Abstract

We theoretically present a high-efficiency switchable reflective terahertz polarization converter composed of a periodic array of rectangular-shaped metal-dielectric-graphene sandwich structure on a dielectric substrate supported by a thick metallic film. Graphene sheet together with the rectangular-shaped metal patch provides tunable anisotropic hybrid magnetic plasmon resonance to obtain tunable phase delay of 90° and 180°, corresponding to a quarter-wave plate (QWP) and half-wave plate (HWP), respectively. Results of numerical simulations indicate that the proposed structure can switch functions between a QWP and HWP at a certain frequency simply by adjusting the Fermi energy of graphene. Both the QWP and HWP have high energy conversion efficiency, respectively 83% and 90% at 15.96THz, and high polarization conversion ratio closed to 1.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

As one of the basic characteristics of electromagnetic waves, polarization plays a central role in a wide range of fields. Conventional approaches to realize polarization manipulation include using optical gratings and birefringence materials [1]. However, these methods usually rely on relatively long distance to gain phase accumulation, resulting in large weight, bulky volume, and complex synthesis procedures. Meanwhile, it is worth mentioning that in recent years, terahertz (THz) wave has been widely used in sensing [2], detecting [3], imaging, and spectroscopy [4] with the rapid development of THz technology. Among common THz functional devices such as THz switchers, filters, polarizers, phase shifters, and wave plates [5,6], the THz polarization converters [7] plays an important role. Under this background, the advent of metamaterials opens up a direction towards polarization manipulation at THz regime, which can effectively overcome the above-mentioned shortcomings of conventional polarizers. Different kinds of polarization converters based on metamaterial structures have been achieved, such as metallic nanoparticles with different shapes [79] and metallic nanoslot [10]. However, these reported polarization converters are not easily to be tuned via simple methods such as electrical control, which limits their applications in practice.

Fortunately, graphene [11], a novel semi-metal material, has attracted tremendous attention due to its unique optical and electrical properties, such as low loss, ability to support plasmonic resonance in terahertz and mid-far infrared bands [1214], strong field localization [15] and nonlinear optical effects [16]. More importantly, with electrical gating [17,18] and chemical doping [19], graphene shows the ability to tune plasmonic resonance. Thus, it appears to be a good candidate for designing THz polarization devices [2027]. For example, some researchers have used graphene nanostructures to realize QWP [23] or HWP [2427] to manipulate the polarization state of light both theoretically and experimentally, whose operating frequencies can be tuned by changing the Fermi energy of graphene. Other tunable materials have also been researched addressing the topic of polarization conversion such as phase change material vanadium dioxide (VO2) [28] and liquid crystals (LCs) [29]. However, till now, most of the proposed polarization converters are typically designed to achieve single functionality and cannot switch between QWP and HWP at a certain frequency without refabricating the structure. Only rare papers have been reported for obtaining simultaneous and switchable functions. For example, liquid crystals (LCs)-infiltrated MIM-based metamaterials have been applied into the design of a single-frequency operation electrically tunable THz polarization converter [30]. Meanwhile, switch between HWP and QWP can also be achieved by inserting phase transition material vanadium dioxide (VO2) film into metamaterials [31]. However, it relies on thermal heating to obtain the crucial phase change of VO2. So, Yu et al. presented an electrically controllable terahertz polarization converter based on a structure consisting of two-layer graphene wires [32]. Meanwhile, a recent published paper reported a bi-functional switchable polarization converter based on a hybrid graphene-metal metasurface [33]. Nevertheless, complex structures of their unit cells bring great challenges to their fabrication and application. For more convenient manufacture, Zhang et al. successfully adopted graphene sheets as the tunable component to realize the function of switchable polarization conversions [34]. However, its relatively low reflection efficiency due to high absorption needs to be further improved.

In this paper, we demonstrate theoretically an alternative and efficient graphene-based electrically controlled terahertz polarization conversion without refabricating the structure between QWP and HWP. In the structure, two magnetic plasmon resonance modes are constructed to obtain adjustable phase delay differences of 90° and 180° at the same frequency and two different fermi levels, corresponding to quarter-wave plate (QWP) and half-wave plate (HWP), respectively. In contrast to previous related works, this proposed structure exhibits better comprehensive performance, including simple structure, convenient fabrication, high conversion rate, and high reflectivity. With the new design idea and simple structure, this work provides a new approach towards the implementation of two different polarization functions (QWP and HWP) in one fixed structure, and may be further applied into other potential applications such as modulators, filters, sensors, and detecting and imaging systems.

