Abstract

In this paper, we describe the study of the faithful propagation of entangled orbital angular momentum states of light under atmospheric turbulence. The spatial mode is encoded in the Ince-Gauss modes that constitute a complete family of exact and orthogonal solutions of the paraxial wave equation in an elliptic coordinate system. Adaptive optics is employed to protect the entanglement from degradation, in which the threshold of turbulence strength could be enhanced for a reliable entanglement distribution. We find that the evolution of entanglements relies on ellipticity and shows the opposite trend when adopting adaptive optics. The turbulence strengths, at which the concurrences of various entangled states become zero, are different without adaptive optics but almost the same with adaptive optics. The trace of the density matrix is independent of the different ellipticity with or without adaptive optics. We believe that this investigation is useful for long-distance quantum communications and quantum networks using orbital angular momentum as information carriers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spatial modes of optical field are currently the focus of intense research within the quantum information community [13]. Not only are they of fundamental interest, but they are also practically useful owing to their intrinsic orthogonality and discrete infinite Hilbert spaces [4,5]. Over the past decades, spatial modes has been extensively investigated in free-space optical communication in both classical and quantum cases. For example, classical communication using spatial modes has been demonstrated successfully over a distance of 143 km [6] and a transmission rate of 100 Tbits [7]. In the quantum region, the quantum key distribution [8] over a distance of $d=210 m$ and entanglement distribution over an intra-city link of 3 km have also been reported [9].

In free-space quantum communications optical links, one of the main challenges for transmitting spatially-structured photons faithfully is atmospheric turbulence, which distorts the wavefront and causes fluctuations in the intensity of the light beam. Theoretically, the dimensions of the Hilbert space of spatial modes are infinite, and turbulence usually maps photons prepared in a certain spatial mode onto a linear combination of multiple modes on an orthogonal basis, which leads to a loss of information [10]. Compared with a system using polarization encoding, this is a drawback for any system encoded with the spatial degree of freedom, as usually the entire Hilbert space is used in polarization encoding. To address the challenge of turbulence elimination of spatial modes, several theoretical and experimental approaches have been proposed in recent years [1113].

In order to achieve a longer propagation distance of spatial photons, a compensation scheme, such as adaptive optics (AO), can be used to mitigate errors caused by turbulence [14]. Based on a wavefront sensor, deformable, and tip-tilt mirrors controlled by a real-time feedback loop, AO has developed into an indispensable part in large astronomical telescopes [15]. In recent years, AO has also been frequently applied in the study of quantum communication. Specifically, recent work also demonstrates the potential applications of AO in increasing the fidelity and reducing the entanglement losses of spatial states [10,16].

Commonly used spaces for spatial modes include the Laguerre-Gaussian (LG) basis, which denotes a state in a circular cylindrical coordinate system, and the Hermite-Gaussian (HG) basis, which denotes a state in the Cartesian coordinate system. LG modes are denoted as $LG_{n,l}$ where $l$ is the orbital angular momentum (OAM) index and $p$ is the radial index and HG modes $HG_{n_x,n_y}$ are described by the indices $n_x$ and $n_y$. Here, we study entangled states based on a class of continuous spaces of the so-called Ince-Gauss (IG) mode [17,18], which denotes spatial modes in the elliptic coordinate system and has both, LG and HG modes as special cases. It is found that the effect of turbulence on entangled states is ellipticity dependent. Entangled IG states with larger ellipticity are less likely to be affected by turbulence compared with those with smaller ellipticity. In addition, we applied AO during optical transmission, which greatly reduces entanglement attenuation. By employing AO, the opposite tendency is presented, that is, entangled IG states with smaller ellipticity turn out to be more robust. However, turbulence strength for states totally disentangled with adaptive optics is independent of ellipticity. In both cases, traces for different states degrade almost consistently. These results are counter intuitive because IG modes with different ellipticity span the same space. These phenomena have never been reported, and we believe that the findings of this study could lead to some new insights and novel techniques.

2. Theoretical background

2.1 Ince-Gauss mode

LG and HG modes are well known as the exact solutions of the free-space paraxial wave equation (PWE)($\nabla ^2_t+2ik\partial /{\partial z})\Psi (r)=0$ in circular cylindrical and Cartesian coordinate systems, respectively. In addition to these two modes, Bandres introduced another, complete basis of the transverse eigenmodes IG modes [17], which are exact solutions to the paraxial wave equation in an elliptic coordinate system. Further, even IG modes are expressed as

$$\begin{aligned}IG^e_{p,m,\epsilon}(\boldsymbol{r})&=\frac{C\omega_0}{\omega(z)}C^m_p(i\xi,\epsilon)C^m_p(\eta,\epsilon)exp[\frac{-r^2}{\omega^2(z)}]\\ & \quad \times exp[ikz+i\frac{kr^2}{2R(z)}\\ & \quad -i(p+1)arctan(\frac{z}{z_R})], \end{aligned}$$
where $C$ is the normalization constant. $\omega _0$ and $\omega (z)$ refer to the beam waist at the focus z=0 and the beam radius at the position of $z$, respectively. $C^m_p(*)$ represents even Ince polynomials. The continuous parameter $\epsilon$ describes the ellipticity, and ($\xi$,$\eta$) describes the elliptical coordinates. Odd modes can be derived by replacing $C^m_p(*)$ with odd Ince polynomials $S^m_p(*)$ and the normalization constant $C$ by $S$. IG modes are orthogonal with respect to the indices and the parity, i.e., $\iint IG^{\sigma }_{p,m}IG^{\sigma ^{\prime }*}_{p^{\prime },m^{\prime }}dS=\delta _{\sigma \sigma ^{\prime }}\delta _{pp^{\prime }}\delta _{mm^{\prime }}$, where $\delta$ is the Kronecker delta function and $\sigma =\left \{e,o\right \}$ is the parity. The helical Ince-Gauss modes (hereinafter, IG modes) can be constructed by a linear combination of even and odd modes [19] as follows:
$$IG^\pm_{p,m,\epsilon}(\boldsymbol{r})=\frac{1}{\sqrt{2}}(IG^e_{p,m,\epsilon}(\boldsymbol{r})\pm iIG^o_{p,m,\epsilon}(\boldsymbol{r})),$$
where the sign defines the direction in which the phase rotates. It can be easily figured out that IG modes with different rotatory are also orthogonal to each other.

