Abstract

Portable sensors with a sufficiently high sensitivity in detecting small rotational motions have attracted significant attention in the field of rotational seismology. In this study, we propose and demonstrate a dual-polarization fiber optic gyroscope (IFOG) with a portable-sized fiber coil. Excess relative intensity noise (RIN) is effectively compensated for owing to the opposite parities and strong correlation of the two orthogonal polarized light, whereas other noises including coherent phase noise and thermal phase noise have also been handled well. In a test on detecting the rotation rate of the Earth, an enhanced sensitivity of $20\,\mathrm {nrad/s/\sqrt {Hz}}$ over a frequency range of 0.01 Hz to 30 Hz was demonstrated using the proposed design with an enclosed area of only 68 m2.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

At present, interferometric fiber optic gyroscopes (IFOGs) have been widely utilized in numerous studies and applications owing to their high precision and portability [13]. In general, the performance of a gyroscope is evaluated in terms of long-term drift and short-term noise [4]. For inertial navigation, which is the original application of a gyroscope, low long-term drift is an important attribute to reduce accumulative errors [5,6]. By contrast, short-term noise, which directly limits the detection sensitivity, is of greater concern in rotational seismology, another rapidly growing gyroscope field in which all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations are studied [7,8]. Such application requires the sensors to be able to measure the amplitudes in order of $10^{-7}\,\mathrm {rad/s}$ within a frequency range of $0.01\,\mathrm {Hz}$ to $100\,\mathrm {Hz}$ [9,10]. Large-frame ring laser gyroscopes (RLGs) are first adopted for this purpose owing to their extremely high sensitivity (better than $\mathrm {nrad/s/\sqrt {Hz}}$) [1114]. However, they are large and have an extremely delicate operation; in comparison, IFOGs usually lack the required high sensitivity, but are small and robust [15]. As a result, a series of studies have been conducted to develop a portable IFOG with high sensitivity [1619].

An effective way to promote the sensitivity of an IFOG, is to enhance the Sagnac effect by utilizing a fiber coil with a large enclosed area [20]. Based on this, many large and even giant sized IFOGs have been designed. Clivati et al. [21] demonstrated an IFOG that utilizes a multiplexed fiber network with an enclosed area of $20\,\mathrm {km^{2}}$ and achieved a sensitivity of $10\,\mathrm {nrad/s/\sqrt {Hz}}$. Li et al. [22] designed an IFOG with an enclosed area of $2910\,\mathrm {m^{2}}$ achieving a sensitivity of $3.5\,\mathrm {nrad/s/\sqrt {Hz}}$. iXblue [20] designed a series of IFOG products and prototypes with an enclosed area range of $225$ to $1250\,\mathrm {m^{2}}$, corresponding to a sensitivity of $20$ to $4.5\,\mathrm {nrad/s/\sqrt {Hz}}$. Nevertheless, the benefits of the enclosed area enlargement are somehow limited, because a longer fiber not only causes more thermal phase noise [22], it also increases the shot noise owing to a stronger light attenuation [23]. In addition, their sizes significantly weaken their portability. Therefore, an alternative approach to reducing the amount of noise is indispensable.

A bottleneck to IFOG noise suppression is excess relative intensity noise (RIN). RIN comes from the random beating between various frequency components of light [2426]. To suppress the RIN, a common scheme applying a conventional “minimum configuration” [27] is to draw a separate optical path from the light source that operates as a reference arm. The light from the reference arm can either be converted into an electronic signal, or after passing through a fiber delay line [28], and thereby compensate for the RIN from the measurement arm by signal processing algorithms [29,30]. Alternatively, the reference light can also be directly injected back into the output light with an appropriate attenuation to optically compensate for the RIN [25,31].

Recently, a dual-polarization IFOG has been extensively investigated and has shown a good performance under various ambient conditions [3237]. Note that the “dual-polarization configuration” is different than the conventional “minimum configuration,” which operates using a single polarization. For the dual-polarization configuration, two orthogonal polarized light beams co-exist in the fiber coil and sense the rotation simultaneously for a better signal-to-noise ratio (SNR). In this case, an extra benefit in RIN suppression is offered, i.e., the two polarizations experience almost identical optical paths, and can therefore be used as mutual reference arms for each other.

In this study, we propose a modified dual-polarization configuration to promote the sensitivity of IFOGs for rotational seismology applications. In this design, it was found that the RINs in two polarizations are identical and synchronized, and can thus be effectively suppressed through compensation with the help of a high-order eigenfrequency modulation under an open-loop configuration. At the same time, through compensation, the coherent phase errors upon harmonic demodulation are also eliminated. We experimentally verify the effectiveness of the proposed design by using a polarization-maintaining (PM) fiber coil with an enclosed area of $68\,\mathrm {m^2}$, and achieve a reference-grade [3] angular random walk (ARW) of $50\,\mathrm {\mu ^\circ /\sqrt {h}}$, and a flat self-noise passband of $20\,\mathrm {nrad/s/\sqrt {Hz}}$ within a frequency range of $0.01\,\mathrm {Hz}$ to $30\,\mathrm {Hz}$. The sensitivity of this IFOG is comparable to a widely used commercial IFOG product BlueSeis3A (iXblue), the enclosed area ($225\,\mathrm {m^2}$) of which is more than 3-times that of our own [20]. Therefore, the proposed IFOG scheme shows the advantages of a high sensitivity and high portability at the same time.

2. Theory and principles

2.1 Analysis model of the dual-polarization IFOG

The proposed dual-polarization IFOG is schematically illustrated in Fig. 1. A polarizer is placed between the amplified spontaneous emission (ASE) light source (LS) and a $50/50$ polarization-maintaining (PM) coupler, ensuring that the two output beams have equal intensity accompanied by a highly correlated RIN [30,31], which is the key point of effective RIN suppression in such a two-arm configuration. Two multi-functional integrated optical chips (MIOCs) are used to split the light into clockwise (CW) and counter-clockwise (CCW) paths, respectively, and a reverse phase modulation [37] is further applied simultaneously, to eliminate the non-reciprocity error from polarization cross-coupling. Two polarization beam splitters/combiners (PBS/Cs) are used to inject the light from MIOC 1 and MIOC 2 (both in the same polarization corresponding to the polarizer) into the two orthogonal (x and y) polarizations of the PM fiber coil. After a round trip, the light beams in x and y polarizations are output by two PM circulators, and are then detected by two photodetectors (PD 1 and PD 2), respectively.

 figure: Fig. 1.

Fig. 1. Schematic setup of a dual-polarization IFOG. The intensity of polarized light input into the coupler is presented as $I(t)$. In addition, $\pm \phi _m(t)$ are a pair of sinusoidal phase modulation signals with opposite signs and x and y present the two orthogonal polarizations of the fiber coil.