2. Structure and theoretical analysis

Figures 1(a) and 1(b) schematically illustrate the structure of the proposed functionally switchable reflective terahertz polarization converter based on metal-dielectric-graphene sandwich structure. It consists of a periodic array of rectangular-shaped metal-dielectric-graphene on a dielectric substrate supported by a thick metallic film, with periodic interval P = 500 nm along the x-axis and y-axis, height H1 = 60 nm, width W = 200 nm and length L = 500 nm of the rectangular-shaped metal patch, thickness D1 = 20 nm of the dielectric spacer, thickness D2 = 2770 nm of the dielectric substrate, thickness H2 = 100 nm of the thick metallic film, thickness HG = 1 nm and Fermi energy EF of the single-layered graphene. A bias voltage Vg is imposed, as shown in Fig. 1(c), between the graphene and the thick metal layer, to electrically dope and tune the graphene chemical potential for adjusting EF. As analyzed in these work [3537], the rectangular-shaped metal-dielectric-graphene array in Fig. 1(a) can be equivalent to an inductance-capacitance (LC) circuit to support strong anisotropic hybrid magnetic plasmon resonance mode labelled as MPij [37], where i and j denote the number of loops formed by the electric vector and induced current on the cutting plane perpendicular to x-y (v-direction) and x + y (u-direction) directions, respectively. The resonant frequency of the mode MPij is equal to the oscillation frequency of the equivalent LC circuit, which is proportional to 1/(Le Ce)1/2, where Le is the equivalent inductance and Ce is the equivalent capacitance. In this work, we choose two fundamental magnetic plasmon resonance modes (magnetic dipoles) MP01 and MP10 to realize the electrically controlled polarization switch. The resonant frequencies of MP01 and MP10 are determined by the Fermi energy EF of graphene, and also depends on the width W and length L of the rectangular metal patch respectively. In our model system, the width W and length L have different values, resulting in different equivalent inductances and different resonant frequencies of MP01 and MP10. Thus, by applying two different appropriate bias voltages to the graphene sheet to obtain two appropriate Fermi energy EF1 and EF2, we can make the two resonant modes MP01 and MP10 resonate at the same frequency ω0. For simplicity, suppose that a monochromatic x-polarized plane wave with y magnetic field direction is normally incident into the structure, described by ${\textbf E} = {\textbf x} \cdot \textrm{exp} ( - i\omega t)$ at the surface of the rectangular-shaped metal-dielectric-graphene arrays, where ω is the angular frequency of the incident wave and is close to the resonant frequency ω0 of MP01 and MP10. The incident polarization state can be decomposed into two orthogonal components, ${\textbf E}_{\textbf u}^{{\textbf in}} = ({\textbf x} + {\textbf y}) \cdot \textrm{exp} ( - i\omega t)/\sqrt 2 $ and ${\textbf {E}}_{\textbf v}^{{\textbf in}} = ({\textbf x} - {\textbf y}) \cdot \textrm{exp} ( - i\omega t)/\sqrt 2 $.

 

Fig. 1. (a) Schematic representation of functionally switchable reflective terahertz polarization converter based on metal-dielectric-graphene sandwich structure. From top to bottom, the structure consists of an array of rectangular-shaped metal with a height of H1, a dielectric spacer with a thickness of D1, a graphene layer with a thickness of HG, and a dielectric substrate with a thickness of D2, which is backed by a layer of metal with a thickness of H2. (b) Top view of a unit cell. The width, length, and interval of the rectangular-shaped metal array are W, L, P, respectively. (c) Side view of the structure. Gate voltage Vg is applied on the graphene layer to adjust the fermi level.

Download Full Size | PPT Slide | PDF

When the graphene is electrically doped and possesses a Fermi energy of EF1, the incident polarization component ${\textbf E}_{\textbf u}^{{\textbf in}}$ effectively excites MP01 and is resonantly reflected, which introduces a reflection phase delay Φ10. The other incident polarization component ${\textbf E}_{\textbf v}^{{\textbf in}}$ cannot effectively excite MP01 or MP10 and is ordinarily reflected by the bottom metal layer with a phase delay Φ01. Thus, the total reflected wave is given by the superposition of the resonant reflection and the ordinary reflection with a phase delay difference (PDD) Φ = Φ10 - Φ01. Because the electric vector of MP01 and MP10 is mainly perpendicular to the graphene sheet and the absorption loss of the graphene sheet is highly suppressed, the resonant reflection coefficient r10 is large and can be easily designed to be approximately equal to ordinary reflection coefficient r01. Then, if Φ is equal to ${\pm} \pi \textrm{/2} \pm 2n\pi (n = 0,1,2\ldots )$, the total reflected wave will be circularly polarized, which means the structure can be considered as a QWP.

However, when the graphene is electrically doped and possesses the Fermi energy of EF2, the incident polarization component ${\textbf E}_{\textbf u}^{{\textbf in}}$ cannot effectively excite MP01 or MP10 and is ordinarily reflected by the bottom metal layer with a phase delay Φ01. The other incident polarization component ${\textbf E}_{\textbf v}^{{\textbf in}}$ effectively excites MP10 and is resonantly reflected, which introduces a reflection phase delay Φ10. For the same reason, the resonant reflection coefficient r10 can be easily designed to be approximately equal to the ordinary reflection coefficient r01. Therefore, if Φ is equal to ${\pm} \pi \pm 2n\pi (n = 0,1,2\ldots )$, the polarization of the total reflected wave will be along the y-direction, which shows the structure can convert the polarization direction of incident linearly polarized plane wave from x-direction to y-direction after reflection and implies the structure can be considered as a HWP.

In the design, the phase delay Φ01 of the ordinarily reflected component correlates to the thickness of the substrate and cannot be tuned by changing Fermi energy. Therefore, the tunable phase difference Φ is determined by the phase delay Φ10 of the resonantly reflected component. Because the resonant reflection phase delay Φ10 is mainly related to the deviation of the working frequency from the resonant frequency (that is, the degree of detuning), Φ10 can be tuned by the Fermi energy of graphene and the width W and length L of the rectangular metal patch, respectively. The detailed design idea is as follows. First, we select the operating frequency according to our needs. Then, we find two different Fermi levels EF1 and EF2 and the corresponding width W0 and length L0 by simulation calculations so that the resonance frequencies of the two magnetic resonances (MP01 and MP10) are the same as the operating frequency. Again, because the resonant reflection phase delay Φ10 changes with length and width are more sensitive than the resonance frequency changes with length and width, we can get phase delay difference of 90° and 180° by fine-tuning the width W and length L based on the corresponding width W0 and length L0, respectively. Therefore, electrically controlled polarization switching between QWP and HWP in one device is theoretically realized through the proposed structure. At the same time, key parameters are determined.

