Abstract

In this work, we numerically demonstrate a new facile strategy for all-dielectric broadband optical perfect absorbers. A monolayer refractory titanium oxide and nitride (TiN/TiO2) core-shell nanowires array is used to form the grating on the opaque TiN substrate. Multiple resonant absorption bands are observed in the adjacent wavelength range, which therefore leads to the formation of an ultra-broadband absorption window from the visible to the infrared regime. The maximal absorption reaches 95.6% and the average absorption efficiency in the whole range (0.5–1.8 µm) is up to 85.4%. Moreover, the absorption bandwidth can be feasibly adjusted while the absorption efficiency can be still maintained in a high level via tuning the polarization state. Furthermore, the absorption window is observed to be highly adjustable in the wavelength range, showing a nearly linear relationship to the shell's index. These features not only confirm the achievement of the broadband perfect absorption but also introduce feasible ways to artificially manipulate the absorption properties, which will hold wide applications in metal-free plasmonic optoelectronic devices such as the solar harvesting, photo-detection, and thermal generation and its related bio-medical techniques.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Electromagnetic wave perfect absorber has attracted numerous attentions since the microwave absorbers were reported with a near-unity absorption in the resonant wavelength by the great effort of Landy et al. in 2008 [1]. The metal-insulator-metal (MIM) triple-layer platform was a typical way to form the perfect absorbers. In order to achieve perfect absorption in a wide spectral range, a series of investigations have been made in these years [26]. It was usually with the need of several or tens of sub-resonators combined in the unit cell to introduce multiple resonances and then produced a broadened spectral absorption [5,7,8]. For instance, by tuning the shape and size of the metal patch resonators in the meta-surface, different resonant modes were excited, which could be modified to occur at the adjacent wavelength range and finally formed the broadband absorption window [912]. Sometimes, random resonant systems with different sizes and shapes of metallic particles were fabricated for broadband absorption including the black gold absorbers [1315].

Noble metals are with novel plasmonic resonances in the visible and near-infrared range due to their material features. Thereby, the gold, silver and other noble metals have been widely used to build the absorbers. However, the resonant mode was observed to be concentrated in a relatively narrowband region, which was the key drawback for achieving broadband light absorption. For instance, ultra-narrowband perfect absorption has been achieved based on the plasmonic MIM gratings [1619]. Currently, a new kind of material, named refractory material, was introduced for the broadband light absorption since the intrinsic absorption loss by the relatively high imaginary part in a wide wavelength range [2025]. Moreover, the resonators formed by the refractory materials were also observed with the plasmonic resonant behaviors [20]. Refractory metals such as the titanium (Ti) and the dielectrics such as the titanium oxide (TiO2) and nitride (TiN) have been used for applications in high-temperature operations and optoelectronics. A refractory broadband absorber was achieved by a TiN patches array on the insulator/metal film substrate, showing a high absorption in the wavelength range from 400 nm to 800 nm [22]. Via using the TiO2 resonators to form the absorption atoms in the MIM system, a narrowband perfect absorber was also demonstrated [26]. Meanwhile, based on the TiO2 nano-antenna and the vanadium film, a broadband absorption spectra from 820 nm to 1440 nm was achieved [27]. These reports indicate a new method for broadband or narrowband absorption by using the refractory materials. Nevertheless, almost investigations were focused on the conventional configuration of MIM. The optical responses for the grating based system and its polarization adjusting behaviors are still unclear.

In this work, we propose and numerically demonstrate a metal-free plasmonic resonant perfect absorber based on the core-shell nanowires array grating. Refractory materials of TiN and TiO2 have been used to form the core and shell of the nanowire. In addition, an opaque TiN film is used to build the substrate. Under the TM polarization, the system presents an ultra-broadband absorption in the visible and near-infrared range (0.5–1.8 µm). More importantly, a relatively broad absorption window is achieved when a TE polarization light source is used. It suggests the distinct response to the conventional noble metals based perfect absorbers, in which the polarization-dependent absorption will lead to the near-zero absorption under the TE light source [26]. These features confirm the impressive differential absorption for the symmetry-breaking grating based absorbers formed by the refractory materials and the noble metals. Moreover, the resonant absorption window can be artificially tuned via changing the shell’s index. Finally, the all-dielectric refractory absorber is observed to be capable for realizing the similar absorption performance to that of the refractory metals based systems. The noble metals based absorbers can only support narrowband absorption peaks in the spectrum. Otherwise, in contrast to the metals including the refractory metals and the noble metals, the dielectrics such as the TiO2 and TiN are with much better biocompatibility and environmental friendliness, which therefore could hold special applications in the solar related thermal bio-medical techniques, anti-bacteria, etc. Moreover, it is feasible to fabricate large-scale nanowires array via the well-developed methods thanks to the great efforts made by the scientists in these years [2837]. For instance, highly ordered and high-quality semiconductor nanowires can be realized by the electrochemical fabrication technique [28,29]. Core-shell nanowires can also be obtained via the techniques such as the solution-processed method [30]. As for the nanowires array, the integration can be achieved via the self-assembly techniques [31,32] by the Langmuir-Blodgett method [33] and evaporation-induced assembly [34], the mechanical force enabled assembly [35] and other methods [36,37].

2. Structure and model

As depicted in Fig. 1, the grating based all-dielectric absorber is composed of a TiN/TiO2 core-shell nanowires array on the surface of an opaque TiN film substrate. The outer (R) and inner (r) radius of the TiO2 shell is with the value of 300 nm and 235 nm, respectively. The radius of the TiN core is equal to the r. The lattice period P is equal to the diameter of the shell, 2R. In the model, the nanowire is set to be infinite along the y-direction. In the simulations, finite-difference time-domain method has been employed to calculate the optical properties and the resonant behaviors [38]. Periodic boundary conditions have been used in the x-direction to reproduce the periodic array. In the z-direction, perfectly matched layers have been used to extremely cancel the additional scattering field. Dielectric permitivities are obtained from the experimental data [39]. The bottom TiN film is with the thickness of 300 nm, which is thick enough to wholly cancel the light transmission. The spectral reflection, R(ω), transmission, T(ω), are measured by the monitor. As for the spectral absorption, A(ω), it can be obtained via the definition of A(ω) = 1 - R(ω) - T(ω), where the T(ω) is close to 0. As a result, the reflection dips are equal to the achievement of the high absorption peaks.