In the extreme case of $\epsilon \rightarrow 0$, the IG modes will be transformed into LG modes, and the transition from IG modes to HG modes occurs when $\epsilon \rightarrow \infty$ [17,20]. These features make IG modes a promising candidate for enabling an understanding of continuous basis and basis-dependent effects.

Figure 1 shows the intensity distributions of several IG modes, including the special cases of IG modes tending to LG and HG modes, respectively.

 

Fig. 1. Density distributions of IG modes with different ellipticity. Modes with higher $\epsilon$ have more intensity nulls than those with lower $\epsilon$.

Download Full Size | PPT Slide | PDF

2.2 Model of turbulence

The refractive index of the atmosphere changes randomly with space and time, which causes random deformations of light beams during propagation. Statistical analysis must be employed as it is almost impossible to describe the refractive index exactly. Many current models for free-space channels can be traced back to the work of Kolmogorov [21,22], David L. Fried [23], and further extensions [24,25]. In 1941, Kolmogorov developed a statistical theory that illustrated that the statistics of the refractive index could be controlled by power spectral density [21]. This establishes a relation between the phase fluctuation and the power spectral density $\Phi (\kappa )$. In our simulations, we choose the modified von Kármán spectrum, which takes both the influence of an inner and outer scale into consideration [25,26]. The modified von Kármán spectrum could be described as

$$\Psi^{mvK}_{\phi}(\kappa)=0.023 r^{{-}5/3}_0\frac{exp(-\kappa^2/\kappa^2_m)}{(\kappa^2+\kappa^2_0)^{{-}11/6}},$$
where $r_0$ is the Fried parameter which characterizes the strength of the turbulence along the propagation path, $\kappa$ is the angular spatial frequency, and $\kappa _m$ and $\kappa _0$ are the model-dependent constant parameters chosen to match the inner and outer scales, respectively [27].

By applying the multi-phase screen method, the turbulence is expressed by equally spaced phase screens separated by a distance of $\Delta Z$ [10,28]. Each of them is represented by a matrix generated by the sub-harmonic method [27] and introduces phase fluctuation to the incident light beam. Following the experimentally demonstrated model [29], the propagation path is broken up into 10 $m$ cells. In each phase screen, the Fried parameter is given as $r_{0_{plane}}\approx (\frac {\Delta Z}{Z})^{-3/5 }r_0$, so that accumulated over all phase screens, it yields a channel that is approximately equivalent to $r_0$. After passing an individual phase screen, the light beam experiences a vacuum propagation performed with an angular spectrum propagator until the next phase screen [30].

2.3 Adaptive optics

The concept of AO was originally developed for astronomy, but it has been applied to OAM-based classical communication [31,32]. Typically, a beacon Gaussian beam and signal beam are prepared in orthogonal polarization states. The Gaussian beam is then coupled with the signal light and sent along the same propagation path as the signal light. On the receiver side, the Gaussian beam is separated from the signal by a polarization beam splitter and then sent to the wavefront sensor. The wavefront sensor extracts the phase correction $\phi _c(r,\theta )$ from the Gaussian beam. Therefore, the corrected state is given as $\tilde {\psi }(r,\theta )=exp(-i\phi _c(r,\theta ))\psi (r,\theta )$, where $\psi (r,\theta )$ is the received signal beam [16].

The scheme described above is known as post-compensation, which corrects the wavefront at the receiver side. Furthermore, AO correction has also been applied at the sender side (pre-compensation) [33] and on both sides [32]. It has been claimed that pre-compensation offers some advantages over post-compensation [29]. As the light beam diverges over the propagation, this increase in beam diameter limits the effectiveness of post-compensation. However, the technique of pre-compensation has not yet been fully developed, as a rapid control method and precise alignment are required. Here, we focus on the most common post-compensation scheme.

3. Result and discussion

Without loss of generality, we set the initial state to be one of the Bell states

$$|\Psi_0\rangle=\frac{1}{\sqrt{2}}(|IG^+_0\rangle_A|IG^-_0\rangle_B+|IG^-_0\rangle_A|IG^+_0\rangle_B),$$
where $IG^+_0$ and $IG^-_0$ denote the IG states with different rotatories. Specifically, they have the same intensity distributions but opposite phase distributions. In our numerical simulation, we choose $IG^\pm _{5,1,\epsilon }$.

We assume a scenario in which both photons are transmitted through the turbulence. Then, the evolution of the entangled state can be described as $|\Psi '\rangle =U_{turb}|\Psi _0\rangle$ where $U_{turb}$ denotes the effects of the turbulence on an input spatial mode, while the corrected state can be described as $|\tilde {\Psi '}\rangle =exp(-i\phi _c(r,\theta ))U_{turb}|\Psi _0\rangle$ in the presence of AO.