3. Simulations and results

To verify the theoretical prediction, frequency domain solver in CST Microwave Studio is then used to emulate the design. In the simulation, the metal material is treated as a dispersive medium described by the Drude model, with relative permittivity expressed by ${\varepsilon _m}(\omega ) = {\omega _\infty } - {\omega _p}^2/({\omega ^2} + i\omega \gamma )$, where ω, ωp and γ are 1.0, 1.38×1016 rad·s−1 and 1.23×1013 s−1 [38], respectively. Both the dielectric substrate and the dielectric spacer are considered to be nondispersive whose relative permittivity ɛr = 4. The single-layered graphene is modeled as an anisotropic effective media of thickness HG = 1 nm with the in-plane relative permittivity ɛin = 2.5 + (ω)/(ωɛ0HG) [39,40] and the out-of-plane relative permittivity ɛout = 2.5. Here, we focus on the THz range and the relatively high graphene Fermi energy EF (EF > 0.6 eV) where ω is much lower than the interband threshold 2EF thus interband transitions can be ignored. Under the approximation, the conductivity σ(ω) can be expressed by the Drude model [4143] as

$$\sigma (\omega ) \approx \frac{{2{e^2}{k_B}T}}{{\pi {\hbar ^2}}}\frac{i}{{\omega + i{\tau ^{ - 1}}}}\ln \left[ {2\cosh (\frac{{{E_F}}}{{2{k_B}T}})} \right]$$
where kB is the Boltzmann constant, T = 300 K is the temperature, ω is the frequency of incident wave, e is the elementary charge, EF is the Fermi energy of graphene, $\tau = \mu {E_F}/e{v_F}^2$[44] is the Drude relaxation lifetime, where the mobility μ is 10000 cm2/(V·s) and the Fermi velocity vF is 106 m/s. In our simulations, with a linearly polarized plane wave used as the excitation source, the unit cell boundary condition is applied in x and y directions (or in u and v directions), while the open boundary condition is applied in z-direction. It should be noted that the choice of operating frequency of the polarizer can be arbitrary as the structural geometry and Fermi energy can always be tuned to match the desired operating frequency in the THz region.

Firstly, consider the condition where EF = 0.7 eV with the electric fields of two incident plane waves parallel to u-direction and v-direction, respectively. Figure 2 shows the reflection coefficients, Ruu and Rvv, and PDD for the two orthogonal fundamental components as functions of frequency, where almost equal reflection coefficients (0.91) and a PDD of near 90° at 15.96 THz can be observed. And as shown in the insets of Fig. 2, the electric fields of incident plane waves parallel to u-direction and v-direction can excite MP10 mode and MP01 mode, respectively. Yet we can see clearly that the electric field of mode MP01 is much stronger, namely the mode MP01 can be more effectively excited by the incident plane wave along v-direction while the mode MP10 cannot be effectively excited, consistent with the previous theoretical predictions and further verifying the function of QWP at 15.96 THz.

 

Fig. 2. Reflection coefficients and reflection phase delay difference for two orthogonal fundamental components parallel to u-direction and v-direction, respectively. The distributions of the z components of electric field on the cutting plane perpendicular to z-direction at a distance of D1/2 above graphene sheet shown in the insets (a)(b) correspond to two fundamental modes MP01 and MP10 at 15.96 THz, respectively.

Download Full Size | PPT Slide | PDF

Key parameters used for characterization of the proposed QWP include axial ratio (AR), circular polarization conversion ratio (CPCR), polarization-averaged power reflectivity, and absorption of the structure. AR is defined as the ratio between the two orthogonal electric-field amplitudes. Figure 3 shows AR of 1 and PDD of nearly 90° at 15.96 THz, indicating efficient conversion of linearly-polarized into circularly-polarized. The proportion of circular polarization among total reflected wave (CPCR) is also calculated, written by the ratio between the reflected circular state of polarization and the total field intensity:

$$CPCR = \frac{{{{({R_{uu}} - i{R_{vv}}\textrm{exp} (i\delta ))}^2}}}{{2({R_{uu}}^2 + {R_{vv}}^2)}}$$
where δ is the PDD between the reflected component along u-direction and v-direction. Here the absorption is not considered. The above formula results in a value of 1 when the component along v-direction is phase-shifted by 90° with the u-direction component and their amplitudes are equal in magnitude, which signifies complete conversion of an incident x-polarized linearly polarized (LP) beam into circularly polarized (CP) wave. As can be seen from Fig. 4, the simulated CPCR at 15.96 THz is closed to 1, suggesting that nearly all of the reflected beam is circularly-polarized.

 

Fig. 3. Axial ratio and reflection phase delay difference for two orthogonal fundamental components in the case of EF = 0.7 eV.

Download Full Size | PPT Slide | PDF

 

Fig. 4. CPCR as a function of frequency.

Download Full Size | PPT Slide | PDF

The polarization-averaged power reflectivity (Rc), as shown in Fig. 5, is computed as the geometrical average between the reflected intensities of components along u-direction and v-direction, and the absorption (Ac) of the structure is also calculated, as ${R_c} = ({R_{uu}}^2 + {R_{vv}}^2)/2$ and Ac = 1 - Rc, respectively. The reflected power up to about 83% at 15.96 THz is adequate for certain imaging applications. Compared with previous graphene-based QWP such as quarter-wave plate based on graphene gratings [23], the proposed QWP exhibits higher energy and polarization conversion ratios, which may originate from the fact that the electric field of the hybrid magnetic plasmon resonance in rectangular-shaped metal-dielectric-graphene is mainly perpendicular to the non-structured graphene sheet and the absorption of graphene is suppressed.