 

Fig. 1. Schematic of the grating based absorber consisting of a TiN/TiO2 core-shell nanowires array on the surface of an opaque TiN film substrate under the solar light illumination. The nanowire is infinite along the y-direction.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Figure 2 shows the spectral intensity for the TiN/TiO2 core-shell nanowires array grating based absorber. It is observed that the reflection is extremely inhibited in the spectral range with several anti-reflection bands adjacent to each other. The transmission is with the intensity down to 10−7, suggesting the cancellation of transmission. As a result, a high absorption window is achieved within the wavelength range from 0.5 µm to 1.8 µm. Four absorption peaks (λ1-λ4), the absorption is up to 92.2%, 93.8%, 95.6%, 93.0%. These results indicate the achievement of the near-unity absorption for the multiple bands. Moreover, in the whole spectral range, the average absorption reaches 85.4%, suggesting the spectral bandwidth up to 1300 nm for the high absorption. It should be noted that the achieved ultra-broadband absorption is based on the all-dielectric TiN/TiO2 core-shell nanowires array. It is very different to the previous reports, where the plasmonic metallic resonators were used. The spectral absorption bandwidth shows several times larger than that of the absorbers formed by the single sized resonators in the MIM structures [22,26,40]. Moreover, it is also very broader than that of the traditional plasmonic absorbers formed by the MIMs with multiple resonators or the randomly distributed metal particles [15,41]. These features confirm the achievement of the ultra-broadband absorption via the grating structure.

 

Fig. 2. Left: Spectral reflection, transmission, absorption of the absorber under normal incidence. Right: Normalized electric and magnetic field intensity distributions for the four absorption peaks (λ1-λ4).

Download Full Size | PPT Slide | PDF

The normalized electric and magnetic field intensity distributions have been presented for the resonant absorption peaks (λ1-λ4). At λ1 = 0.602 µm, the electric and magnetic fields are mainly concentrated in the top area of the nanowire. In this absorption peak, the resonant absorption is the main results of the excitation of the grating lattice resonance [4244] due to the array coupling to the incident light. At λ2 = 0.852 µm, the electric field is confined at the top area of the TiN core along the y-direction. The magnetic field distribution pattern confirms the resonance occurred at the top are of the core. These characteristics suggest the excitation of the resonant absorption of the electromagnetic wave via the longitudinal direction of the nanowire. This behavior can be further verified in the following discussion for the absorption features when the TE (electric field along y-direction) is used. At λ3 = 1.186 µm and at λ4 = 1.469 µm, the fields are observed to be strongly confined at the rear sides of the nanowire along the polarization direction (electric field along x-direction). For the former absorption peak λ3, the magnetic field is also observed to be distributed at the top area. Nevertheless, at λ4, the field is extremely concentrated in the gap sides by the adjacent nanowires. These characteristics suggest the excitation of the dipolar plasmon resonance for the core-shell nanowire resonator and the plasmonic near-field coupling effect by the adjacent ones for these two absorption bands. Moreover, the fields are also observed in the gap area between the nanowire and the TiN film, suggesting the resonant coupling occurred in the gap layer. It is therefore verified that the excitation of the strong resonant modes via the all-dielectric refractory nanowire.

Following, the absorption response of the all-dielectric refractory nanowires absorber under different polarization states is investigated. As shown in Fig. 3(a), the ultra-broadband absorption is then changed to be a narrowed window when the polarization state is tuned from the TM to the TE. It should be noted that the nanowire grating is an asymmetric resonant structure, which usually leads to a totally cancelled absorption under the TE polarization light [2,45,46]. Nevertheless, a remarkable absorption band is still achieved during the process. Figure 3(b) shows the absorption of the absorber under the TE polarized light. A high absorption window is observed, where two absorption peaks (λ01 = 0.755 µm, λ02 = 0.873 µm) are obtained. The absorption efficiency reaches 96.5% and 96.1%, respectively. Moreover, these two absorption bands are adjacent to each other, which therefore leads to the broadband absorption window. The inset pictures show the normalized electric fields of the two peaks in the xoz plane. Strong resonant fields in the outside areas of the TiN core are observed, suggesting the excitation of the resonant absorption due to the intrinsic absorption loss by the refractory TiN material [2022].

 

Fig. 3. (a) Absorption response of the absorber under a tuning of polarization angle. (b) Absorption spectrum for the absorber under TE polarization and the electric field intensity distributions for the two peaks (λ01, λ02).

Download Full Size | PPT Slide | PDF

Figure 4(a) shows the absorption evolution contour for the TM polarization under a tuning of the incident angle from 0° to 72°. It is observed that the ultra-broadband absorption is almost maintained in this large incident angle range. For the angle much larger than 65°, the absorption (λ4) in the longer wavelength is weakened slightly. Moreover, the absorption in the wavelength range close to the peak λ3 shows a noticeable increase under the large incident angle. These features confirm the reduced plasmonic near field coupling when a large angle is used. Meanwhile, the large angle shows additional contributions to the dipolar plasmon resonance. In Fig. 4(b), the absorption window centered in the wavelength range from 0.65 µm to 1.10 µm retains the high absorption under TE polarization excitation by tuning the incident angle from 0° to 72°. Similarly, under the large incident angle (> 65°), the absorption window becomes narrowing. The absorption is slightly reduced under a much larger angle. Overall, for this all-dielectric refractory nanowires grating based absorber, distinct dual-mode absorption behaviors are achieved for the TM and TE polarized light excitations, which shows greatly differential responses to that of the conventional plasmonic absorbers in the previous reports [610,4446]. That is, in this one-dimensional grating based absorber, two different absorption windows are achieved simultaneously dependant on the polarization state.