Download Full Size | PPT Slide | PDF

The IFOG response is derived by using the Jones matrix method (explicitly given in Appendix A1). According to the output expressions of the PDs, as shown in Eqs. (20) and (21), we set the modulated phase difference $\Delta \phi _{m}(t)$ to a sinusoidal shift of $\phi _{b} \cos (\omega _m t) /2$, where $\phi _b$ is the modulation depth and the modulation frequency $f_m = \omega _m/2\pi$. The intensities detected by PD 1 and PD 2 under an open-loop configuration can be written as follows:

$$\begin{aligned} I_{\textrm{PD1}}(t) & = I_u^x + I_c^x \cos \left[ \phi^{+}(t)/2 \right] + I_p \cos \left[ \phi^{+}(t) \right], \end{aligned}$$
$$\begin{aligned} I_{\textrm{PD2}}(t) & = I_u^y + I_c^y \cos \left[ \phi^{-}(t)/2 \right] + I_p \cos \left[ \phi^{-}(t) \right], \end{aligned}$$
where the modulated phases are $\phi ^{+}(t) = \phi _s + \phi _{b} \cos (\omega _{m}t)$ and $\phi ^{-}(t)=\phi _s - \phi _{b} \cos (\omega _{m}t)$, in which $\phi _s$ is the Sagnac phase shift. The explicit expressions of $I_u^{x,y}, I_c^{x,y}$ and $I_p$ are given in Eqs. (20) and (21). According to physics, we divided all output terms into three categories:
  • (1) Unmodulated terms $I_u^{x,y}$: These come from the unmodulated part of the interference output.
  • (2) Coherent-modulation terms $I_c^x \cos \left [\phi ^{+}(t)/2 \right ]$ and $I_c^y \cos \left [\phi ^{-}(t)/2 \right ]$ : These are the modulated parts of the output, increased by the interference between the cross-coupled light and the original light in a given polarization $x,y$.
  • (3) Polarization-modulation terms $I_p \cos \left [\phi ^{+}(t) \right ]$ and $I_p \cos \left [\phi ^{-}(t) \right ]$: These are the modulated parts of the interference output of the original light for the given polarization. They are the signals carrying the Sagnac phase shift, and the synchronous RIN components.

2.2 Dual-polarization compensation

To compensate for the noises, the signal processing can be applied to the IFOG outputs of PD 1 and PD 2, as follows:

$$\begin{aligned} I_{\textrm{odd}}(t) & = \left[ {I_{\textrm{PD1}}(t) - I_{\textrm{PD2}}(t)} \right ]/{2} , \end{aligned}$$
$$\begin{aligned} I_{\textrm{even}}(t) & = \left[ {I_{\textrm{PD1}}(t) + I_{\textrm{PD2}}(t)} \right ]/{2} , \end{aligned}$$
in which the two signals $I_{\textrm {odd}}(t)$ and $I_{\textrm {even}}(t)$ represent the extraction sources of odd and even harmonics for demodulation. Through this compensation processing, the Sagnac phase shift is calculated by using the harmonic division algorithm [38] with the first four harmonics.

It is noteworthy that, for the polarization-modulation terms, the compensation process does not affect the Sagnac phase shift as proved in Appendix A2. In addition, the summing operation under $I_{\textrm {even}}(t)$ still improves the SNR as we elaborated on in our previous study on dual-polarization IFOGs [37]. Not only does the subtraction operation under $I_{\textrm {odd}}(t)$ eliminate most of the unmodulated terms, it also suppresses the RIN carried by the polarization-modulation terms, the details of which are presented in the later section.

At the same time, the coherent phase errors raised from the coherent-modulation term can also be suppressed through Eqs. (3) and (4). In this case, the odd harmonics are $I^{x,y}_c \textstyle \sum \nolimits _{n=1}^{\infty }C^n_{\textrm {odd}}$, and the even harmonics are $I^{x,y}_c \textstyle \sum \nolimits _{n=1}^{\infty }C^n_{\textrm {even}}$, as detailed in Appendix A3. These harmonics are the noise components and cause coherent phase errors in the harmonic demodulation. However, by applying the compensation, the residual error terms can be expressed as follows:

$$\begin{aligned} I_{\textrm{odd}}^{c}(t) = I_c \textstyle \sum \nolimits_{n=1}^{\infty}C^n_{\textrm{odd}} \sin(\phi_s/2), \end{aligned}$$
$$\begin{aligned} I_{\textrm{even}}^{c}(t) ={-}I_c\textstyle\sum\nolimits_{n=1}^{\infty}C^n_{\textrm{even}} \sin(\phi_s/2), \end{aligned}$$
where $I_{\textrm {odd}}^{c}(t)$ and $I_{\textrm {even}}^{c}(t)$ are the odd and even harmonic components of the coherent-modulation terms in the compensated signals, respectively, and the magnitude of $I_c$ is given in Appendix A3, which is quite close to that of $I^{x,y}_c$. Note that both of them are proportional to $\sin (\phi _s/2)$. Therefore, given that IFOGs for rotational seismology usually operate at the low rate of the Earth’s rotation (namely, $\phi _s$ is close to zero), the residual coherent phase errors caused by the above coherent-modulation terms can be considerably small.

2.3 Theory of RIN suppression

Because the compensation process reasonably handles the above-mentioned noises, we further elaborate the principle of suppressing the RIN appearing in the polarization-modulation terms, which can be decomposed into two parts as indicated in [25]:

$$I_p = I_p^{0} + I_p^{\textrm{RIN}}(t),$$
where $I_p^{0}$ is a no time-varying constant. In addition, $I_p^{\textrm {RIN}}(t)$ is a random function of time, representing the intensity fluctuations caused by the RIN. Hence, the noise components caused by the RIN in Eqs. (1) and (2) can be written as follows:
$$I_{\textrm{PD1}}^{n}(t) = I_p^{\textrm{RIN}}(t) \cos \left[ \phi_s + \phi_{b} \cos(\omega_{m}t) \right],$$
$$I_{\textrm{PD2}}^{n}(t) = I_p^{\textrm{RIN}}(t) \cos \left[ \phi_s - \phi_{b} \cos(\omega_{m}t) \right],$$
which are denoted by $I_{\textrm {PD1,2}}^{n}(t)$ existing in the outputs of the two PDs, respectively, and will decrease the sensitivity of the IFOG. Under the compensation processing given in Eqs. (3) and (4), the RIN components become
$$I_{\textrm{odd}}^{n}(t) ={-}I_p^{\textrm{RIN}}(t) \sin \left[ \phi_{b} \cos(\omega_{m}t) \right ] \sin \phi_s ,$$
$$I_{\textrm{even}}^{n}(t) = I_p^{\textrm{RIN}}(t) \cos \left[ \phi_{b} \cos(\omega_{m}t) \right ] \cos \phi_s ,$$
as denoted by $I_{\textrm {odd}}^{n}(t)$ and $I_{\textrm {even}}^{n}(t)$, which represent the RIN of the demodulated odd and even harmonics, respectively.