 

Fig. 5. The average polarization power reflectivity and absorption loss of the proposed QWP.

Download Full Size | PPT Slide | PDF

The numerical results presented reveal that the proposed structure can achieve a high-power efficiency and total circular polarization conversion from x-polarized incident wave at a certain frequency.

Then, consider the case where EF = 0.93 eV with electric field of incident wave parallel to x-axis. As can be seen from Fig. 6, the proposed structure presents PDD very close to 180° at 15.96 THz, matching the phase requirement of ${\pm} \pi \pm 2n\pi (n = 0,1,2\ldots )$ for HWP. Polarized reflections Rxx and Ryx and linear polarization conversion ratio (LPCR), defined as $LPCR = {R_{yx}}^2/({R_{xx}}^2 + {R_{yx}}^2)$, as functions of frequency are shown in Fig. 7. Here the absorption is not considered. The inset shows the distributions of the z components of electric field on the cutting plane perpendicular to z-direction at a distance of D1/2 above graphene sheet at 15.96 THz. It can be clearly seen that the mode MP10 can be more effectively excited and is the operation mode. It can be observed that Ryx exhibits a broad peak near 15.96 THz, where Rxx has a corresponding dip, indicating that the structure can realize energy transfer from x to y polarization after reflection, namely the proposed structure can be regarded as an HWP at 15.96 THz. We also find that LPCR reaches 0.999 at 15.96 THz, indicating that almost all the reflected waves are y-polarized.

 

Fig. 6. Reflection coefficients and reflection phase delay difference for two orthogonal fundamental components in the case of EF = 0.93 eV.

Download Full Size | PPT Slide | PDF

 

Fig. 7. Rxx, Ryx and LPCR as functions of frequency. The inset shows the distributions of the z components of electric field on the cutting plane perpendicular to z-direction at a distance of D1/2 above graphene sheet at 15.96 THz.

Download Full Size | PPT Slide | PDF

Moreover, in order to investigate the absorption loss of the structure, polarization power reflectivity Rl and absorption Al are calculated as ${R_l} = {R_{xx}}^2 + {R_{yx}}^2$ and Al = 1 - Rl, respectively. As shown in Fig. 8, the reflected power is approximately 90% and the absorption loss is about 10% at 15.96 THz. In contrast to previous high-efficiency graphene-based HWP such as polarization converters based on graphene metasurface with twisting double L-shaped unit structure array [25], our proposed HWP has higher energy and polarization conversion ratios.

 

Fig. 8. The polarization power reflectivity and absorption loss of the proposed HWP.

Download Full Size | PPT Slide | PDF

To investigate the influence of different structural parameters, LPCR and CPCR under several different values of W and L have been calculated. As can be seen from Figs. 9 and 10, both LPCR and CPCR show a downward trend as W and L shift from their optimal value. This can be explained by the theory of inductance-capacitance circuit. Since the equivalent inductance and equivalent capacitance of the proposed structure directly relate to W and L, variations of W and L will unavoidably lead to the change of oscillation frequency of the equivalent LC circuit, namely the magnetic resonant frequency of the MP01 or MP10 mode. Thus, working frequency will deviates more from the resonant frequency than the original design, resulting in PDD deflecting from 90° or 180° and consequently reducing its waveplate performance.

 

Fig. 9. Calculated (a) LPCR and (b) CPCR as a function of frequency for different length L of the rectangular-shaped metal patch, with W = 200 nm, P = 500 nm, D1 = 20 nm, D2 = 2770 nm, EF = (a) 0.93 eV and (b) 0.7 eV.

Download Full Size | PPT Slide | PDF

 

Fig. 10. Calculated (a) LPCR and (b) CPCR as a function of frequency for different width W of the rectangular-shaped metal patch, with L = 500 nm, P = 500 nm, D1 = 20 nm, D2 = 2770 nm, EF = (a) 0.93 eV and (b) 0.7 eV.

Download Full Size | PPT Slide | PDF

Meantime, LPCR and CPCR show different sensitivity towards changes of W and L. When LPCR of HWP significantly declines as L deviates from the optimal value of 500 nm, CPCR of QWP remains in place within the working bandwidth. Conversely, as W gradually deviates from 200 nm, CPCR shows much dramatic attenuation than LPCR. Such contrast intuitively suggests the design ideas of the proposed structure as mentioned above, that is, to make MP01 resonance responsible for QWP, and MP10 responsible for HWP.

The polarization conversion performances under different EF are also simulated. As shown earlier, the proposed structure acts as efficient QWP when EF = 0.7 eV, and efficient HWP when EF = 0.93 eV, respectively, both at 15.96 THz. While as shown in Fig. 11, with other EF, the proposed structure will also work as HWP and QWP respectively, at different frequency. According to the calculation results, peaks of CPCR and LPCR will deviate from 15.96 THz with different degrees of blue-shifting, as EF increases from EF1 = 0.7 eV and EF2 = 0.93 eV, respectively. Therefore, to obtain the best performance of polarization conversion at the chosen specific frequency (15.96 THz), the Fermi levels for switchable functions are set to be EF1 = 0.7 eV and EF2 = 0.93 eV.

 

Fig. 11. Calculated (a) LPCR and (b) CPCR as a function of frequency for different EF of graphene.