 

Fig. 4. (a),(b) Absorption mapping contour pictures for the absorber under the oblique incident excitation via the TM and TE polarized light, respectively.

Download Full Size | PPT Slide | PDF

Additionally, the way to tune the absorption via the dielectric shell is studied for the absorber. As shown in Fig. 5, the absorption window is shifted to the longer wavelength range when the index of the coating shell is changed from 1.45 to 3.55. As the dashed lines shown in the picture, the broadband absorption is shifted to the longer wavelength range following the linear relationship to the refractive index of the shell. Moreover, a sharp absorption band (λLR) is observed at the shorter wavelength range when the index is above 2.0. This absorption band is related to the lattice resonance by the periodic array and the structural size [4244,4751]. The resonant absorption is also with relevant to the index. These findings confirm the additional way to manipulate the resonant absorption in the wavelength range.

 

Fig. 5. Absorption evolution for the absorber formed by different dielectric coating shells with the index tuning from 1.45 to 3.55.

Download Full Size | PPT Slide | PDF

Finally, the absorption of the core-shell nanowires absorber formed by other refractory metals and the noble metals is shown in Fig. 6. It is observed that the broadband absorption is still achieved when the TiN is replaced by the metal materials such as the W, Ni and Ti. The spectral average absorption reaches 91.4%, 85% and 90.6% for these refractory metals based absorbers. The multiple resonant bands can also been observed in the curves. These features confirm the achievement of the similar absorption level for the TiN and refractory metals based systems. As shown in Fig. 6(b), only multiple absorption peaks with the relatively low efficiency are observed when the noble metals such as the Al, Cu and Ag are used to replace the dielectric TiN for the core material. The average absorption in the whole spectral range is down to 41%, 32.8% and 22.9% for these noble metals based absorbers. That is, the noble metals based absorbers are with rather weak absorption efficiency in comparison with that of the all-dielectric core-shell absorbers. Moreover, the metals including the refractory and the noble metals are both with much lower biocompatibility than that of the refractory dielectrics such as the TiO2 and TiN.

 

Fig. 6. (a) Absorption of the platform by replacing the TiN with the refractory metals such as the W, Ni, Ti. (b) The noble metals of the Al, Cu, Ag are used to replace the TiN material.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, we have numerically proposed and demonstrated a novel all-dielectric refractory materials based core-shell nanowires absorber platform for ultra-broadband near-perfect absorption. The maximal absorption reaches 95.6% and the average absorption efficiency in the whole range (0.5–1.8 µm) is up to 85.4% in this high-index dielectric grating structure. Moreover, the absorption operation wavelengths and bandwidths are adjustable while the absorption efficiency can be still maintained in a high level under different polarization states. Furthermore, the absorption window is observed to be highly tunable in the wavelength range when the shell's index is changed. The absorption performance of this all-dielectric refractory structure can achieve the equal level of the absorption to that of the refractory metals based absorbers and show much higher absorption than that of the noble metals based systems. In addition, the high biocompatibility and environmental friendliness of the refractory dielectrics such as the TiO2 and TiN are also the other advantages in comparison with these metals. Therefore, these material and absorption features not only confirm the achievement of the broadband perfect absorption but also introduce feasible ways to artificially tune the absorption properties, which can hold wide applications in metal-free plasmonic optoelectronic device, solar related thermal bio-medical techniques.

Funding

National Natural Science Foundation of China (11664015, 11764020, 11804134, 51761015, 62065007); Natural Science Foundation of Jiangxi Province (20182BCB22002, 20181BAB201015, 20202BAB201009, 2018ACB21005).

Disclosures

The authors declare that they have no competing interests.

References

1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef]  

2. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011). [CrossRef]  

3. Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012). [CrossRef]  

4. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015). [CrossRef]  

5. L. Feng, P. Huo, Y. Liang, and T. Xu, “Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications,” Adv. Mater. 32(27), 1903787 (2019). [CrossRef]  

6. J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020). [CrossRef]  

7. H. Lee, J. Y. Na, Y. J. Moon, J. S. Park, H. S. Ee, H. G. Park, and S. K. Kim, “Three-dimensional grating nanowires for enhanced light trapping,” Opt. Lett. 41(7), 1578 (2016). [CrossRef]  

8. Y. Kim, Y. Yoo, K. Kim, J. Rhee, Y. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861 (2015). [CrossRef]  

9. S. Huang, Z. Xie, W. Chen, J. Lei, F. Wang, K. Liu, and L. Li, “Metasurface with multi-sized structure for multi-band coherent perfect absorption,” Opt. Express 26(6), 7066 (2018). [CrossRef]  

10. Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019). [CrossRef]  

11. A. Berkhout and A. F. Koenderink, “Perfect absorption and phase singularities in plasmon antenna array etalons,” ACS Photonics 6(11), 2917–2925 (2019). [CrossRef]  

12. D. Hu, H. Wang, and Q. Zhu, “Design of six-band Terahertz perfect absorber using a simple U-shaped closed-ring resonator,” IEEE Photonics J. 8(2), 1–8 (2016). [CrossRef]  

13. Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015). [CrossRef]  

14. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016). [CrossRef]  

15. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015). [CrossRef]  

16. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137 (2014). [CrossRef]  

17. S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288 (2016). [CrossRef]  

18. A. S. Roberts, M. Chirumamilla, D. Wang, L. An, K. Pedersen, N. Asger Mortensen, and S. I. Bozhevolnyi, “Ultra-thin titanium nitride films for refractory spectral selectivity,” Opt. Mater. Express 8(12), 3717–3728 (2018). [CrossRef]  