As we do not have detailed knowledge of the turbulence, it is necessary to compute the ensemble average of the density matrix. Upon computing the ensemble average, the propagated state turns into a mixed state, as described by the density matrix

$$\rho=\frac{1}{\mathcal{T}}\sum_{i=1}^{N}|\Psi_{i}\rangle\langle\Psi_{i}|,$$
where $\mathcal {T}=Tr[\sum _{i=1}^{N}|\Psi _{i}\rangle \langle \Psi _{i}|]$ renormalizes the state, and subscript $i$ denotes the state for each run.

Given the density matrix, entanglement can be quantified by concurrence [34], which is given by

$$C(\rho)=max\left\{ 0,\sqrt{\lambda_1}-\sqrt{\lambda_2}-\sqrt{\lambda_3}-\sqrt{\lambda_4} \right\}.$$
where $\lambda _i$ are the eigenvalues, in decreasing order, of the matrix $R=\rho (\sigma _y \otimes \sigma _y)\rho ^*(\sigma _y \otimes \sigma _y)$ with $\sigma _y$ denoting the Pauli matrix.

Each run gives a pure state representing the evolution of Eq. (4) after propagation. A total of 400 runs were performed for each turbulence strength. The ensemble average is computed for these 400 states. All simulations are carried out on a $0.25m\times 0.25m$ square grid with $1024\times 1024$ points for a wavelength of 710 nm and an initial beam waist of 0.025 m. As shown in Fig. 2(a), concurrence is plotted against the dimensionless scintillation strength $w_0/r_0$ where $w_0$ is the beam waist and the Fried parameter $r_0=(0.423C^2_nk^2Z)^{-3/5}$ [22]. Here, we choose to fix the distance to be 1 km and the beam waist while changing the structure parameter $C^2_n$ to achieve different turbulence strengths.

 

Fig. 2. (a) denotes plots for concurrence of entangled $IG_{5,\pm 1,\epsilon }$ states with and without AO against the turbulence strength, where $\pm$ indicates different parity. For the same turbulence strength, the concurrence was highly improved by AO. The turbulence strength when the concurrence goes to zero is different for different states without AO, but almost the same as AO. The error bars are obtained by error propagation of the elements of the density matrix in the Bloch representation [35]. (b) denotes the evolution of the trace of density matrices for entangled $IG_{5,\pm 1,\epsilon }$ with and without AO. In addition, AO greatly mitigates the decay of the trace. In both cases, the curves for states with different ellipticity almost overlap.

Download Full Size | PPT Slide | PDF

Furthermore, as the intensity distribution of the Gaussian beam is mainly localized in a fixed area while IG modes have a broader intensity profile with higher modes, a beacon laser would no longer cover the entire area of the higher modes. Due to the fact that an IG mode $IG_{p,m,\epsilon }$ disperses with $\sqrt {p+1}$, we choose the beam waist of the Gaussian beam in AO to be 2.45 times ($p=5$) that of the waist of the IG beams to ensure that the beacon can overlap the area of the required modes.As metioned above, one of the main features of the IG modes $IG_{p,m,\epsilon }$ is that the basis with various $\epsilon$ is mathematically different, but physically equivalent. However, the role of ellipticity in turbulent transmission for an IG state is not completely clear. In [36], it was demonstrated that the influence of turbulence is basis dependent, whereby the fidelity difference of $IG_{4,0,0}$ and $IG_{4,0,4}$ can be up to $7\%$. This indicates that single HG modes, corresponding to the case when $\epsilon \rightarrow \infty$, are more robust against turbulence than LG modes. This effect stems from the symmetry of the phase profile of the HG modes [37,38]. The phase profile of HG modes is an eigenfunction of the displacement operator $\hat {T}(\Delta \vec r)$ which is given by $\hat {T}(\Delta \vec r)=exp(i\Delta \vec r\cdot \hat {p}/\hbar )$. $\Delta \vec r=\Delta x\hat {x}+\Delta y\hat {y}$, $\hat {p}=-i\hbar ((\partial /\partial x)\hat {x}+(\partial /\partial y)\hat {y})$ is the momentum operator, and $\hat {x}$ and $\hat {y}$ are unit vectors in $x$ and $y$ directions, respectively. Thus, the phase profile does not change when subjected to lateral displacement along the axis of symmetry caused by turbulence. With an increasing ellipticity, an IG mode becomes more symmetric with lateral displacement which allows the beam to experience less turbulence-induced loss than the mode with lower ellipticity. Here, we find that this is also the case for entangled IG states with different $\epsilon$. Figure 2(a) shows the evolution of entangled IG states with different ellipticity and establishes the result that states with higher $\epsilon$ are less likely to be affected by turbulence.

However, taking AO into consideration proved to be interesting. For all entangled states, a correction with AO significantly improves concurrence. The reason that the AO cannot fully recover concurrence can be partly attributed to intensity fluctuations or scintillations [39]. AO can compensate for phase distortions but not for scintillations in the strong turbulence regime. Actually, scintillation imposes a limit on the efficiency of AO.

Contrary to the case of entangled states with higher ellipticity being more robust in stronger turbulence, AO inverts the trend and the concurrence of states with small ellipticity is higher than those with large ellipticity. In [10], it was shown that AO is less effective for higher order LG modes owing to different beam geometries, as the beacon Gaussian beam has its maximum intensity at the center, while vortex beams have central singularities. It can be easily determined from Fig. 1 that states with large $\epsilon$ have more patterns with vanishing intensities. Thus, $IG_{p,m,0.0001}$ bears more similarities in intensity distribution with a Gaussian beam than $IG_{p,m,4}$ and $IG_{p,m,1000}$. This difference in geometry mitigates the wave-front correction from a Gaussian beam.

