 + M 22 η 0 ) .
t = 2 η 0 ( M 11 + M 12 η 0 ) η 0 + ( M 21 + M 22 η 0 ) .
A ( ω ) = 1 R ( ω ) T ( ω ) .
θ B =   a r c t a n   ( n 2 / n 1 ) .
ε e f f = ε A d A + ε HG d HG d A + d HG .

Metrics