19. A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015). [CrossRef]  

20. U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014). [CrossRef]  

21. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ metals,” Appl. Phys. Lett. 110(10), 101101 (2017). [CrossRef]  

22. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014). [CrossRef]  

23. P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020). [CrossRef]  

24. A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020). [CrossRef]  

25. M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017). [CrossRef]  

26. C. Zou, P. Gutruf, W. Withayachumnankul, L. Zou, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Nanoscale TiO2 dielectric resonator absorbers,” Opt. Lett. 41(15), 3391 (2016). [CrossRef]  

27. Y. Zhu, T. Lan, P. Liu, and J. Yang, “Broadband near-infrared TiO2 dielectric metamaterial absorbers,” Appl. Opt. 58(26), 7134 (2019). [CrossRef]  

28. X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001). [CrossRef]  

29. W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017). [CrossRef]  

30. J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011). [CrossRef]  

31. J. Liu, H. Liang, and S. Yu, “Macroscopic-scale assembled nanowire thin films and their functionalities,” Chem. Rev. 112(8), 4770–4799 (2012). [CrossRef]  

32. S. Kim, C. Chun, J. Hong, and D. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem. 16(4), 370–375 (2006). [CrossRef]  

33. A. R. Tao, J. X. Huang, and P. D. Yang, “Langmuir−Blodgettry of nanocrystals and nanowires,” Acc. Chem. Res. 41(12), 1662–1673 (2008). [CrossRef]  

34. Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008). [CrossRef]  

35. Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008). [CrossRef]  

36. F. Xu, J. W. Durham, B. J. Wiley, and Y. Zhu, “Strain-release assembly of nanowires on stretchable substrates,” ACS Nano 5(2), 1556–1563 (2011). [CrossRef]  

37. L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sens. Actuators, B 130(1), 70–76 (2008). [CrossRef]  

38. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2nd ed (2000).

39. E. D. Palik, Handbook of Optical Constants of Solids, Academic (1985).

40. Y. Q. Wang, X. L. Ma, X. Li, M. B. Pu, and X. G. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electron. Adv. 1(8), 18001301–18001306 (2018). [CrossRef]  

41. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011). [CrossRef]  

42. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511 (2014). [CrossRef]  

43. Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253 (2019). [CrossRef]  

44. Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016). [CrossRef]  

45. X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013). [CrossRef]  

46. Z. Liu, G. Liu, Y. Wang, X. Liu, and C. Tang, “Silicon-based light absorbers with unique polarization-adjusting effects,” J. Phys. D: Appl. Phys. 52(50), 505109 (2019). [CrossRef]  

47. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014). [CrossRef]  

48. J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23(12), 16238 (2015). [CrossRef]  

49. Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photonics 6(2), 322–326 (2019). [CrossRef]  

50. Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020). [CrossRef]  

51. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  2. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref]
  3. Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
    [Crossref]
  4. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
    [Crossref]
  5. L. Feng, P. Huo, Y. Liang, and T. Xu, “Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications,” Adv. Mater. 32(27), 1903787 (2019).
    [Crossref]
  6. J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
    [Crossref]
  7. H. Lee, J. Y. Na, Y. J. Moon, J. S. Park, H. S. Ee, H. G. Park, and S. K. Kim, “Three-dimensional grating nanowires for enhanced light trapping,” Opt. Lett. 41(7), 1578 (2016).
    [Crossref]
  8. Y. Kim, Y. Yoo, K. Kim, J. Rhee, Y. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861 (2015).
    [Crossref]
  9. S. Huang, Z. Xie, W. Chen, J. Lei, F. Wang, K. Liu, and L. Li, “Metasurface with multi-sized structure for multi-band coherent perfect absorption,” Opt. Express 26(6), 7066 (2018).
    [Crossref]
  10. Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
    [Crossref]
  11. A. Berkhout and A. F. Koenderink, “Perfect absorption and phase singularities in plasmon antenna array etalons,” ACS Photonics 6(11), 2917–2925 (2019).
    [Crossref]
  12. D. Hu, H. Wang, and Q. Zhu, “Design of six-band Terahertz perfect absorber using a simple U-shaped closed-ring resonator,” IEEE Photonics J. 8(2), 1–8 (2016).
    [Crossref]
  13. Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
    [Crossref]
  14. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
    [Crossref]
  15. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
    [Crossref]
  16. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137 (2014).
    [Crossref]
  17. S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288 (2016).
    [Crossref]
  18. A. S. Roberts, M. Chirumamilla, D. Wang, L. An, K. Pedersen, N. Asger Mortensen, and S. I. Bozhevolnyi, “Ultra-thin titanium nitride films for refractory spectral selectivity,” Opt. Mater. Express 8(12), 3717–3728 (2018).
    [Crossref]
  19. A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
    [Crossref]
  20. U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref]
  21. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
    [Crossref]
  22. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref]
  23. P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
    [Crossref]
  24. A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
    [Crossref]
  25. M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
    [Crossref]
  26. C. Zou, P. Gutruf, W. Withayachumnankul, L. Zou, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Nanoscale TiO2 dielectric resonator absorbers,” Opt. Lett. 41(15), 3391 (2016).
    [Crossref]
  27. Y. Zhu, T. Lan, P. Liu, and J. Yang, “Broadband near-infrared TiO2 dielectric metamaterial absorbers,” Appl. Opt. 58(26), 7134 (2019).
    [Crossref]
  28. X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
    [Crossref]
  29. W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017).
    [Crossref]
  30. J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
    [Crossref]
  31. J. Liu, H. Liang, and S. Yu, “Macroscopic-scale assembled nanowire thin films and their functionalities,” Chem. Rev. 112(8), 4770–4799 (2012).
    [Crossref]
  32. S. Kim, C. Chun, J. Hong, and D. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem. 16(4), 370–375 (2006).
    [Crossref]
  33. A. R. Tao, J. X. Huang, and P. D. Yang, “Langmuir−Blodgettry of nanocrystals and nanowires,” Acc. Chem. Res. 41(12), 1662–1673 (2008).
    [Crossref]
  34. Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
    [Crossref]
  35. Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
    [Crossref]
  36. F. Xu, J. W. Durham, B. J. Wiley, and Y. Zhu, “Strain-release assembly of nanowires on stretchable substrates,” ACS Nano 5(2), 1556–1563 (2011).
    [Crossref]
  37. L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sens. Actuators, B 130(1), 70–76 (2008).
    [Crossref]
  38. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2nd ed (2000).
  39. E. D. Palik, Handbook of Optical Constants of Solids, Academic (1985).
  40. Y. Q. Wang, X. L. Ma, X. Li, M. B. Pu, and X. G. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electron. Adv. 1(8), 18001301–18001306 (2018).
    [Crossref]
  41. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [Crossref]
  42. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511 (2014).
    [Crossref]
  43. Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253 (2019).
    [Crossref]
  44. Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
    [Crossref]
  45. X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
    [Crossref]
  46. Z. Liu, G. Liu, Y. Wang, X. Liu, and C. Tang, “Silicon-based light absorbers with unique polarization-adjusting effects,” J. Phys. D: Appl. Phys. 52(50), 505109 (2019).
    [Crossref]
  47. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
    [Crossref]
  48. J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23(12), 16238 (2015).
    [Crossref]
  49. Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photonics 6(2), 322–326 (2019).
    [Crossref]
  50. Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020).
    [Crossref]
  51. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
    [Crossref]