As noted from Eqs. (10) and (11), when the IFOG is at rest or is under a small rotation (namely, $\phi _s$ is close to zero), the value of $I_{\textrm {odd}}^{n}(t)$ approaches zero as compared to $I_{\textrm {PD\,1,2}}^{n}(t)$ in Eqs. (8) and (9). Such fact indicates that the RIN errors in such odd harmonics are effectively suppressed in the dual-polarization configuration though the compensation process. By contrast, the magnitude of $I_{\textrm {even}}^{n}(t)$ is still comparable to the original outputs of $I_{\textrm {PD\,1,2}}^{n}(t)$. Therefore, for rotational seismology, the proposed dual-polarization IFOG is capable of suppressing the RIN by mutually adopting the outputs as the reference and signal arms.

3. Experimental results

We further present an experimental verification of the proposed configuration. As illustrated in Fig. 1, an ASE light source with a spectral width of $40\,\mathrm {nm}$ and a center wavelength of $1550\,\mathrm {nm}$ is adopted. The PM fiber coil is wound using the quadrupole symmetric method with a fiber length of $2000\,\mathrm {m}$ and an average diameter of $13.6\,\mathrm {cm}$, which gives an enclosed area of $68\,\mathrm {m^2}$. The detected signals of PD 1 and PD 2 are acquired using an NI-5922, with a sampling rate of 5 million samples per second (MSPS) and a sampling length of $25000$.

First, to verify the correlation of the RIN carried by the two orthogonal polarizations, we acquired the signals from PD 1 and PD 2, respectively, without applying any modulation under the MIOCs. Further, we calculated the degree of correlation between them. As the result presented in Fig. 2 indicates, the correlation of the two polarizations reaches $99.03\,\%$, and the correlation is quite stable with respect to the short and long time scales, which is an important prerequisite for an effective suppression of the RIN.

 figure: Fig. 2.

Fig. 2. The degree of correlation between the two orthogonal polarizations when no modulation is applied.

Download Full Size | PPT Slide | PDF

To evaluate the performance of the proposed dual-polarization IFOG, we carried out an 8-h test in which the fiber coil was placed flat on a horizontal surface, targeting the component of the Earth’s rate of rotation in the local vertical direction ($9.67\,\mathrm {^\circ /h}$, corresponding to the latitude of our laboratory). All devices of the IFOG are placed in a room with a relatively stable temperature. To obtain the optimal SNR of the sinusoidal modulation, the modulation depth $\phi _b$ is set to $2.7$ [24], and a modulation frequency at 5-times the eigenfrequency ($f_{e} = 1/2\tau _g$) is adopted to reduce the thermal phase noise from the fiber coil [22].

Figure 3(a) shows the rotation rates ($\Omega$) of the 8-h test demodulated from the signals of PD 1 and PD 2, and the compensated output (Comp), simultaneously, with an output rate of $200\,\mathrm {Hz}$. Moreover, the output is zoomed to a smaller time scale of $200\,\mathrm {ms}$, as presented in Fig. 3(b). It was determined that the output with compensation processing shows remarkably less random noise compared with the raw output, which validates the effectiveness of the proposal RIN suppression method. At the same time, the local rate of the Earth’s rotation is accurately extracted, which also proves the correctness of the compensation method.

 figure: Fig. 3.

Fig. 3. (a) The time domain outputs of an 8-h test for the dual-polarization IFOG at a rate of 200 Hz, and (b) the first 200-ms output of the test in (a).

Download Full Size | PPT Slide | PDF

In addition, to quantitatively evaluate the performance of the proposed IFOG, the Allan deviation curves and the root power spectral density (PSD) of the three sets of data are illustrated in Fig. 4(a) and (b) and combined with the indicator analysis presented in Table 1. It was found that a significant improvement in the IFOG performance is achieved through the dual-polarization compensation method. The ARW and self-noise is reduced by 8-fold, and the bias instability (BI) is reduced by more than 6-fold.

 figure: Fig. 4.

Fig. 4. The quantitative indicator analysis corresponding to the 8-h test shown in Fig. 3. (a) Allan deviation curves and (b) the root PSDs.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Comparison of ARW, BI, and self-noise.

In particular, the compensation result exhibits an ultra-low short-term noise, which is represented by an ARW of $50\,\mathrm {\mu ^\circ /\sqrt {h}}$ within the Allan deviation curve (calculated at a correlation time of $\mathrm {1\,s}$), and a flat self-noise floor of $20\,\mathrm {n rad/s/\sqrt {Hz}}$ over a frequency range of $\mathrm {0.01\,Hz}$ to $\mathrm {30\,Hz}$ in the root PSD. At frequencies of higher than $30\,\mathrm {Hz}$, the self-noise estimates may be disturbed by ambient vibrations, which cannot be completely excluded in our laboratory environment. The long-term drift is represented by a BI of $4.3 \times 10^{-4}\,\mathrm {^\circ /h}$ with a correlation time of $200\,\mathrm {s}$. At longer time periods that correspond to frequencies of lower than $0.01\,\mathrm {Hz}$, the self-noise gradually deteriorates until $40\,\mathrm {n rad/s/\sqrt {Hz}}$. This is mainly because the residual coherent phase error varies under the long time scale owing to the time-varying polarization cross-coupling in the fiber coil, which is not completely eliminated by the compensation.

To summarize, the sensitivity of the proposed IFOG is sufficient for many rotational seismology applications. Its self-noise is below $10^{-7}\,\mathrm {rad/s/\sqrt {Hz}}$ and reaches a level of $20\,\mathrm {nrad/s/\sqrt {Hz}}$ within the usually considered frequency range of $\mathrm {0.01\,Hz}$ to $\mathrm {100\,Hz}$. In addition, the laboratory test results [39] of a widely used three-component IFOG seismometer, BlueSeis3A (iXblue), are presented in Table 1 for comparison, of which the fiber coil has a length of $5\,\mathrm {km}$ and a diameter of $18\,\mathrm {cm}$, giving an enclosed area of $225\,\mathrm {m^2}$ [20]. Compared with BlueSeis3A, our IFOG achieves the same short-term noise and sensitivity levels, although the long-term drift and flat self-noise passband performance cannot be fully matched. Nevertheless, in our IFOG, the enclosed area of the fiber coil is less than one-third that of BlueSeis3A. This provides the advantage of a prominent portability for rotational seismology applications.

4. Discussion of other noises

The short-term noise is the most important attribute of an IFOG for rotational seismology applications, because it is related directly to the sensitivity during a fast response. Among the many different short-term noise origins, the RIN is dominant and is thus the highest priority and the main target of our proposal. However, in addition to the RIN, there are other noises that require attention.