Download Full Size | PPT Slide | PDF

In addition, it should be noted that, 15.96 THz is just a specific frequency used to demonstrate the validity of the proposed structure. For practical application, working bandwidth of the proposed structure should also be discussed. As QWP, as can be seen from Figs. 2 and 4, PDD stables at 90°±5° from 15.61 THz to 16.34 THz, where the device presents high CPCR≥0.99. And as HWP, as can be seen from Figs. 6 and 7, the device also maintains stable performance (LPCR≥0.99) from 15.38 THz to 16.28 THz, where PDD stables at 180°±10°. Namely, the device can be considered as conventional QWP or HWP with broad working bandwidth. More importantly, within the overlapping section of the working bandwidth (15.61 THz to 16.28 THz) of the QWP and HWP, the device can realize broadband switchable function by adjusting EF properly without refabricating its structure.

Finally, we compare this work with other reported papers about HWP-QWP switching based on graphene or other tunable materials, such as liquid crystals and vanadium dioxide, as shown in Table 1. Comparison result shows that the proposed structure can achieve effective QWP-HWP switching, with simple structure and convenient fabrication, high conversion rate, and high reflectivity. However, the structure should still be further optimized to gain a broader relative working bandwidth to the central working frequency.

Tables Icon

Table 1. Comparisons between the proposed polarization converter and other papers about tunable HWP-QWP switching

4. Conclusion

This work illustrates how a high-efficiency functionally switchable reflective terahertz polarization converter with fixed structural parameters but different Fermi energy of graphene can be created based on hybrid magnetic plasmon resonance. Detailed simulations and calculations confirm the functions of QWP at 15.96 THz when EF = 0.7 eV and of HWP at the same frequency when EF = 0.93 eV with high conversion efficiency. Thus, functions of the proposed structure can be switched between QWP and HWP at same frequency without refabricating the structure. Given these notable advances, the proposed structure can be effectively used as a multifunctional wave-plate, demonstrating a conceptually new pathway for functionally switchable polarization modulation. It can also be further explored to be utilized in other interesting applications such as THz imaging or communication systems.

Funding

National Natural Science Foundation of China (11674396).

Acknowledgments

The author thanks his co-workers for giving him the pertinent comments and constructive suggestions on this work.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

1. R. Magnusson, M. Shokooh-Saremi, and E. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010). [CrossRef]  

2. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014). [CrossRef]  

3. J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014). [CrossRef]  

4. P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photonics Rev. 5(1), 124–166 (2011). [CrossRef]  

5. S. Savo, D. Shrekenhamer, and W. Padilla, “Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications,” Adv. Opt. Mater. 2(3), 275–279 (2014). [CrossRef]  

6. M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]  

7. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009). [CrossRef]  

8. J. Yang and J. Zhang, “Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles,” Plasmonics 6(2), 251–254 (2011). [CrossRef]  

9. S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017). [CrossRef]  

10. J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013). [CrossRef]  

11. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004). [CrossRef]  

12. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef]  

13. Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015). [CrossRef]  

14. J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016). [CrossRef]  

15. Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010). [CrossRef]  

16. S. Virally, Q. Bao, K. Loh, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012). [CrossRef]  

17. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013). [CrossRef]  

18. Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014). [CrossRef]  

19. H. Liu, Y. Liu, and D. B. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011). [CrossRef]  

20. A. Fallahi and J. Perruisseau-Carrier, “Design of Tunable Biperiodic Graphene Metasurfaces,” Phys. Rev. B 86(19), 195408 (2012). [CrossRef]  

21. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012). [CrossRef]  

22. Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011). [CrossRef]  

23. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230 (2015). [CrossRef]  

24. J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016). [CrossRef]  

25. M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017). [CrossRef]  

26. J. Zhu, S. Li, L. Deng, C. Zhang, Y. Yang, and H. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164 (2018). [CrossRef]  

27. S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018). [CrossRef]  

28. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015). [CrossRef]  

29. C. Hsieh, C. Yang, F. Shih, R. Pan, and C. Pan, “Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate,” Opt. Express 27(7), 9933–9940 (2019). [CrossRef]  

30. B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017). [CrossRef]  

31. J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020). [CrossRef]  

32. X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016). [CrossRef]  

33. J. Zhang, K. Zhang, A. Cao, Y. Liu, and W. Kong, “Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface,” Opt. Express 28(18), 26102–26110 (2020). [CrossRef]  

34. W. Zhang, J. Jiang, J. Yuan, S. Liang, J. Qian, J. Shu, and L. Jiang, “Functionality-switchable terahertz polarization converter based on a graphene-integrated planar metamaterial,” OSA Continuum 1(1), 124–135 (2018). [CrossRef]  

35. J. Pendry, A. Holden, D. Ronbinson, and W. Stewartv, “Magnetism from conductors and Enhanced Nonlinear Phenomenal,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]  

36. Z. Zhu, C. Guo, K. Liu, W. Ye, X. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012). [CrossRef]  

37. C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019). [CrossRef]  

38. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Jr, C. A. Ward, and R. R. Bell, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983). [CrossRef]  

39. A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011). [CrossRef]  

40. S. Thongrattanasiri and J. Garcia de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013). [CrossRef]  

41. Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014). [CrossRef]  