2020 (4)

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020).
[Crossref]

2019 (7)

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photonics 6(2), 322–326 (2019).
[Crossref]

Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253 (2019).
[Crossref]

Z. Liu, G. Liu, Y. Wang, X. Liu, and C. Tang, “Silicon-based light absorbers with unique polarization-adjusting effects,” J. Phys. D: Appl. Phys. 52(50), 505109 (2019).
[Crossref]

Y. Zhu, T. Lan, P. Liu, and J. Yang, “Broadband near-infrared TiO2 dielectric metamaterial absorbers,” Appl. Opt. 58(26), 7134 (2019).
[Crossref]

L. Feng, P. Huo, Y. Liang, and T. Xu, “Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications,” Adv. Mater. 32(27), 1903787 (2019).
[Crossref]

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

A. Berkhout and A. F. Koenderink, “Perfect absorption and phase singularities in plasmon antenna array etalons,” ACS Photonics 6(11), 2917–2925 (2019).
[Crossref]

2018 (3)

2017 (3)

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
[Crossref]

W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017).
[Crossref]

2016 (7)

C. Zou, P. Gutruf, W. Withayachumnankul, L. Zou, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Nanoscale TiO2 dielectric resonator absorbers,” Opt. Lett. 41(15), 3391 (2016).
[Crossref]

H. Lee, J. Y. Na, Y. J. Moon, J. S. Park, H. S. Ee, H. G. Park, and S. K. Kim, “Three-dimensional grating nanowires for enhanced light trapping,” Opt. Lett. 41(7), 1578 (2016).
[Crossref]

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

D. Hu, H. Wang, and Q. Zhu, “Design of six-band Terahertz perfect absorber using a simple U-shaped closed-ring resonator,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288 (2016).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

2015 (6)

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23(12), 16238 (2015).
[Crossref]

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
[Crossref]

Y. Kim, Y. Yoo, K. Kim, J. Rhee, Y. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Opt. Express 23(4), 3861 (2015).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

2014 (5)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137 (2014).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511 (2014).
[Crossref]

2013 (1)

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

2012 (2)

J. Liu, H. Liang, and S. Yu, “Macroscopic-scale assembled nanowire thin films and their functionalities,” Chem. Rev. 112(8), 4770–4799 (2012).
[Crossref]

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

2011 (4)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref]

F. Xu, J. W. Durham, B. J. Wiley, and Y. Zhu, “Strain-release assembly of nanowires on stretchable substrates,” ACS Nano 5(2), 1556–1563 (2011).
[Crossref]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

2008 (5)

L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sens. Actuators, B 130(1), 70–76 (2008).
[Crossref]

A. R. Tao, J. X. Huang, and P. D. Yang, “Langmuir−Blodgettry of nanocrystals and nanowires,” Acc. Chem. Res. 41(12), 1662–1673 (2008).
[Crossref]

Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

2006 (1)

S. Kim, C. Chun, J. Hong, and D. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem. 16(4), 370–375 (2006).
[Crossref]

2001 (1)

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Aközbek, N.

Alley, R. L.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

An, L.

Asger Mortensen, N.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Bai, S.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Berkhout, A.

A. Berkhout and A. F. Koenderink, “Perfect absorption and phase singularities in plasmon antenna array etalons,” ACS Photonics 6(11), 2917–2925 (2019).
[Crossref]

Bhaskaran, M.

Bianco, G. V.

Boltasseva, A.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Bozhevolnyi, S. I.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Brittman, S.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref]

Bruno, G.

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

Cai, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Chakravadhanula, V. S.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Chaudhuri, K.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
[Crossref]

Chen, J.

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23(12), 16238 (2015).
[Crossref]

Chen, W.

S. Huang, Z. Xie, W. Chen, J. Lei, F. Wang, K. Liu, and L. Li, “Metasurface with multi-sized structure for multi-band coherent perfect absorption,” Opt. Express 26(6), 7066 (2018).
[Crossref]

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Chen, X.

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Chirumamilla, A.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
[Crossref]

Chirumamilla, M.

Chun, C.

S. Kim, C. Chun, J. Hong, and D. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem. 16(4), 370–375 (2006).
[Crossref]

Cui, T. J.

D’Orazio, A.

Dai, N.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

de Ceglia, D.

De Vittorio, M.