The coherent-modulation terms accompanying the two polarizations also result in noise in the IFOG. The coherent phase errors fluctuate in both the short and long time scales and inter-play with a correlation of the light. In our previous studies on the dual-polarization IFOGs, the coherent phase errors were almost completely suppressed by introducing a sufficient long fiber delay line that makes the two polarizations incoherent. As a result, the long-term stability of the IFOGs was guaranteed [36]. In this study, to ensure the correlation of two polarizations for RIN suppression, the fiber delay line was removed, resulting in a decrease in the long-term drift performance because the coherent phase errors only approach zero under a small rotation approximation. The self-noise of our IFOG gradually increases under the long time scale. Nevertheless, the long-term stability is still acceptable in terms of rotation seismology applications, but a much lower short-term noise is obtained, even reaching the ARW level of the reference-grade IFOG [3] of $50\,\mathrm {\mu ^\circ /\sqrt {h}}$ with a fiber coil of $68\,\mathrm {m^2}$.

Another usually overlooked noise is the thermal phase noise. Such noise is induced by the random thermal fluctuations of the fiber and increases with the fiber length. In our previous study [22], we found that the thermal phase noise is more significant in the giant sized IFOG (fiber length $L\geqslant 10\,\mathrm {km}$), and can be effectively reduced through the modulation with a high-order eigenfrequency, and thus the thermal phase noise is less important in such conventional sized IFOGs ($L\,=\,0.3 - 2\,\mathrm {km}$). In this study, because a significant portion of the RIN has been suppressed, we can note the impact of thermal phase noise in our setup even when the fiber-coil length is only $2\,\mathrm {km}$. We applied two 1-h tests to detect the rotation rate of the Earth, but with different modulation frequencies, namely, the first-order eigenfrequency (${f_e}$) of $52\,\mathrm {kHz}$ and the fifth-order eigenfrequency ($5{f_e}$) of $260\,\mathrm {kHz}$. The test results and related root PSDs are presented in Fig. 5 and Table 2.

 figure: Fig. 5.

Fig. 5. The root PSDs of the 1-h tests with different modulation frequencies. Dotted lines indicate the outputs under the first-order eigenfrequency ($f_e$), and solid lines indicate the outputs under the fifth-order eigenfrequency ($5f_e$).

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Comparison of self-noise.

As the outputs of PD 1 and PD 2 in Fig. 5 show, the thermal phase noise is immersed in the RIN and is thus too small to be noticed from the self-noise plots. This fact is true for both $f_e$ and $5f_e$ modulations (corresponding to without or with thermal phase noise suppression), suggesting that the RIN is indeed dominant. By contrast, the difference between $f_e$ and $5f_e$ modulations stand out when the compensation is applied. The self-noise of $5f_e$ modulation is more than two times lower than that of $f_e$ modulation. Such improvement is due to the high-order eigenfrequency modulation, and proves that the RIN in our setup is even lower than the thermal phase noise.

5. Conclusions

In this study, we propose a high-sensitivity IFOG based on the dual-polarization configuration for rotational seismology applications. By adopting a compensation processing technique, the proposed IFOG is capable of effectively suppressing the RIN from the light source and the coherent phase error caused by the polarization cross-coupling. We demonstrate experimentally that, by using a reverse sinusoidal modulation at high-order eigenfrequency, an ultra-low ARW of $50\,\mathrm {\mu ^\circ /\sqrt {h}}$ is achieved in detecting the rotation rate of the Earth. In addition, the self-noise reached a level of $20\,\mathrm {n rad/s/\sqrt {Hz}}$ over a frequency range of $\mathrm {0.01\,Hz}$ to $\mathrm {30\,Hz}$. Such a high sensitivity is obtained on a fiber coil with an enclosed area of only $68\,\mathrm {m^2}$, and thus makes the dual-polarization IFOG a promising candidate for portable rotational seismology sensors.

Appendix

A1. Response of dual-polarization IFOG

The Jones matrix method is used to analyze the propagation behavior of light in this IFOG. As shown in Fig. 1, the light beams after the coupler correspond to the input of the x and y polarization paths, respectively, and have the same intensity including the RIN and can be written as follows:

$$ \mathbf{E_{\mathrm{c}}} = \begin{bmatrix} \mathbf{E_{\mathrm{x}}} \\ \mathbf{E_{\mathrm{y}}} \end{bmatrix} = \begin{bmatrix} {e(t)} \\ {e(t)} e^{ {-}j \phi_c} \end{bmatrix} e^{ j \omega t}, $$
where $\omega$ is the center frequency of light and $\phi _c$ is the phase shift (approximately $\pi /2$) induced by the coupler. The transfer matrices of the fiber coil in the CW and CCW directions can be written as [4042]
$$\begin{aligned} \mathbf{C}_{\mathrm{cw}} &= \begin{bmatrix} \sqrt{1-\alpha}e^{{-}j\beta_x L} & \sqrt{\alpha}e^{{-}j \left[ \beta_y l + \beta_x (L-l) \right]} \\ -\sqrt{\alpha}e^{{-}j \left[ \beta_x l + \beta_y (L-l) \right]} & \sqrt{1-\alpha}e^{{-}j\beta_y L} \end{bmatrix} e^{j\phi_s/2} , \end{aligned}$$
$$\begin{aligned} \mathbf{C}_{\mathrm{ccw}} &= \begin{bmatrix} \sqrt{1-\alpha}e^{{-}j\beta_x L} & -\sqrt{\alpha}e^{{-}j \left[ \beta_x l + \beta_y (L-l) \right]}\\ \sqrt{\alpha}e^{{-}j\left[ \beta_y l + \beta_x (L-l) \right]} & \sqrt{1-\alpha}e^{{-}j\beta_y L} \end{bmatrix} e^{{-}j\phi_s/2} , \end{aligned}$$
where $\phi _s$ is the Sagnac phase shift, $\beta _x$ and $\beta _y$ are the propagation constant of x and y polarizations, respectively, $L$ is the length of the fiber coil, and $\alpha$ is the fraction of the power coupled between the two polarizations (this power coupling is considered to occur at point $l$ along the fiber).

The reverse phase modulation [37] applied to the two MIOCs can be expressed as follows:

$$ \mathbf{M}_{\mathrm{cw}}^{\mathrm{in}} = \begin{bmatrix} e^{ j \phi_{m}(t)} & 0\\ 0 & e^{ {-}j \phi_{m}(t)}\\ \end{bmatrix} ,\,\,\, \mathbf{M}_{\mathrm{cw}}^{\mathrm{out}} = \begin{bmatrix} e^{ {-}j \phi_{m}(t - \tau_g)} & 0\\ 0 & e^{ j \phi_{m}(t - \tau_g)}\\ \end{bmatrix} , $$
$$ \mathbf{M}_{\mathrm{ccw}}^{\mathrm{in}} = \begin{bmatrix} e^{ {-}j \phi_{m}(t)} & 0\\ 0 & e^{ j \phi_{m}(t)}\\ \end{bmatrix} ,\,\,\, \mathbf{M}_{\mathrm{ccw}}^{\mathrm{out}} = \begin{bmatrix} e^{ j \phi_{m}(t - \tau_g)} & 0\\ 0 & e^{ {-}j \phi_{m}(t - \tau_g)}\\ \end{bmatrix} , $$
where $\tau _g$ is the group transit time through the fiber coil [4], $\phi _{m}(t)$ is phase modulation function, and the superscripts “$\mathrm {in}$” and “$\mathrm {out}$” denote the time period before and after the light enters the fiber coil, respectively.