42. L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007). [CrossRef]  

43. L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007). [CrossRef]  

44. Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson, M. Shokooh-Saremi, and E. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010).
    [Crossref]
  2. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  3. J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
    [Crossref]
  4. P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  5. S. Savo, D. Shrekenhamer, and W. Padilla, “Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
    [Crossref]
  6. M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  7. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
    [Crossref]
  8. J. Yang and J. Zhang, “Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles,” Plasmonics 6(2), 251–254 (2011).
    [Crossref]
  9. S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
    [Crossref]
  10. J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
    [Crossref]
  11. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
    [Crossref]
  12. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref]
  13. Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
    [Crossref]
  14. J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
    [Crossref]
  15. Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
    [Crossref]
  16. S. Virally, Q. Bao, K. Loh, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
    [Crossref]
  17. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
    [Crossref]
  18. Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref]
  19. H. Liu, Y. Liu, and D. B. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
    [Crossref]
  20. A. Fallahi and J. Perruisseau-Carrier, “Design of Tunable Biperiodic Graphene Metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
    [Crossref]
  21. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref]
  22. Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  23. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230 (2015).
    [Crossref]
  24. J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
    [Crossref]
  25. M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017).
    [Crossref]
  26. J. Zhu, S. Li, L. Deng, C. Zhang, Y. Yang, and H. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164 (2018).
    [Crossref]
  27. S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018).
    [Crossref]
  28. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
    [Crossref]
  29. C. Hsieh, C. Yang, F. Shih, R. Pan, and C. Pan, “Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate,” Opt. Express 27(7), 9933–9940 (2019).
    [Crossref]
  30. B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
    [Crossref]
  31. J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020).
    [Crossref]
  32. X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
    [Crossref]
  33. J. Zhang, K. Zhang, A. Cao, Y. Liu, and W. Kong, “Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface,” Opt. Express 28(18), 26102–26110 (2020).
    [Crossref]
  34. W. Zhang, J. Jiang, J. Yuan, S. Liang, J. Qian, J. Shu, and L. Jiang, “Functionality-switchable terahertz polarization converter based on a graphene-integrated planar metamaterial,” OSA Continuum 1(1), 124–135 (2018).
    [Crossref]
  35. J. Pendry, A. Holden, D. Ronbinson, and W. Stewartv, “Magnetism from conductors and Enhanced Nonlinear Phenomenal,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  36. Z. Zhu, C. Guo, K. Liu, W. Ye, X. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
    [Crossref]
  37. C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
    [Crossref]
  38. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Jr, C. A. Ward, and R. R. Bell, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [Crossref]
  39. A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref]
  40. S. Thongrattanasiri and J. Garcia de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
    [Crossref]
  41. Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
    [Crossref]
  42. L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
    [Crossref]
  43. L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
    [Crossref]
  44. Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref]

2020 (2)

J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020).
[Crossref]

J. Zhang, K. Zhang, A. Cao, Y. Liu, and W. Kong, “Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface,” Opt. Express 28(18), 26102–26110 (2020).
[Crossref]

2019 (2)

C. Hsieh, C. Yang, F. Shih, R. Pan, and C. Pan, “Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate,” Opt. Express 27(7), 9933–9940 (2019).
[Crossref]

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

2018 (3)

2017 (3)

M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017).
[Crossref]

S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

2016 (3)

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

2015 (3)

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230 (2015).
[Crossref]

Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

2014 (6)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

S. Savo, D. Shrekenhamer, and W. Padilla, “Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

2013 (3)

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref]

S. Thongrattanasiri and J. Garcia de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

2012 (4)

S. Virally, Q. Bao, K. Loh, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of Tunable Biperiodic Graphene Metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Z. Zhu, C. Guo, K. Liu, W. Ye, X. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
[Crossref]

2011 (6)

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

H. Liu, Y. Liu, and D. B. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
[Crossref]

J. Yang and J. Zhang, “Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

2010 (2)

R. Magnusson, M. Shokooh-Saremi, and E. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010).
[Crossref]

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

2009 (2)

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

2007 (2)

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

1999 (1)

J. Pendry, A. Holden, D. Ronbinson, and W. Stewartv, “Magnetism from conductors and Enhanced Nonlinear Phenomenal,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1983 (1)

Ajayan, P.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

An, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Avouris, P.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Bao, Q.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

S. Virally, Q. Bao, K. Loh, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
[Crossref]

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Beccherelli, R.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Bechtel, H.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Cao, A.

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Capasso, F.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Chang, L.

M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017).
[Crossref]

Chang, S.

S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018).
[Crossref]

S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Chen, M.

S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017).
[Crossref]

Chen, S.

S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018).
[Crossref]

Chen, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Chiang, I. K.

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Chucai, G.

Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Cong, L.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cooke, D. G.

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Crespi, V.

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Deng, L.

Diem, M.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

Eklund, P.

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Falkovsky, L.

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of Tunable Biperiodic Graphene Metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Fan, F.

S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018).
[Crossref]

S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Fang, Z.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Feng, Y.

Firsov, A.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Gajic, R.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Gao, X.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Garcia de Abajo, J.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

S. Thongrattanasiri and J. Garcia de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Godbout, N.

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Gou, J.

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

Grigorieva, I.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Guo, C.

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Z. Zhu, C. Guo, K. Liu, W. Ye, X. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
[Crossref]

Halas, N.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Hao, J.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Hao, Q.

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Holden, A.

J. Pendry, A. Holden, D. Ronbinson, and W. Stewartv, “Magnetism from conductors and Enhanced Nonlinear Phenomenal,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Hsieh, C.

Huang, T.

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Huang, X.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Isic, G.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Jensen, L.

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Jepsen, P.

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Ji, Y.

S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

Jiang, J.

Jiang, L.

Jiang, T.

Johnson, E.

Jr, R. W.

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Juluri, B. K.

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Kats, M.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

Ken, L.

Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Koch, M.

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kockaert, P.

Kong, J.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

Kong, W.

Koschny, T.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Li, C.

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

Li, S.

Li, W.

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

Li, X.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Liang, S.

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Lim, C.

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Liu, H.

H. Liu, Y. Liu, and D. B. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
[Crossref]

Liu, K.

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Z. Zhu, C. Guo, K. Liu, W. Ye, X. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
[Crossref]

Liu, Y.

J. Zhang, K. Zhang, A. Cao, Y. Liu, and W. Kong, “Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface,” Opt. Express 28(18), 26102–26110 (2020).
[Crossref]

J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020).
[Crossref]

H. Liu, Y. Liu, and D. B. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
[Crossref]

Liu, Z.