Dong, W.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Du, K.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Durham, J. W.

F. Xu, J. W. Durham, B. J. Wiley, and Y. Zhu, “Strain-release assembly of nanowires on stretchable substrates,” ACS Nano 5(2), 1556–1563 (2011).
[Crossref]

Ee, H. S.

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Fan, L.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Fan, Z.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

Fang, Z.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Feng, L.

L. Feng, P. Huo, Y. Liang, and T. Xu, “Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications,” Adv. Mater. 32(27), 1903787 (2019).
[Crossref]

Feng, T.

Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Forleo, A.

L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sens. Actuators, B 130(1), 70–76 (2008).
[Crossref]

Fornasiero, P.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Francioso, L.

L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sens. Actuators, B 130(1), 70–76 (2008).
[Crossref]

Froning, J. P.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Fu, G.

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Fumani, A. K.

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photonics 6(2), 322–326 (2019).
[Crossref]

Fumeaux, C.

Gan, Q.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Gao, H.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref]

Gong, H.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Grande, M.

Gu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Gutruf, P.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2nd ed (2000).

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Ho, J. C.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

Hong, J.

S. Kim, C. Chun, J. Hong, and D. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem. 16(4), 370–375 (2006).
[Crossref]

Hong, M.

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Hu, D.

D. Hu, H. Wang, and Q. Zhu, “Design of six-band Terahertz perfect absorber using a simple U-shaped closed-ring resonator,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Hu, Y. H.

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Hua, Y.

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photonics 6(2), 322–326 (2019).
[Crossref]

Huang, J. X.

A. R. Tao, J. X. Huang, and P. D. Yang, “Langmuir−Blodgettry of nanocrystals and nanowires,” Acc. Chem. Res. 41(12), 1662–1673 (2008).
[Crossref]

Huang, S.

S. Huang, Z. Xie, W. Chen, J. Lei, F. Wang, K. Liu, and L. Li, “Metasurface with multi-sized structure for multi-band coherent perfect absorption,” Opt. Express 26(6), 7066 (2018).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Huang, W. Y.

Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Huo, P.

L. Feng, P. Huo, Y. Liang, and T. Xu, “Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications,” Adv. Mater. 32(27), 1903787 (2019).
[Crossref]

Huo, Z.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref]

Huo, Z. Y.

Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Jacobson, Z. A.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Javey, A.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

Ji, D.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Jiang, S. C.

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Jiang, Y.-Z.

W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017).
[Crossref]

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Kim, D.

S. Kim, C. Chun, J. Hong, and D. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem. 16(4), 370–375 (2006).
[Crossref]

Kim, K.

Kim, S.

S. Kim, C. Chun, J. Hong, and D. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem. 16(4), 370–375 (2006).
[Crossref]

Kim, S. K.

Kim, Y.

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Kment, S.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Koenderink, A. F.

A. Berkhout and A. F. Koenderink, “Perfect absorption and phase singularities in plasmon antenna array etalons,” ACS Photonics 6(11), 2917–2925 (2019).
[Crossref]

Kristensen, P. K.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
[Crossref]

Kudyshev, Z. A.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Lai, L.-L.

W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017).
[Crossref]

Lan, S.

Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020).
[Crossref]

Lan, T.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lee, H.

Lee, Y.

Lei, J.

Li, L.

Li, Q.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137 (2014).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Li, X.

Y. Q. Wang, X. L. Ma, X. Li, M. B. Pu, and X. G. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electron. Adv. 1(8), 18001301–18001306 (2018).
[Crossref]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

Liang, H.

J. Liu, H. Liang, and S. Yu, “Macroscopic-scale assembled nanowire thin films and their functionalities,” Chem. Rev. 112(8), 4770–4799 (2012).
[Crossref]

Liang, Y.

L. Feng, P. Huo, Y. Liang, and T. Xu, “Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications,” Adv. Mater. 32(27), 1903787 (2019).
[Crossref]

Lin, Q.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Lin, Y.

Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020).
[Crossref]

Liu, G.

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Z. Liu, G. Liu, Y. Wang, X. Liu, and C. Tang, “Silicon-based light absorbers with unique polarization-adjusting effects,” J. Phys. D: Appl. Phys. 52(50), 505109 (2019).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Liu, J.

Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020).
[Crossref]

J. Liu, H. Liang, and S. Yu, “Macroscopic-scale assembled nanowire thin films and their functionalities,” Chem. Rev. 112(8), 4770–4799 (2012).
[Crossref]

Liu, K.

Liu, P.

Liu, X.

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Z. Liu, G. Liu, Y. Wang, X. Liu, and C. Tang, “Silicon-based light absorbers with unique polarization-adjusting effects,” J. Phys. D: Appl. Phys. 52(50), 505109 (2019).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Liu, Y.

Liu, Z.

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Z. Liu, G. Liu, Y. Wang, X. Liu, and C. Tang, “Silicon-based light absorbers with unique polarization-adjusting effects,” J. Phys. D: Appl. Phys. 52(50), 505109 (2019).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Luo, S.

Luo, X. G.

Y. Q. Wang, X. L. Ma, X. Li, M. B. Pu, and X. G. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electron. Adv. 1(8), 18001301–18001306 (2018).
[Crossref]

Ma, H. F.

Ma, X. L.

Y. Q. Wang, X. L. Ma, X. Li, M. B. Pu, and X. G. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electron. Adv. 1(8), 18001301–18001306 (2018).
[Crossref]

Mao, P.

Mascaretti, L.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Meng, C.

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Meng, G. W.

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Meng, L.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Montini, T.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Moon, Y. J.

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Na, J. Y.

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

Naldoni, A.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Nordlander, P.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Odom, T. W.

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photonics 6(2), 322–326 (2019).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, Academic (1985).

Pan, M.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Pan, P.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

Park, H. G.

Park, J. S.

Pedersen, K.

Peng, R. W.