We assume that all of the optical devices have an ideal performance without an insertion loss. In this case, after passing through the complete optical path, the light beams in the two polarizations before interference can be expressed as follows:

$$\begin{aligned} \begin{bmatrix} \mathbf{E_{\mathrm{cw}}^{\mathrm{x}}} \\ \mathbf{E_{\mathrm{cw}}^{\mathrm{y}}} \end{bmatrix} & = \frac{\sqrt{2}}{2} \mathbf{M}_{\mathrm{cw}}^{\mathrm{out}} \mathbf{C}_{\mathrm{cw}} \mathbf{M}_{\mathrm{cw}}^{\mathrm{in}} \mathbf{E}_{\mathrm{c}} \\ & = \frac{\sqrt{2}}{2} \begin{bmatrix} \sqrt{1-\alpha} e^{ j \left[ \Delta \phi_{m}(t) - \beta_x L \right]} + \sqrt{\alpha}e^{{-}j \left[ \beta_y l + \beta_x (L-l) + \phi_c \right]} \\ -\sqrt{\alpha}e^{{-}j \left[ \beta_x l + \beta_y (L-l) \right]} + \sqrt{1-\alpha}e^{{-}j \left[ \Delta \phi_{m}(t) + \beta_y L + \phi_c \right]} \end{bmatrix} {e(t)} e^{ j \left( \omega t + \phi_s/2 \right)} , \end{aligned}$$
$$\begin{aligned} \begin{bmatrix} \mathbf{E_{\mathrm{ccw}}^{\mathrm{x}}} \\ \mathbf{E_{\mathrm{ccw}}^{\mathrm{y}}} \end{bmatrix} & = \frac{\sqrt{2}}{2} \mathbf{M}_{\mathrm{ccw}}^{\mathrm{out}} \mathbf{C}_{\mathrm{ccw}} \mathbf{M}_{\mathrm{ccw}}^{\mathrm{in}} \mathbf{E}_{\mathrm{c}} \\ & = \frac{\sqrt{2}}{2} \begin{bmatrix} \sqrt{1-\alpha} e^{ {-}j \left[ \Delta \phi_{m}(t) + \beta_x L \right]} -\sqrt{\alpha}e^{{-}j \left[ \beta_x l + \beta_y (L-l) + \phi_c\right]}\\ \sqrt{\alpha}e^{{-}j\left[ \beta_y l + \beta_x (L-l) \right]} + \sqrt{1-\alpha} e^{ j \left[\Delta \phi_{m}(t) - \beta_y L - \phi_c\right]} \end{bmatrix} {e(t)} e^{ j \left(\omega t - \phi_s/2 \right)} , \end{aligned}$$
where $\Delta \phi _{m}(t) = \phi _{m}(t) - \phi _{m}(t - \tau _g)$, $\Delta \beta = \beta _x - \beta _y$, and the $\sqrt {2}/2$ is introduced owing to the light being evenly split by MIOCs (the loss when they combine light is neglected). The outputs of the two circulators reach PD 1 and PD 2, respectively, which can be expressed as follows:
$$\begin{aligned} \mathbf{E}_{\mathrm{PD1}} = \mathbf{E}_{\mathrm{cw}}^{\mathrm{x}} + \mathbf{E}_{\mathrm{ccw}}^{\mathrm{x}} ,\,\, \mathbf{E}_{\mathrm{PD2}} = \mathbf{E}_{\mathrm{cw}}^{\mathrm{y}} + \mathbf{E}_{\mathrm{ccw}}^{\mathrm{y}} . \end{aligned}$$
The intensities of the light interference detected by PD 1 and PD 2 are the following:
$$\begin{aligned} I_{\textrm{PD1}}(t) & = \langle \mathbf{E}_{\mathrm{PD1}} \cdot \mathbf{E}_{\mathrm{PD1}}^{{\ast}} \rangle = I_u^x + I_c^x \cos \left[ {\phi_s}/{2} + \Delta \phi_{m}(t) \right] + I_p \cos \left[ \phi_s + 2\Delta \phi_{m}(t) \right] , \\ & \left\{ \begin{aligned} I_u^x = & \left \{ 1 - \alpha \gamma \left(L-2l \right) \cos \left[ \phi_s - \Delta \beta (L-2l) \right] \right \} \langle \left | {e(t)} \right |^2 \rangle , \\ I_c^x = & 2 \sqrt{\alpha - \alpha ^2} \left \{ \gamma\left(l\right) \cos \left({\phi_s}/{2} + \Delta \beta l - \phi_c \right) \right. \\ & \left. - \gamma\left(L - l\right) \cos \left[ {\phi_s}/{2} - \Delta \beta (L - l) + \phi_c \right] \right \} \langle \left | {e(t)} \right |^2 \rangle , \\ I_p = & (1-\alpha) \langle \left | {e(t)} \right |^2 \rangle , \end{aligned} \right. \end{aligned}$$
$$\begin{aligned} I_{\textrm{PD2}}(t) & = \langle \mathbf{E}_{\mathrm{PD2}} \cdot \mathbf{E}_{\mathrm{PD2}}^{{\ast}} \rangle = I_u^y + I_c^y \cos \left[ {\phi_s}/{2} - \Delta \phi_{m}(t) \right] + I_p \cos \left[ \phi_s - 2\Delta \phi_{m}(t) \right] , \\ & \left\{ \begin{aligned} I_u^y = & \left\{ 1 - \alpha \gamma \left( L-2l \right) \cos \left[ \phi_s + \Delta \beta (L-2l) \right] \right\} \langle \left | {e(t)} \right |^2 \rangle , \\ I_c^y = & - 2\sqrt{\alpha - \alpha ^2} \left\{ \gamma\left(l\right) \cos \left( {\phi_s}/{2} - \Delta \beta l + \phi_c \right) \right. \\ & \left. -\gamma\left(L - l \right) \cos \left[ {\phi_s}/{2} + \Delta \beta (L - l) - \phi_c \right] \right\} \langle \left | {e(t)} \right |^2 \rangle , \\ I_p = & (1-\alpha) \langle \left | {e(t)} \right |^2 \rangle , \end{aligned} \right. \end{aligned}$$
where the brackets $\langle \rangle$ denote the temporal averaging, and $\gamma (z)$ is the degree of coherence, the value of which decays exponentially from 1 to 0 as $z$ increases to the depolarization length [40,43]. Here, the effect of the birefringence in the fiber coil on $\gamma (z)$ is mainly considered, whereas the minimal amount introduced by other factors is ignored.