S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018).
[Crossref]

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Loh, K.

S. Virally, Q. Bao, K. Loh, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37(11), 1856–1858 (2012).
[Crossref]

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Loncar, M.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

Long, L. L.

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Ma, T.

Magnusson, R.

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Massar, S.

Mehmood, M. Q.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Morozov, S.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

Mou, L.

S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018).
[Crossref]

Ni, Z.

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

Ordal, M. A.

Padilla, W.

S. Savo, D. Shrekenhamer, and W. Padilla, “Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Pan, C.

Pan, R.

Pendry, J.

J. Pendry, A. Holden, D. Ronbinson, and W. Stewartv, “Magnetism from conductors and Enhanced Nonlinear Phenomenal,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Peng, J.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of Tunable Biperiodic Graphene Metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Pershoguba, S.

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Premaratne, M.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Qian, J.

Qiao, W.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Qiu, C.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Qiu, C. W.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Qiu, M.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Ren, Q.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Ronbinson, D.

J. Pendry, A. Holden, D. Ronbinson, and W. Stewartv, “Magnetism from conductors and Enhanced Nonlinear Phenomenal,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Savo, S.

S. Savo, D. Shrekenhamer, and W. Padilla, “Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Schlather, A.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

Shen, Y.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Shih, F.

Shiqiao, Q.

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Shokooh-Saremi, M.

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. Padilla, “Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Shu, J.

Singh, R.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Song, J.

J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020).
[Crossref]

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Song, Y.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

Soukoulis, C.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Stewartv, W.

J. Pendry, A. Holden, D. Ronbinson, and W. Stewartv, “Magnetism from conductors and Enhanced Nonlinear Phenomenal,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Tang, D.

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Teng, J.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

S. Thongrattanasiri and J. Garcia de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Varlamov, A.

L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

Vasic, B.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Virally, S.

Wang, B.

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Wang, C.

M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017).
[Crossref]

Wang, D.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Wang, J.

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

Wang, Y.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Ward, C. A.

Wen, L. L.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, S.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Xia, F.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Xiao, X.

M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017).
[Crossref]

Xiaodong, Y.

Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Xu, S.

S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018).
[Crossref]

S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

Xu, W.

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

Xue, Y.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Yang, B.

Yang, C.

Yang, J.

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref]

J. Yang and J. Zhang, “Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Yang, W. L.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yang, Y.

Yao, Y.

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

Ye, W.

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Z. Zhu, C. Guo, K. Liu, W. Ye, X. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
[Crossref]

Yu, X. Y.

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yuan, J.

Yuan, X.

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Z. Zhu, C. Guo, K. Liu, W. Ye, X. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Zhang, C.

J. Zhu, S. Li, L. Deng, C. Zhang, Y. Yang, and H. Zhu, “Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial,” Opt. Mater. Express 8(5), 1164 (2018).
[Crossref]

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Zhang, J.

J. Zhang, K. Zhang, A. Cao, Y. Liu, and W. Kong, “Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface,” Opt. Express 28(18), 26102–26110 (2020).
[Crossref]

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

J. Yang and J. Zhang, “Nano-polarization-converter based on magnetic plasmon resonance excitation in an L-shaped slot antenna,” Opt. Express 21(7), 7934–7942 (2013).
[Crossref]

J. Yang and J. Zhang, “Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Zhang, K.

Zhang, L.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Zhang, W.

W. Zhang, J. Jiang, J. Yuan, S. Liang, J. Qian, J. Shu, and L. Jiang, “Functionality-switchable terahertz polarization converter based on a graphene-integrated planar metamaterial,” OSA Continuum 1(1), 124–135 (2018).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Zhang, Y.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230 (2015).
[Crossref]

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

Zhao, D.

M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017).
[Crossref]

Zhao, J.

J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230 (2015).
[Crossref]

Zheng, Y.

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Zhihong, Z.

Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

Zhong, Y. L.

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Zhou, J.

J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020).
[Crossref]

Zhou, L.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Zhou, Y.

J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020).
[Crossref]

Zhu, B.

Zhu, D. B.

H. Liu, Y. Liu, and D. B. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
[Crossref]

Zhu, H.

Zhu, J.

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

Zhu, X.

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Zhu, Z.

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

Z. Zhu, C. Guo, K. Liu, W. Ye, X. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett. 37(4), 698–700 (2012).
[Crossref]

Zografopoulos, D. C.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Zou, J.

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

ACS Nano (1)

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. Ajayan, P. Nordlander, N. Halas, and J. Garcia de Abajo, “Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

ACS Photonics (1)

J. Song, L. Zhang, Y. Xue, S. Wu, F. Xia, C. Zhang, Y. L. Zhong, Y. Zhang, J. Teng, M. Premaratne, C. Qiu, and Q. Bao, “Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension,” ACS Photonics 3(10), 1986–1992 (2016).
[Crossref]

Adv. Opt. Mater. (1)

S. Savo, D. Shrekenhamer, and W. Padilla, “Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

AIP Adv. (1)

J. Wang, J. Gou, and W. Li, “Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film,” AIP Adv. 4(2), 027106 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (2)

Z. Zhihong, G. Chucai, J. Zhang, L. Ken, Y. Xiaodong, and Q. Shiqiao, “Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width,” Appl. Phys. Express 8(1), 015102 (2015).
[Crossref]

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and Q. Shiqiao, “Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Appl. Phys. Lett. (2)

S. Xu, F. Fan, M. Chen, Y. Ji, and S. Chang, “Terahertz polarization mode conversion in compound metasurface,” Appl. Phys. Lett. 111(3), 031107 (2017).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Carbon (1)