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Petruzzelli, V.

Phillipp, F.

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Pu, M. B.

Y. Q. Wang, X. L. Ma, X. Li, M. B. Pu, and X. G. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electron. Adv. 1(8), 18001301–18001306 (2018).
[Crossref]

Qin, M.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Qing, Y. M.

Qiu, M.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137 (2014).
[Crossref]

Qu, Y.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Razavi, H.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

Rej, S.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Ren, Y. Z.

Rhee, J.

Roberts, A. S.

Ruan, Z.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Sarmah, S. P.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Scalora, M.

Schmuki, P.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Shalaev, V. M.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Siciliano, P.

L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sens. Actuators, B 130(1), 70–76 (2008).
[Crossref]

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Song, J.

W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017).
[Crossref]

Sriram, S.

Stomeo, T.

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Sun, Y.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Sutherland, D. S.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2nd ed (2000).

Tan, Y.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Tang, C.

Tang, J.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref]

Tao, A. R.

A. R. Tao, J. X. Huang, and P. D. Yang, “Langmuir−Blodgettry of nanocrystals and nanowires,” Acc. Chem. Res. 41(12), 1662–1673 (2008).
[Crossref]

Taurino, A. M.

L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sens. Actuators, B 130(1), 70–76 (2008).
[Crossref]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Thilsing-Hansen, K.

Tian, J.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Tomanec, O.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Tsung, C. K.

Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Vincenti, M. A.

Wang, C.

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Wang, D.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

A. S. Roberts, M. Chirumamilla, D. Wang, L. An, K. Pedersen, N. Asger Mortensen, and S. I. Bozhevolnyi, “Ultra-thin titanium nitride films for refractory spectral selectivity,” Opt. Mater. Express 8(12), 3717–3728 (2018).
[Crossref]

Wang, F.

Wang, H.

D. Hu, H. Wang, and Q. Zhu, “Design of six-band Terahertz perfect absorber using a simple U-shaped closed-ring resonator,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Wang, J.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Wang, L.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Wang, M.

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Wang, Q.

Wang, W.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Wang, X.

Wang, Y.

Z. Liu, G. Liu, Y. Wang, X. Liu, and C. Tang, “Silicon-based light absorbers with unique polarization-adjusting effects,” J. Phys. D: Appl. Phys. 52(50), 505109 (2019).
[Crossref]

Wang, Y. Q.

Y. Q. Wang, X. L. Ma, X. Li, M. B. Pu, and X. G. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electron. Adv. 1(8), 18001301–18001306 (2018).
[Crossref]

Wei, T.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Wen, W.

W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017).
[Crossref]

Wiley, B. J.

F. Xu, J. W. Durham, B. J. Wiley, and Y. Zhu, “Strain-release assembly of nanowires on stretchable substrates,” ACS Nano 5(2), 1556–1563 (2011).
[Crossref]

Withayachumnankul, W.

Wu, J.-M.

W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017).
[Crossref]

Wu, P.

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

Xia, S.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Xiang, Y.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Xie, Z.

Xiong, X.

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Xu, F.

F. Xu, J. W. Durham, B. J. Wiley, and Y. Zhu, “Strain-release assembly of nanowires on stretchable substrates,” ACS Nano 5(2), 1556–1563 (2011).
[Crossref]

Xu, J.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Xu, R.

Xu, T.

L. Feng, P. Huo, Y. Liang, and T. Xu, “Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications,” Adv. Mater. 32(27), 1903787 (2019).
[Crossref]

Xu, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Xu, Y.

Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020).
[Crossref]

Xue, Z. H.

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Yang, H.

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

Yang, J.

Yang, P.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref]

Yang, P. D.

A. R. Tao, J. X. Huang, and P. D. Yang, “Langmuir−Blodgettry of nanocrystals and nanowires,” Acc. Chem. Res. 41(12), 1662–1673 (2008).
[Crossref]

Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Yang, Y.

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137 (2014).
[Crossref]

Yao, W.

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

Ye, H.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Yerushalmi, R.

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

Yi, Y.

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

Yi, Z.

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

Yoo, J. E.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Yoo, Y.

Yu, P.

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

Yu, S.

Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253 (2019).
[Crossref]

J. Liu, H. Liang, and S. Yu, “Macroscopic-scale assembled nanowire thin films and their functionalities,” Chem. Rev. 112(8), 4770–4799 (2012).
[Crossref]

Yu, Z.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Yuan, Y.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Zboril, R.

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Zhai, X.

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Zhang, H.

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Zhang, K.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Zhang, L.

Zhang, L. D.

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Zhang, P.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Zhang, X. F.

Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Zhang, X. Y.

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Zhang, Y.

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Zhao, D.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137 (2014).
[Crossref]

Zhao, J.

Zhao, L. X.

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Zhen, Y. R.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Zheng, M. J.

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Zhou, J.

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

Zhou, L.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Zhu, B.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Zhu, J.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zhu, Q.

D. Hu, H. Wang, and Q. Zhu, “Design of six-band Terahertz perfect absorber using a simple U-shaped closed-ring resonator,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Zhu, S.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zhu, X.

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

Zhu, Y.

Y. Zhu, T. Lan, P. Liu, and J. Yang, “Broadband near-infrared TiO2 dielectric metamaterial absorbers,” Appl. Opt. 58(26), 7134 (2019).
[Crossref]

F. Xu, J. W. Durham, B. J. Wiley, and Y. Zhu, “Strain-release assembly of nanowires on stretchable substrates,” ACS Nano 5(2), 1556–1563 (2011).
[Crossref]

Zou, C.

Zou, L.

Zuo, D.