A2. Harmonics of polarization-modulation terms

The polarization-modulation terms shown in Eqs. (1) and (2) can be expanded into a series of harmonics as follows [38]:

$$\begin{aligned} I_{\textrm{PD1}}^p (t) = & I_{p} \left\{ \left [ J_{0}(\phi_{b}) + 2 \textstyle \sum \nolimits_{n=1}^{\infty}{J_{2n}(\phi_{b})\cos(2n\omega_{m}t)} \right] \cos(\phi_{s}) \right. \\ & \left. - 2 \textstyle \sum \nolimits_{n=1}^{\infty}{J_{2n-1}(\phi_{b})\sin \left[ (2n-1)\omega_{m}t \right ] \sin(\phi_{s})} \right\} , \end{aligned}$$
$$\begin{aligned} I_{\textrm{PD2}}^p (t) = & I_{p} \left\{ \left [ J_{0}(\phi_{b}) + 2 \textstyle \sum \nolimits_{n=1}^{\infty}{J_{2n}(\phi_{b})\cos(2n\omega_{m}t)} \right] \cos(\phi_{s}) \right. \\ & \left. + 2 \textstyle \sum \nolimits_{n=1}^{\infty}{J_{2n-1}(\phi_{b})\sin \left[ (2n-1)\omega_{m}t \right ] \sin(\phi_{s})} \right\} , \end{aligned}$$
where $J_n$ is the $n$th order Bessel function of the first kind, and $\omega _m = 2\pi f_m$.

After applying the dual-polarization compensation, as given in Eqs. (3) and (4), a pair of compensated signals for demodulation can be obtained as follows:

$$\begin{aligned} I_{\textrm{odd}}^p (t) & ={-}2 I_{p} \textstyle \sum \nolimits_{n=1}^{\infty}{J_{2n-1}(\phi_{b})\sin \left[ (2n-1)\omega_{m}t \right ] \sin(\phi_{s})} , \end{aligned}$$
$$\begin{aligned} I_{\textrm{even}}^p (t) & = I_{p} \left [ J_{0}(\phi_{b}) + 2 \textstyle \sum \nolimits_{n=1}^{\infty}{J_{2n}(\phi_{b})\cos(2n\omega_{m}t)} \right] \cos(\phi_{s}) , \end{aligned}$$
where $I_{\textrm {odd}}^p(t)$ and $I_{\textrm {even}}^p(t)$ are the extraction sources of odd and even harmonics used in demodulation, respectively. Comparing the compensated signals with that before compensation, it can be seen that all harmonics of the two polarizations are maintained, but are assigned to $I_{\textrm {odd}}^p(t)$ and $I_{\textrm {even}}^p(t)$ according to the parity. This ensures the correctness of the compensated signal used to calculate the Sagnac phase shift.

A3. Harmonics of coherent-modulation terms

The harmonic expressions of the coherent-modulation terms have a similar structure as the polarization-modulation terms, but become noise components in the harmonic demodulation owing to the difference in phase. To facilitate the demonstration of the suppression effect on them, we write them as follows:

$$\begin{aligned} I_{\textrm{PD\,1}}^{c} (t) = I^x_c \left( C_0 - \textstyle \sum \nolimits_{n=1}^{\infty}C^n_{\textrm{odd}}+ \textstyle\sum\nolimits_{n=1}^{\infty}C^n_{\textrm{even}} \right) , \end{aligned}$$
$$\begin{aligned} I_{\textrm{PD\,2}}^{c} (t) = I^y_c \left( C_0 + \textstyle \sum \nolimits_{n=1}^{\infty}C^n_{\textrm{odd}}+\textstyle\sum\nolimits_{n=1}^{\infty}C^n_{\textrm{even}} \right) , \end{aligned}$$
$$\begin{aligned} \left\{ \begin{aligned} & C_0 = J_{0}(\phi_{b}/2)\cos(\phi_s/2),\\ & C^n_{\textrm{odd}} = 2{J_{2n-1}(\phi_{b}/2) \sin \left[ (2n-1)\omega_{m}t \right ]}sin(\phi_s/2), \\ & C^n_{\textrm{even}} = 2{J_{2n}(\phi_{b}/2)\cos(2n\omega_{m}t)}\cos(\phi_{s}/2), \end{aligned} \right. \end{aligned}$$
where subscript $0$ and superscript $n$ refer to a zero-frequency component and $n$th odd (even) harmonic, respectively.

The first four harmonics of $I_{\textrm {PD1}}^c(t)$ and $I_{\textrm {PD2}}^c(t)$ can cause a coherent phase error of the Sagnac phase shift calculation. However, through the compensation, the harmonic components of coherent-modulation terms will be significantly reduced, as shown in Eqs. (5) and (6), where $I_c$ is equal to $2 \sqrt {\alpha - \alpha ^2} \left \{ \gamma \left (l\right ) \sin \left (\Delta \beta l - \phi _c \right ) +\gamma \left (L - l \right ) \sin \left [ \Delta \beta (L - l) - \phi _c \right ] \right \} \langle \left | {e(t)} \right |^2 \rangle$ and close to $I_c^x$ and $I_c^y$ (as given in Eqs. (20) and (21)).

Funding

National Natural Science Foundation of China (91736207, U1939207); National Key Research and Development Program of China (2019YFC1509501); State Administration for Science, Technology and Industry for National Defense (D020403).

Acknowledgments

The authors wish to thank Dr. Yulin Li and Dr. Rongya Luo for their valuable help and discussions.

Disclosures

The authors declare no conflicts of interest.

References

1. V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017). [CrossRef]  

2. J. Napoli and R. Ward, “Two decades of KVH fiber optic gyro technology: From large, low performance FOGs to compact, precise FOGs and FOG-based inertial systems,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–19.

3. G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016). [CrossRef]  

4. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech house, 2014).

5. H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013). [CrossRef]  

6. Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014). [CrossRef]  

7. W. H. K. Lee, H. Igel, and M. D. Trifunac, “Recent advances in rotational seismology,” Seismol. Res. Lett. 80(3), 479–490 (2009). [CrossRef]  

8. W. H. K. Lee, M. Celebi, M. I. Todorovska, and H. Igel, “Introduction to the Special Issue on Rotational Seismology and Engineering Applications,” Bull. Seismol. Soc. Am. 99(2B), 945–957 (2009). [CrossRef]  

9. F. Bernauer, J. Wassermann, and H. Igel, “Rotational sensors-comparison of different sensor types,” J. Seismol. 16(4), 595–602 (2012). [CrossRef]  

10. L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016). [CrossRef]  

11. H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007). [CrossRef]  

12. K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009). [CrossRef]  

13. K. U. Schreiber and J.-P. R. Wells, “Invited review article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013). [CrossRef]  