Another interesting result is that we denote the Fried parameter when the concurrence becomes zero as $r_{0end}$; those $r_{0end}$s are very close to each other in the presence of AO. This means that the entangled states become totally separable under the same strength of turbulence. However, those $r_{0end}$ without AO, shown in Fig. 2(a), increase with ellipticity. As AO could only compensate for the phase distortion but not the intensity fluctuation, the end of concurrence is mainly determined by the strength of the scintillation. Therefore, an intuitive conjecture is that the effects of scintillation are independent of ellipticity.

Photon loss is another key effect in quantum communication. This is related to the trace evolution of the density matrix in an open quantum system. The decay of the trace represents a turbulence-induced mode cross-talk outside the encoding subspace of $IG_{5,\pm 1}$ in our simulation. As shown in Fig. 2(b), the curves of the trace are very close to each other, and they look similar to a single curve. AO also significantly enhances the trace in all cases, and thus could improve the signal-to-noise ratio of the communication process. In both cases, all curves of the trace evolution coincide well. All IG modes are normalized and they can be mapped to other modes by a unitary transformation. Such a unitary transformation would not affect the trace of the density matrix which leads to the consistency of trace evolution. To note that the photon loss is determined by the strength of scintillation. The trace evolution confirms the conjecture that the effect of scintillation are independent of ellipticity.

The effects of turbulence cannot be fully compensated by AO. Thus, we present the phase and intensity fluctuations resulting in mode crosstalk, as shown in Fig. 3. This explains why AO enhances the concurrence and traces with different efficiencies. The crosstalk between $IG_{5,1,\epsilon }$ and $IG_{5,-1,\epsilon }$ is lower than that outside the encoding subspace, leading to a weak reduction in concurrence. On the contrary, the relatively high crosstalk outside the encoding space signifies a strong trace degradation.Finally, we provide an example of applying AO in quantum key distribution based on IG modes. We denote $IG^+_{5,1,\epsilon }$ and $IG^-_{5,1,\epsilon }$ as $|0\rangle$ and $|1\rangle$, respectively. The key rate of the BB84 protocol is given as $K=Q*(1-H_2(\delta _z)-H_2(\delta _x))$ [40], where Q is the photon loss, and $H_2(*)$ denotes the binary entropy. $\delta _z$ and $\delta _x$ are the error rates in the corresponding measurement basis. Figures 4(a) and 4(b) show the dependence of the quantum bit error rate (QBER) and the key rate on the turbulence strength, respectively. IG modes with larger ellipticity could provide a higher key rate and lower QBER which are natural results of stronger robustness against the turbulence. A dramatic improvement in key rate could be obtained in the presence of AO, which allows the quantum key distribution protocol to be implemented under stronger turbulence and over a further distance. The curves of the QBER without AO are not monotonic because the strong turbulence would increase the crosstalk outside the encoding subspace and cause a relatively small population of IG modes in the encoded modes. It should be noted that the low key rate in the absence of AO is mainly caused by photon loss but not QBER. The key rate in Fig. 4(a) is computed based on the qubit case, whereby only two spatial modes are encoded. Higher key rates can be obtained by encoding photons as qudits.

 

Fig. 3. (a)-(e) denote mode crosstalk matrices for $IG_{5,\pm 1,\epsilon }$ without AO and (f)-(j) denote the case with AO. In the limit case when $\epsilon \to 0$, the indices $(p,m)$ in IG modes as indices $(n,l)$ in LG modes where $p=2n+|l|$ and $m=|l|$. In our simulation, $n\in [0,6]$ and $l\in [-7,7]$, The height of each column refers to the fidelity between the undisturbed spatial basis and the mode after propagation.

Download Full Size | PPT Slide | PDF

 

Fig. 4. (a) and (b) denote the key rates and QBERs as a function of $w_0/r_0$, respectively. Both of them are presented by employing $IG(5,\pm 1,\epsilon )$ in the standard BB84 protocol with and without AO for a distance of 50 $m$. A higher key rate can be obtained by encoding qubits in IG modes with larger ellipticity due to the result that IG modes with higher ellipticity are more robust to turbulence. AO significantly improves the key rate and lowers the QBER, which broadens the applications of quantum key distributions based on spatial modes.

Download Full Size | PPT Slide | PDF

4. Summary

In summary, we use an empirical multi-phase screening method to investigate the propagation of a continuous class of spatial modes in free space. It turns out that the effects of turbulence on entangled spatial modes depend on ellipticity. Entangled states with higher ellipticity are more robust than those with lower ellipticity. Another quantity related to entanglement is the trace that marks the photon loss in the encoding space. The evolution of the trace which is determined by the scintillation, unlike concurrence, is independent of ellipticity.

Moreover, we also test the effectiveness of AO with regard to ellipticity. Although the efficiency of adaptive optics on the entangled spatial states has been revealed [16,31], we uncover some unforeseen features in this study. Concurrence in different bases shows an opposite trend compared with the case of without AO. That is, AO performs better with lower ellipticity. Another remarkable feature is that in the presence of AO, entangled states in different bases become separable under the same turbulence strength. The trace of the density matrix remains independent of ellipticity.

The phenomena described above are beyond our expectations. This could be a topic for future research to deepen our understanding of turbulence, as well as the spatial modes of light.