Acc. Chem. Res. (1)

A. R. Tao, J. X. Huang, and P. D. Yang, “Langmuir−Blodgettry of nanocrystals and nanowires,” Acc. Chem. Res. 41(12), 1662–1673 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref]

ACS Nano (2)

F. Xu, J. W. Durham, B. J. Wiley, and Y. Zhu, “Strain-release assembly of nanowires on stretchable substrates,” ACS Nano 5(2), 1556–1563 (2011).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref]

ACS Photonics (2)

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photonics 6(2), 322–326 (2019).
[Crossref]

A. Berkhout and A. F. Koenderink, “Perfect absorption and phase singularities in plasmon antenna array etalons,” ACS Photonics 6(11), 2917–2925 (2019).
[Crossref]

Adv. Mater. (3)

L. Feng, P. Huo, Y. Liang, and T. Xu, “Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications,” Adv. Mater. 32(27), 1903787 (2019).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref]

Adv. Opt. Mater. (2)

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K. Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen, “Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars,” Adv. Opt. Mater. 5(22), 1700552 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Chem (1)

W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai, and J. Song, “Pseudocapacitance-enhanced Li-Ion microbatteries derived by a TiN@TiO2 nanowire anode,” Chem 2(3), 404–416 (2017).
[Crossref]

Chem. Mater. (1)

X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13(8), 2511–2515 (2001).
[Crossref]

Chem. Rev. (1)

J. Liu, H. Liang, and S. Yu, “Macroscopic-scale assembled nanowire thin films and their functionalities,” Chem. Rev. 112(8), 4770–4799 (2012).
[Crossref]

IEEE Photonics J. (1)

D. Hu, H. Wang, and Q. Zhu, “Design of six-band Terahertz perfect absorber using a simple U-shaped closed-ring resonator,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Xiang, L. Wang, Q. Lin, S. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

J. Mater. Chem. (1)

S. Kim, C. Chun, J. Hong, and D. Kim, “Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films,” J. Mater. Chem. 16(4), 370–375 (2006).
[Crossref]

J. Mater. Chem. C (1)

J. Zhou, Z. Liu, X. Liu, G. Fu, G. Liu, J. Chen, C. Wang, H. Zhang, and M. Hong, “Metamaterial and nanomaterial electromagnetic wave absorbers: structures, properties and applications,” J. Mater. Chem. C 8(37), 12768–12794 (2020).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Z. Liu, G. Liu, Y. Wang, X. Liu, and C. Tang, “Silicon-based light absorbers with unique polarization-adjusting effects,” J. Phys. D: Appl. Phys. 52(50), 505109 (2019).
[Crossref]

Nano Lett. (3)

Z. Y. Huo, C. K. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Lett. 8(1), 20–25 (2008).
[Crossref]

A. Naldoni, Z. A. Kudyshev, L. Mascaretti, S. P. Sarmah, S. Rej, J. P. Froning, O. Tomanec, J. E. Yoo, D. Wang, S. Kment, T. Montini, P. Fornasiero, V. M. Shalaev, P. Schmuki, A. Boltasseva, and R. Zbořil, “Solar thermoplasmonic nanofurnace for high-temperature heterogeneous catalysis,” Nano Lett. 20(5), 3663–3672 (2020).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Nat. Nanotechnol. (1)

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core–shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref]

Nat. Photonics (1)

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Opt. Mater. Express (1)

Opto-Electron. Adv. (1)

Y. Q. Wang, X. L. Ma, X. Li, M. B. Pu, and X. G. Luo, “Perfect electromagnetic and sound absorption via subwavelength holes array,” Opto-Electron. Adv. 1(8), 18001301–18001306 (2018).
[Crossref]

Phys. Rev. Appl. (2)

Y. Lin, T. Feng, S. Lan, J. Liu, and Y. Xu, “On-chip diffraction-free beam guiding beyond the light cone,” Phys. Rev. Appl. 13(6), 064032 (2020).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Phys. Rev. B (2)

Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 245401 (2012).
[Crossref]

X. Xiong, Z. H. Xue, C. Meng, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial,” Phys. Rev. B 88(11), 115105 (2013).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Renewable Energy (1)

P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, and P. Wu, “Ultra-wideband solar absorber based on refractory titanium metal,” Renewable Energy 158, 227–235 (2020).
[Crossref]

Sci. Adv. (1)

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2(4), e1501227 (2016).
[Crossref]

Sci. Rep. (1)

Y. Zhang, T. Wei, W. Dong, K. Zhang, Y. Sun, X. Chen, and N. Dai, “Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles,” Sci. Rep. 4(1), 4850 (2015).
[Crossref]

Science (1)

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Sens. Actuators, B (1)

L. Francioso, A. M. Taurino, A. Forleo, and P. Siciliano, “TiO2 nanowires array fabrication and gas sensing properties,” Sens. Actuators, B 130(1), 70–76 (2008).
[Crossref]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2nd ed (2000).

E. D. Palik, Handbook of Optical Constants of Solids, Academic (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the grating based absorber consisting of a TiN/TiO2 core-shell nanowires array on the surface of an opaque TiN film substrate under the solar light illumination. The nanowire is infinite along the y-direction.
Fig. 2.
Fig. 2. Left: Spectral reflection, transmission, absorption of the absorber under normal incidence. Right: Normalized electric and magnetic field intensity distributions for the four absorption peaks (λ1-λ4).
Fig. 3.
Fig. 3. (a) Absorption response of the absorber under a tuning of polarization angle. (b) Absorption spectrum for the absorber under TE polarization and the electric field intensity distributions for the two peaks (λ01, λ02).
Fig. 4.
Fig. 4. (a),(b) Absorption mapping contour pictures for the absorber under the oblique incident excitation via the TM and TE polarized light, respectively.
Fig. 5.
Fig. 5. Absorption evolution for the absorber formed by different dielectric coating shells with the index tuning from 1.45 to 3.55.
Fig. 6.
Fig. 6. (a) Absorption of the platform by replacing the TiN with the refractory metals such as the W, Ni, Ti. (b) The noble metals of the Al, Cu, Ag are used to replace the TiN material.