14. J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017). [CrossRef]  

15. K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207–1214 (2009). [CrossRef]  

16. A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014). [CrossRef]  

17. A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018). [CrossRef]  

18. C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018). [CrossRef]  

19. S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020). [CrossRef]  

20. E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

21. C. Clivati, D. Calonico, G. A. Costanzo, A. Mura, M. Pizzocaro, and F. Levi, “Large-area fiber-optic gyroscope on a multiplexed fiber network,” Opt. Lett. 38(7), 1092–1094 (2013). [CrossRef]  

22. Y. Li, Y. Cao, D. He, Y. Wu, F. Chen, C. Peng, and Z. Li, “Thermal phase noise in giant interferometric fiber optic gyroscopes,” Opt. Express 27(10), 14121–14132 (2019). [CrossRef]  

23. F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

24. J. Blake and I. S. Kim, “Distribution of relative intensity noise in the signal and quadrature channels of a fiber-optic gyroscope,” Opt. Lett. 19(20), 1648–1650 (1994). [CrossRef]  

25. P. Polynkin, J. De Arruda, and J. Blake, “All-optical noise-subtraction scheme for a fiber-optic gyroscope,” Opt. Lett. 25(3), 147–149 (2000). [CrossRef]  

26. R. C. Rabelo, R. T. de Carvalho, and J. Blake, “SNR enhancement of intensity noise-limited FOGs,” J. Lightwave Technol. 18(12), 2146–2150 (2000). [CrossRef]  

27. S. Ezekiel and H. Arditty, “Fiber-optic rotation sensors. tutorial review,” in Fiber-Optic Rotation Sensors and Related Technologies (Springer, 1982), pp. 2–26.

28. R. P. Moeller and W. K. Burns, “1.06-μm all-fiber gyroscope with noise subtraction,” Opt. Lett. 16(23), 1902–1904 (1991). [CrossRef]  

29. A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016). [CrossRef]  

30. Y. Li, F. Ben, R. Luo, C. Peng, and Z. Li, “Excess relative intensity noise suppression in depolarized interferometric fiber optic gyroscopes,” Opt. Commun. 440, 83–88 (2019). [CrossRef]  

31. F. Guattari, S. Chouvin, C. Moluçon, and H. Lefèvre, “A simple optical technique to compensate for excess rin in a fiber-optic gyroscope,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2014), pp. 1–14.

32. Y. Yang, Z. Wang, and Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37(14), 2841–2843 (2012). [CrossRef]  

33. Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014). [CrossRef]  

34. R. Luo, Y. Li, S. Deng, D. He, C. Peng, and Z. Li, “Compensation of thermal strain induced polarization nonreciprocity in dual-polarization fiber optic gyroscope,” Opt. Express 25(22), 26747–26759 (2017). [CrossRef]  

35. P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017). [CrossRef]  

36. R. Luo, Y. Li, S. Deng, C. Peng, and Z. Li, “Effective suppression of residual coherent phase error in a dual-polarization fiber optic gyroscope,” Opt. Lett. 43(4), 815–818 (2018). [CrossRef]  

37. Y. Li, R. Luo, F. Chen, S. Deng, D. He, C. Peng, and Z. Li, “Suppressing polarization non-reciprocity error with reverse phase modulation in dual-polarization fiber optic gyroscopes,” Opt. Express 26(26), 34150–34160 (2018). [CrossRef]  

38. Y. Gronau and M. Tur, “Digital signal processing for an open-loop fiber-optic gyroscope,” Appl. Opt. 34(25), 5849–5853 (1995). [CrossRef]  

39. F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018). [CrossRef]  

40. W. Burns, C.-L. Chen, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983). [CrossRef]  

41. R. F. Mathis, B. A. May, and T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994). [CrossRef]  

42. G. A. Pavlath and H. J. Shaw, “Birefringence and polarization effects in fiber gyroscopes,” Appl. Opt. 21(10), 1752–1757 (1982). [CrossRef]  

43. J.-l. Sakai, S. Machida, and T. Kimura, “Degree of polarization in anisotropic single-mode optical fibers: Theory,” IEEE J. Quantum Electron. 18(4), 488–495 (1982). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017).
    [Crossref]
  2. J. Napoli and R. Ward, “Two decades of KVH fiber optic gyro technology: From large, low performance FOGs to compact, precise FOGs and FOG-based inertial systems,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–19.
  3. G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
    [Crossref]
  4. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech house, 2014).
  5. H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013).
    [Crossref]
  6. Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
    [Crossref]
  7. W. H. K. Lee, H. Igel, and M. D. Trifunac, “Recent advances in rotational seismology,” Seismol. Res. Lett. 80(3), 479–490 (2009).
    [Crossref]
  8. W. H. K. Lee, M. Celebi, M. I. Todorovska, and H. Igel, “Introduction to the Special Issue on Rotational Seismology and Engineering Applications,” Bull. Seismol. Soc. Am. 99(2B), 945–957 (2009).
    [Crossref]
  9. F. Bernauer, J. Wassermann, and H. Igel, “Rotational sensors-comparison of different sensor types,” J. Seismol. 16(4), 595–602 (2012).
    [Crossref]
  10. L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
    [Crossref]
  11. H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
    [Crossref]
  12. K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
    [Crossref]
  13. K. U. Schreiber and J.-P. R. Wells, “Invited review article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013).
    [Crossref]
  14. J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
    [Crossref]
  15. K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207–1214 (2009).
    [Crossref]
  16. A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014).
    [Crossref]
  17. A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018).
    [Crossref]
  18. C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
    [Crossref]
  19. S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
    [Crossref]
  20. E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.
  21. C. Clivati, D. Calonico, G. A. Costanzo, A. Mura, M. Pizzocaro, and F. Levi, “Large-area fiber-optic gyroscope on a multiplexed fiber network,” Opt. Lett. 38(7), 1092–1094 (2013).
    [Crossref]
  22. Y. Li, Y. Cao, D. He, Y. Wu, F. Chen, C. Peng, and Z. Li, “Thermal phase noise in giant interferometric fiber optic gyroscopes,” Opt. Express 27(10), 14121–14132 (2019).
    [Crossref]
  23. F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.
  24. J. Blake and I. S. Kim, “Distribution of relative intensity noise in the signal and quadrature channels of a fiber-optic gyroscope,” Opt. Lett. 19(20), 1648–1650 (1994).
    [Crossref]
  25. P. Polynkin, J. De Arruda, and J. Blake, “All-optical noise-subtraction scheme for a fiber-optic gyroscope,” Opt. Lett. 25(3), 147–149 (2000).
    [Crossref]
  26. R. C. Rabelo, R. T. de Carvalho, and J. Blake, “SNR enhancement of intensity noise-limited FOGs,” J. Lightwave Technol. 18(12), 2146–2150 (2000).
    [Crossref]
  27. S. Ezekiel and H. Arditty, “Fiber-optic rotation sensors. tutorial review,” in Fiber-Optic Rotation Sensors and Related Technologies (Springer, 1982), pp. 2–26.
  28. R. P. Moeller and W. K. Burns, “1.06-μm all-fiber gyroscope with noise subtraction,” Opt. Lett. 16(23), 1902–1904 (1991).
    [Crossref]
  29. A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016).
    [Crossref]
  30. Y. Li, F. Ben, R. Luo, C. Peng, and Z. Li, “Excess relative intensity noise suppression in depolarized interferometric fiber optic gyroscopes,” Opt. Commun. 440, 83–88 (2019).
    [Crossref]
  31. F. Guattari, S. Chouvin, C. Moluçon, and H. Lefèvre, “A simple optical technique to compensate for excess rin in a fiber-optic gyroscope,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2014), pp. 1–14.
  32. Y. Yang, Z. Wang, and Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37(14), 2841–2843 (2012).
    [Crossref]
  33. Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014).
    [Crossref]
  34. R. Luo, Y. Li, S. Deng, D. He, C. Peng, and Z. Li, “Compensation of thermal strain induced polarization nonreciprocity in dual-polarization fiber optic gyroscope,” Opt. Express 25(22), 26747–26759 (2017).
    [Crossref]
  35. P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
    [Crossref]
  36. R. Luo, Y. Li, S. Deng, C. Peng, and Z. Li, “Effective suppression of residual coherent phase error in a dual-polarization fiber optic gyroscope,” Opt. Lett. 43(4), 815–818 (2018).
    [Crossref]
  37. Y. Li, R. Luo, F. Chen, S. Deng, D. He, C. Peng, and Z. Li, “Suppressing polarization non-reciprocity error with reverse phase modulation in dual-polarization fiber optic gyroscopes,” Opt. Express 26(26), 34150–34160 (2018).
    [Crossref]
  38. Y. Gronau and M. Tur, “Digital signal processing for an open-loop fiber-optic gyroscope,” Appl. Opt. 34(25), 5849–5853 (1995).
    [Crossref]
  39. F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
    [Crossref]
  40. W. Burns, C.-L. Chen, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
    [Crossref]
  41. R. F. Mathis, B. A. May, and T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
    [Crossref]
  42. G. A. Pavlath and H. J. Shaw, “Birefringence and polarization effects in fiber gyroscopes,” Appl. Opt. 21(10), 1752–1757 (1982).
    [Crossref]
  43. J.-l. Sakai, S. Machida, and T. Kimura, “Degree of polarization in anisotropic single-mode optical fibers: Theory,” IEEE J. Quantum Electron. 18(4), 488–495 (1982).
    [Crossref]