Appendix

Here we present the effects of grid numbers which denotes sampling accuracy. The simulation is performed for single $IG_{5,1,\epsilon }$ photons propagation and a Fried parameter $r_0=1.98$. The results are presented in Fig. 5 where each data point is obtained by averaging 500 iterations and the fidelity shows convergence for both modes within the statistic uncertainty when $N\geq 550$ . Therefore the grid number in the simulation is large enough to represent the faithful propagation.

 

Fig. 5. The fidelity for $IG_{5,1,\epsilon }$ performed with different grid numbers.

Download Full Size | PPT Slide | PDF

Acknowledgement

We would like to thank Xuemei Gu and Anton Zeilinger for illuminating discussions and acknowledge the support of the National Key Research and Development Program of China under Grant No. 2017YFA0303700. The Key Research and Development Program of Guangdong province under Grant No. 2018B030325002, the National Natural Science Foundation of China under Grant No. 11974205, and the Beijing Advanced Innovation Center for Future Chip (ICFC).

Disclosures

The authors declare no conflicts of interest.

References

1. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]  

2. L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014). [CrossRef]  

3. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef]  

4. M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015). [CrossRef]  

5. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014). [CrossRef]  

6. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016). [CrossRef]  

7. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014). [CrossRef]  

8. G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014). [CrossRef]  

9. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015). [CrossRef]  

10. N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018). [CrossRef]  

11. C. Gopaul and R. Andrews, “The effect of atmospheric turbulence on entangled orbital angular momentum states,” New J. Phys. 9(4), 94 (2007). [CrossRef]  

12. F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015). [CrossRef]  

13. A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88(1), 012312 (2013). [CrossRef]  

14. R. K. Tyson, Principles of adaptive optics (CRC press, 2015).

15. J. W. Hardy, Adaptive optics for astronomical telescopes, vol. 16 (Oxford University on Demand, 1998).

16. G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019). [CrossRef]  

17. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–gaussian beams,” Opt. Lett. 29(2), 144–146 (2004). [CrossRef]  

18. U. T. Schwarz, M. A. Bandres, and J. C. Gutiérrez-Vega, “Observation of ince–gaussian modes in stable resonators,” Opt. Lett. 29(16), 1870–1872 (2004). [CrossRef]  

19. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical ince-gaussian beams with a liquid-crystal display,” Opt. Lett. 31(5), 649–651 (2006). [CrossRef]  

20. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–gaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Am. A 21(5), 873–880 (2004). [CrossRef]  

21. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers,” Proc. R. Soc. Lond. A 434(1890), 9–13 (1991). [CrossRef]  

22. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, vol. 152 (SPIE press Bellingham, WA, 2005).

23. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55(11), 1427–1435 (1965). [CrossRef]  

24. S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951). [CrossRef]  

25. T. Von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U. S. A. 34(11), 530–539 (1948). [CrossRef]  

26. B. Xue, L. Cui, W. Xue, X. Bai, and F. Zhou, “Generalized modified atmospheric spectral model for optical wave propagating through non-kolmogorov turbulence,” J. Opt. Soc. Am. A 28(5), 912–916 (2011). [CrossRef]  

27. J. D. Schmidt, Numerical simulation of optical wave propagation with examples in matlab (SPIE Bellingham, Washington USA, 2010).

28. F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015). [CrossRef]  

29. M. P. Lavery, “Vortex instability in turbulent free-space propagation,” New J. Phys. 20(4), 043023 (2018). [CrossRef]  

30. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

31. Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence,” Opt. Lett. 39(10), 2845–2848 (2014). [CrossRef]  

32. Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014). [CrossRef]  

33. A. Brady, R. Berlich, N. Leonhard, T. Kopf, P. Böttner, R. Eberhardt, and C. Reinlein, “Experimental validation of phase-only pre-compensation over 494 m free-space propagation,” Opt. Lett. 42(14), 2679–2682 (2017). [CrossRef]  

34. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998). [CrossRef]  

35. A. H. Ibrahim, “The evolution of orbital-angular-momentum entanglement of photons in turbulent air,” Ph.D. thesis, University of KwaZulu-Natal, Durban(2013).

36. X. Gu, L. Chen, and M. Krenn, “Phenomenology of complex structured light in turbulent air,” Opt. Express 28(8), 11033–11050 (2020). [CrossRef]  

37. B. Ndagano, N. Mphuthi, G. Milione, and A. Forbes, “Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and hermite–gaussian modes for free-space optical communication,” Opt. Lett. 42(20), 4175–4178 (2017). [CrossRef]  

38. M. A. Cox, L. Maqondo, R. Kara, G. Milione, L. Cheng, and A. Forbes, “The resilience of hermite–and laguerre–gaussian modes in turbulence,” J. Lightwave Technol. 37(16), 3911–3917 (2019). [CrossRef]  

39. X. Liu and J. Pu, “Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence,” Opt. Express 19(27), 26444–26450 (2011). [CrossRef]  

40. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
    [Crossref]
  2. L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
    [Crossref]
  3. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  4. M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
    [Crossref]
  5. M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
    [Crossref]
  6. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
    [Crossref]
  7. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
    [Crossref]
  8. G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
    [Crossref]
  9. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015).
    [Crossref]
  10. N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018).
    [Crossref]
  11. C. Gopaul and R. Andrews, “The effect of atmospheric turbulence on entangled orbital angular momentum states,” New J. Phys. 9(4), 94 (2007).
    [Crossref]
  12. F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
    [Crossref]
  13. A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88(1), 012312 (2013).
    [Crossref]
  14. R. K. Tyson, Principles of adaptive optics (CRC press, 2015).
  15. J. W. Hardy, Adaptive optics for astronomical telescopes, vol. 16 (Oxford University on Demand, 1998).
  16. G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019).
    [Crossref]
  17. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–gaussian beams,” Opt. Lett. 29(2), 144–146 (2004).
    [Crossref]
  18. U. T. Schwarz, M. A. Bandres, and J. C. Gutiérrez-Vega, “Observation of ince–gaussian modes in stable resonators,” Opt. Lett. 29(16), 1870–1872 (2004).
    [Crossref]
  19. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical ince-gaussian beams with a liquid-crystal display,” Opt. Lett. 31(5), 649–651 (2006).
    [Crossref]
  20. M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–gaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Am. A 21(5), 873–880 (2004).
    [Crossref]
  21. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers,” Proc. R. Soc. Lond. A 434(1890), 9–13 (1991).
    [Crossref]
  22. L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, vol. 152 (SPIE press Bellingham, WA, 2005).
  23. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55(11), 1427–1435 (1965).
    [Crossref]
  24. S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951).
    [Crossref]
  25. T. Von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U. S. A. 34(11), 530–539 (1948).
    [Crossref]
  26. B. Xue, L. Cui, W. Xue, X. Bai, and F. Zhou, “Generalized modified atmospheric spectral model for optical wave propagating through non-kolmogorov turbulence,” J. Opt. Soc. Am. A 28(5), 912–916 (2011).
    [Crossref]
  27. J. D. Schmidt, Numerical simulation of optical wave propagation with examples in matlab (SPIE Bellingham, Washington USA, 2010).
  28. F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
    [Crossref]
  29. M. P. Lavery, “Vortex instability in turbulent free-space propagation,” New J. Phys. 20(4), 043023 (2018).
    [Crossref]
  30. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  31. Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence,” Opt. Lett. 39(10), 2845–2848 (2014).
    [Crossref]
  32. Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
    [Crossref]
  33. A. Brady, R. Berlich, N. Leonhard, T. Kopf, P. Böttner, R. Eberhardt, and C. Reinlein, “Experimental validation of phase-only pre-compensation over 494 m free-space propagation,” Opt. Lett. 42(14), 2679–2682 (2017).
    [Crossref]
  34. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998).
    [Crossref]
  35. A. H. Ibrahim, “The evolution of orbital-angular-momentum entanglement of photons in turbulent air,” Ph.D. thesis, University of KwaZulu-Natal, Durban(2013).
  36. X. Gu, L. Chen, and M. Krenn, “Phenomenology of complex structured light in turbulent air,” Opt. Express 28(8), 11033–11050 (2020).
    [Crossref]
  37. B. Ndagano, N. Mphuthi, G. Milione, and A. Forbes, “Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and hermite–gaussian modes for free-space optical communication,” Opt. Lett. 42(20), 4175–4178 (2017).
    [Crossref]
  38. M. A. Cox, L. Maqondo, R. Kara, G. Milione, L. Cheng, and A. Forbes, “The resilience of hermite–and laguerre–gaussian modes in turbulence,” J. Lightwave Technol. 37(16), 3911–3917 (2019).
    [Crossref]
  39. X. Liu and J. Pu, “Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence,” Opt. Express 19(27), 26444–26450 (2011).
    [Crossref]
  40. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
    [Crossref]

2020 (1)

2019 (2)

M. A. Cox, L. Maqondo, R. Kara, G. Milione, L. Cheng, and A. Forbes, “The resilience of hermite–and laguerre–gaussian modes in turbulence,” J. Lightwave Technol. 37(16), 3911–3917 (2019).
[Crossref]

G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019).
[Crossref]

2018 (2)

M. P. Lavery, “Vortex instability in turbulent free-space propagation,” New J. Phys. 20(4), 043023 (2018).
[Crossref]

N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018).
[Crossref]

2017 (2)

2016 (1)

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

2015 (4)

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015).
[Crossref]

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

2014 (6)

Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence,” Opt. Lett. 39(10), 2845–2848 (2014).
[Crossref]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
[Crossref]

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref]

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

2013 (1)

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88(1), 012312 (2013).
[Crossref]

2011 (2)

2009 (1)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

2007 (1)

C. Gopaul and R. Andrews, “The effect of atmospheric turbulence on entangled orbital angular momentum states,” New J. Phys. 9(4), 94 (2007).
[Crossref]

2006 (1)

2004 (3)

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

1991 (1)

A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers,” Proc. R. Soc. Lond. A 434(1890), 9–13 (1991).
[Crossref]

1965 (1)

1951 (1)

S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951).
[Crossref]

1948 (1)

T. Von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U. S. A. 34(11), 530–539 (1948).
[Crossref]

Ahmed, N.

Allen, L.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, vol. 152 (SPIE press Bellingham, WA, 2005).

Andrews, R.

C. Gopaul and R. Andrews, “The effect of atmospheric turbulence on entangled orbital angular momentum states,” New J. Phys. 9(4), 94 (2007).
[Crossref]

Bai, X.

Bandres, M. A.

Bao, C.

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Bentley, J. B.

Berlich, R.

Birnbaum, K. M.

Böttner, P.

Boyd, R. W.

Brady, A.

Buchleitner, A.

G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019).
[Crossref]

N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018).
[Crossref]

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Chen, L.

X. Gu, L. Chen, and M. Krenn, “Phenomenology of complex structured light in turbulent air,” Opt. Express 28(8), 11033–11050 (2020).
[Crossref]

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

Cheng, L.

Corrsin, S.

S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951).
[Crossref]

Cox, M. A.

Cui, L.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Da’Ambrosio, V.

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

Davis, J. A.

Dolinar, S.

Dolinar, S. J.

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Eberhardt, R.