S. Xu, S. Chen, L. Mou, F. Fan, Z. Liu, and S. Chang, “Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control,” Carbon 139, 801–807 (2018).
[Crossref]

Chin. Phys. Lett. (1)

J. Zhao, J. Song, Y. Zhou, Y. Liu, and J. Zhou, “Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial,” Chin. Phys. Lett. 37(6), 064204 (2020).
[Crossref]

Eur. Phys. J. B (1)

L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56(4), 281–284 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Y. Yu, X. Gao, W. Qiao, L. L. Wen, and W. L. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. Pendry, A. Holden, D. Ronbinson, and W. Stewartv, “Magnetism from conductors and Enhanced Nonlinear Phenomenal,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Appl. Phys. (1)

Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, and Q. Shiqiao, “Electrically controlling the polarizing direction of a graphene polarizer,” J. Appl. Phys. 116(10), 104304 (2014).
[Crossref]

J. Mater. Chem. (1)

H. Liu, Y. Liu, and D. B. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
[Crossref]

J. Opt. (1)

C. Li, J. Zou, J. Zhang, W. Xu, C. Guo, K. Liu, X. Yuan, Q. Shiqiao, and Z. Zhu, “Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure,” J. Opt. 21(10), 105003 (2019).
[Crossref]

J. Phys. Chem. C (1)

Q. Hao, B. K. Juluri, Y. Zheng, B. Wang, I. K. Chiang, L. Jensen, V. Crespi, P. Eklund, and T. Huang, “Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold,” J. Phys. Chem. C 114(42), 18059–18066 (2010).
[Crossref]

Laser & Photonics Rev. (1)

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nano Lett. (2)

Z. Fang, Y. Wang, A. Schlather, Z. Liu, P. Ajayan, J. Garcia de Abajo, P. Nordlander, X. Zhu, and N. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref]

Y. Yao, R. Shankar, M. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref]

Nanotechnology (1)

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Nat. Nanotechnol. (2)

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. Bechtel, X. Liang, A. Zettl, Y. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Nat. Photonics (1)

Q. Bao, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Opt. Commun. (1)

M. Chen, X. Xiao, L. Chang, C. Wang, and D. Zhao, “High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array,” Opt. Commun. 394, 50–55 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

OSA Continuum (1)

Phys. Rev. A (1)

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Phys. Rev. B (3)

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of Tunable Biperiodic Graphene Metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Phys. Rev. Lett. (1)

S. Thongrattanasiri and J. Garcia de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref]

Plasmonics (1)

J. Yang and J. Zhang, “Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Sci. Rep. (1)

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C. W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref]

Science (2)

K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]

A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic representation of functionally switchable reflective terahertz polarization converter based on metal-dielectric-graphene sandwich structure. From top to bottom, the structure consists of an array of rectangular-shaped metal with a height of H1, a dielectric spacer with a thickness of D1, a graphene layer with a thickness of HG, and a dielectric substrate with a thickness of D2, which is backed by a layer of metal with a thickness of H2. (b) Top view of a unit cell. The width, length, and interval of the rectangular-shaped metal array are W, L, P, respectively. (c) Side view of the structure. Gate voltage Vg is applied on the graphene layer to adjust the fermi level.
Fig. 2.
Fig. 2. Reflection coefficients and reflection phase delay difference for two orthogonal fundamental components parallel to u-direction and v-direction, respectively. The distributions of the z components of electric field on the cutting plane perpendicular to z-direction at a distance of D1/2 above graphene sheet shown in the insets (a)(b) correspond to two fundamental modes MP01 and MP10 at 15.96 THz, respectively.
Fig. 3.
Fig. 3. Axial ratio and reflection phase delay difference for two orthogonal fundamental components in the case of EF = 0.7 eV.
Fig. 4.
Fig. 4. CPCR as a function of frequency.
Fig. 5.
Fig. 5. The average polarization power reflectivity and absorption loss of the proposed QWP.
Fig. 6.
Fig. 6. Reflection coefficients and reflection phase delay difference for two orthogonal fundamental components in the case of EF = 0.93 eV.
Fig. 7.
Fig. 7. Rxx, Ryx and LPCR as functions of frequency. The inset shows the distributions of the z components of electric field on the cutting plane perpendicular to z-direction at a distance of D1/2 above graphene sheet at 15.96 THz.
Fig. 8.
Fig. 8. The polarization power reflectivity and absorption loss of the proposed HWP.
Fig. 9.
Fig. 9. Calculated (a) LPCR and (b) CPCR as a function of frequency for different length L of the rectangular-shaped metal patch, with W = 200 nm, P = 500 nm, D1 = 20 nm, D2 = 2770 nm, EF = (a) 0.93 eV and (b) 0.7 eV.
Fig. 10.
Fig. 10. Calculated (a) LPCR and (b) CPCR as a function of frequency for different width W of the rectangular-shaped metal patch, with L = 500 nm, P = 500 nm, D1 = 20 nm, D2 = 2770 nm, EF = (a) 0.93 eV and (b) 0.7 eV.
Fig. 11.
Fig. 11. Calculated (a) LPCR and (b) CPCR as a function of frequency for different EF of graphene.

Tables (1)

Tables Icon

Table 1. Comparisons between the proposed polarization converter and other papers about tunable HWP-QWP switching

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω ) 2 e 2 k B T π 2 i ω + i τ 1 ln [ 2 cosh ( E F 2 k B T ) ]
C P C R = ( R u u i R v v exp ( i δ ) ) 2 2 ( R u u 2 + R v v 2 )

Metrics