Erkmen, B. I.

Fickler, R.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
[Crossref]

Fink, M.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015).
[Crossref]

Forbes, A.

Fried, D. L.

Gauthier, D. J.

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Gopaul, C.

C. Gopaul and R. Andrews, “The effect of atmospheric turbulence on entangled orbital angular momentum states,” New J. Phys. 9(4), 94 (2007).
[Crossref]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Gu, X.

Gutiérrez-Vega, J. C.

Handsteiner, J.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015).
[Crossref]

Hardy, J. W.

J. W. Hardy, Adaptive optics for astronomical telescopes, vol. 16 (Oxford University on Demand, 1998).

Huang, H.

Huber, M.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
[Crossref]

Ibrahim, A. H.

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88(1), 012312 (2013).
[Crossref]

A. H. Ibrahim, “The evolution of orbital-angular-momentum entanglement of photons in turbulent air,” Ph.D. thesis, University of KwaZulu-Natal, Durban(2013).

Kara, R.

Kolmogorov, A. N.

A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers,” Proc. R. Soc. Lond. A 434(1890), 9–13 (1991).
[Crossref]

Konrad, T.

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88(1), 012312 (2013).
[Crossref]

Kopf, T.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Krenn, M.

X. Gu, L. Chen, and M. Krenn, “Phenomenology of complex structured light in turbulent air,” Opt. Express 28(8), 11033–11050 (2020).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
[Crossref]

Lapkiewicz, R.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
[Crossref]

Lavery, M. P.

M. P. Lavery, “Vortex instability in turbulent free-space propagation,” New J. Phys. 20(4), 043023 (2018).
[Crossref]

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

Lavery, M. P. J.

Lei, J.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

Leonhard, N.

G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019).
[Crossref]

N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018).
[Crossref]

A. Brady, R. Berlich, N. Leonhard, T. Kopf, P. Böttner, R. Eberhardt, and C. Reinlein, “Experimental validation of phase-only pre-compensation over 494 m free-space propagation,” Opt. Lett. 42(14), 2679–2682 (2017).
[Crossref]

Li, L.

Liu, X.

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Magana-Loaiza, O. S.

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

Malik, M.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

Maqondo, L.

Marrucci, L.

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

McLaren, M.

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88(1), 012312 (2013).
[Crossref]

Milione, G.

Mirhosseini, M.

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

Mphuthi, N.

Ndagano, B.

Neifeld, M. A.

O’Sullivan, M. N.

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

Padgett, M. J.

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, vol. 152 (SPIE press Bellingham, WA, 2005).

Pu, J.

Ramelow, S.

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
[Crossref]

Reinlein, C.

G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019).
[Crossref]

N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018).
[Crossref]

A. Brady, R. Berlich, N. Leonhard, T. Kopf, P. Böttner, R. Eberhardt, and C. Reinlein, “Experimental validation of phase-only pre-compensation over 494 m free-space propagation,” Opt. Lett. 42(14), 2679–2682 (2017).
[Crossref]

Ren, Y.

Rodenburg, B.

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

Rogawski, D.

Romero, J.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

Roux, F. S.

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88(1), 012312 (2013).
[Crossref]

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Schmidt, J. D.

J. D. Schmidt, Numerical simulation of optical wave propagation with examples in matlab (SPIE Bellingham, Washington USA, 2010).

Schwarz, U. T.

Sciarrino, F.

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

Shapiro, J. H.

Shatokhin, V. N.

G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019).
[Crossref]

N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018).
[Crossref]

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

Slussarenko, S.

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

Sorelli, G.

G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019).
[Crossref]

N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018).
[Crossref]

Sponselli, A.

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

Spreeuw, R.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Tur, M.

Tyson, R. K.

R. K. Tyson, Principles of adaptive optics (CRC press, 2015).

Ursin, R.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

Vallone, G.

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

Villoresi, P.

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

Von Karman, T.

T. Von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U. S. A. 34(11), 530–539 (1948).
[Crossref]

Wellens, T.

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

Willner, A. E.

Willner, M. J.

Woerdman, J.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998).
[Crossref]

Xie, G.

Xue, B.

Xue, W.

Yan, Y.

Yue, Y.

Zeilinger, A.

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
[Crossref]

Zhou, F.

J. Appl. Phys. (1)

S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22(4), 469–473 (1951).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Light: Sci. Appl. (1)

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

New J. Phys. (4)

M. Mirhosseini, O. S. Magana-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17(3), 033033 (2015).
[Crossref]

C. Gopaul and R. Andrews, “The effect of atmospheric turbulence on entangled orbital angular momentum states,” New J. Phys. 9(4), 94 (2007).
[Crossref]

G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Entanglement protection of high-dimensional states by adaptive optics,” New J. Phys. 21(2), 023003 (2019).
[Crossref]

M. P. Lavery, “Vortex instability in turbulent free-space propagation,” New J. Phys. 20(4), 043023 (2018).
[Crossref]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

B. Ndagano, N. Mphuthi, G. Milione, and A. Forbes, “Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and hermite–gaussian modes for free-space optical communication,” Opt. Lett. 42(20), 4175–4178 (2017).
[Crossref]

A. Brady, R. Berlich, N. Leonhard, T. Kopf, P. Böttner, R. Eberhardt, and C. Reinlein, “Experimental validation of phase-only pre-compensation over 494 m free-space propagation,” Opt. Lett. 42(14), 2679–2682 (2017).
[Crossref]

Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence,” Opt. Lett. 39(10), 2845–2848 (2014).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref]

M. A. Bandres and J. C. Gutiérrez-Vega, “Ince–gaussian beams,” Opt. Lett. 29(2), 144–146 (2004).
[Crossref]

U. T. Schwarz, M. A. Bandres, and J. C. Gutiérrez-Vega, “Observation of ince–gaussian modes in stable resonators,” Opt. Lett. 29(16), 1870–1872 (2004).
[Crossref]

J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical ince-gaussian beams with a liquid-crystal display,” Opt. Lett. 31(5), 649–651 (2006).
[Crossref]

Optica (1)

Phys. Rev. A (5)

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

F. S. Roux, T. Wellens, and V. N. Shatokhin, “Entanglement evolution of twisted photons in strong atmospheric turbulence,” Phys. Rev. A 92(1), 012326 (2015).
[Crossref]

A. H. Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88(1), 012312 (2013).
[Crossref]

N. Leonhard, G. Sorelli, V. N. Shatokhin, C. Reinlein, and A. Buchleitner, “Protecting the entanglement of twisted photons by adaptive optics,” Phys. Rev. A 97(1), 012321 (2018).
[Crossref]

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. Lett. (2)

G. Vallone, V. Da’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014).
[Crossref]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998).
[Crossref]

Proc. Natl. Acad. Sci. (3)

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A. Zeilinger, “Twisted photon entanglement through turbulent air across vienna,” Proc. Natl. Acad. Sci. 112(46), 14197–14201 (2015).
[Crossref]

M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Generation and confirmation of a (100× 100)-dimensional entangled quantum system,” Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014).
[Crossref]

M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, “Twisted light transmission over 143 km,” Proc. Natl. Acad. Sci. 113(48), 13648–13653 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

T. Von Karman, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. U. S. A. 34(11), 530–539 (1948).
[Crossref]

Proc. R. Soc. Lond. A (1)

A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers,” Proc. R. Soc. Lond. A 434(1890), 9–13 (1991).
[Crossref]

Rev. Mod. Phys. (1)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Other (6)

L. C. Andrews and R. L. Phillips, Laser beam propagation through random media, vol. 152 (SPIE press Bellingham, WA, 2005).

J. D. Schmidt, Numerical simulation of optical wave propagation with examples in matlab (SPIE Bellingham, Washington USA, 2010).

A. H. Ibrahim, “The evolution of orbital-angular-momentum entanglement of photons in turbulent air,” Ph.D. thesis, University of KwaZulu-Natal, Durban(2013).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

R. K. Tyson, Principles of adaptive optics (CRC press, 2015).

J. W. Hardy, Adaptive optics for astronomical telescopes, vol. 16 (Oxford University on Demand, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Density distributions of IG modes with different ellipticity. Modes with higher $\epsilon$ have more intensity nulls than those with lower $\epsilon$.
Fig. 2.
Fig. 2. (a) denotes plots for concurrence of entangled $IG_{5,\pm 1,\epsilon }$ states with and without AO against the turbulence strength, where $\pm$ indicates different parity. For the same turbulence strength, the concurrence was highly improved by AO. The turbulence strength when the concurrence goes to zero is different for different states without AO, but almost the same as AO. The error bars are obtained by error propagation of the elements of the density matrix in the Bloch representation [35]. (b) denotes the evolution of the trace of density matrices for entangled $IG_{5,\pm 1,\epsilon }$ with and without AO. In addition, AO greatly mitigates the decay of the trace. In both cases, the curves for states with different ellipticity almost overlap.
Fig. 3.
Fig. 3. (a)-(e) denote mode crosstalk matrices for $IG_{5,\pm 1,\epsilon }$ without AO and (f)-(j) denote the case with AO. In the limit case when $\epsilon \to 0$, the indices $(p,m)$ in IG modes as indices $(n,l)$ in LG modes where $p=2n+|l|$ and $m=|l|$. In our simulation, $n\in [0,6]$ and $l\in [-7,7]$, The height of each column refers to the fidelity between the undisturbed spatial basis and the mode after propagation.
Fig. 4.
Fig. 4. (a) and (b) denote the key rates and QBERs as a function of $w_0/r_0$, respectively. Both of them are presented by employing $IG(5,\pm 1,\epsilon )$ in the standard BB84 protocol with and without AO for a distance of 50 $m$. A higher key rate can be obtained by encoding qubits in IG modes with larger ellipticity due to the result that IG modes with higher ellipticity are more robust to turbulence. AO significantly improves the key rate and lowers the QBER, which broadens the applications of quantum key distributions based on spatial modes.
Fig. 5.
Fig. 5. The fidelity for $IG_{5,1,\epsilon }$ performed with different grid numbers.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I G p , m , ϵ e ( r ) = C ω 0 ω ( z ) C p m ( i ξ , ϵ ) C p m ( η , ϵ ) e x p [ r 2 ω 2 ( z ) ] × e x p [ i k z + i k r 2 2 R ( z ) i ( p + 1 ) a r c t a n ( z z R ) ] ,
I G p , m , ϵ ± ( r ) = 1 2 ( I G p , m , ϵ e ( r ) ± i I G p , m , ϵ o ( r ) ) ,
Ψ ϕ m v K ( κ ) = 0.023 r 0 5 / 3 e x p ( κ 2 / κ m 2 ) ( κ 2 + κ 0 2 ) 11 / 6 ,
| Ψ 0 = 1 2 ( | I G 0 + A | I G 0 B + | I G 0 A | I G 0 + B ) ,
ρ = 1 T i = 1 N | Ψ i Ψ i | ,
C ( ρ ) = m a x { 0 , λ 1 λ 2 λ 3 λ 4 } .

Metrics