2020 (1)

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

2019 (2)

Y. Li, Y. Cao, D. He, Y. Wu, F. Chen, C. Peng, and Z. Li, “Thermal phase noise in giant interferometric fiber optic gyroscopes,” Opt. Express 27(10), 14121–14132 (2019).
[Crossref]

Y. Li, F. Ben, R. Luo, C. Peng, and Z. Li, “Excess relative intensity noise suppression in depolarized interferometric fiber optic gyroscopes,” Opt. Commun. 440, 83–88 (2019).
[Crossref]

2018 (5)

R. Luo, Y. Li, S. Deng, C. Peng, and Z. Li, “Effective suppression of residual coherent phase error in a dual-polarization fiber optic gyroscope,” Opt. Lett. 43(4), 815–818 (2018).
[Crossref]

Y. Li, R. Luo, F. Chen, S. Deng, D. He, C. Peng, and Z. Li, “Suppressing polarization non-reciprocity error with reverse phase modulation in dual-polarization fiber optic gyroscopes,” Opt. Express 26(26), 34150–34160 (2018).
[Crossref]

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018).
[Crossref]

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

2017 (4)

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017).
[Crossref]

R. Luo, Y. Li, S. Deng, D. He, C. Peng, and Z. Li, “Compensation of thermal strain induced polarization nonreciprocity in dual-polarization fiber optic gyroscope,” Opt. Express 25(22), 26747–26759 (2017).
[Crossref]

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

2016 (3)

A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016).
[Crossref]

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

2014 (3)

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014).
[Crossref]

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

2013 (3)

K. U. Schreiber and J.-P. R. Wells, “Invited review article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013).
[Crossref]

C. Clivati, D. Calonico, G. A. Costanzo, A. Mura, M. Pizzocaro, and F. Levi, “Large-area fiber-optic gyroscope on a multiplexed fiber network,” Opt. Lett. 38(7), 1092–1094 (2013).
[Crossref]

H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013).
[Crossref]

2012 (2)

F. Bernauer, J. Wassermann, and H. Igel, “Rotational sensors-comparison of different sensor types,” J. Seismol. 16(4), 595–602 (2012).
[Crossref]

Y. Yang, Z. Wang, and Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37(14), 2841–2843 (2012).
[Crossref]

2009 (4)

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

W. H. K. Lee, H. Igel, and M. D. Trifunac, “Recent advances in rotational seismology,” Seismol. Res. Lett. 80(3), 479–490 (2009).
[Crossref]

W. H. K. Lee, M. Celebi, M. I. Todorovska, and H. Igel, “Introduction to the Special Issue on Rotational Seismology and Engineering Applications,” Bull. Seismol. Soc. Am. 99(2B), 945–957 (2009).
[Crossref]

K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207–1214 (2009).
[Crossref]

2007 (1)

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

2000 (2)

1995 (1)

1994 (2)

R. F. Mathis, B. A. May, and T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[Crossref]

J. Blake and I. S. Kim, “Distribution of relative intensity noise in the signal and quadrature channels of a fiber-optic gyroscope,” Opt. Lett. 19(20), 1648–1650 (1994).
[Crossref]

1991 (1)

1983 (1)

W. Burns, C.-L. Chen, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

1982 (2)

G. A. Pavlath and H. J. Shaw, “Birefringence and polarization effects in fiber gyroscopes,” Appl. Opt. 21(10), 1752–1757 (1982).
[Crossref]

J.-l. Sakai, S. Machida, and T. Kimura, “Degree of polarization in anisotropic single-mode optical fibers: Theory,” IEEE J. Quantum Electron. 18(4), 488–495 (1982).
[Crossref]

Aleinik, A. S.

A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016).
[Crossref]

Arditty, H.

S. Ezekiel and H. Arditty, “Fiber-optic rotation sensors. tutorial review,” in Fiber-Optic Rotation Sensors and Related Technologies (Springer, 1982), pp. 2–26.

Arrizon, A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Belfi, J.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Ben, F.

Y. Li, F. Ben, R. Luo, C. Peng, and Z. Li, “Excess relative intensity noise suppression in depolarized interferometric fiber optic gyroscopes,” Opt. Commun. 440, 83–88 (2019).
[Crossref]

Bernauer, F.

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

F. Bernauer, J. Wassermann, and H. Igel, “Rotational sensors-comparison of different sensor types,” J. Seismol. 16(4), 595–602 (2012).
[Crossref]

Beverini, N.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Bigueur, A.

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

Blake, J.

Bobra, P.

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

Bosi, F.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Braun, T.

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

Burns, W.

W. Burns, C.-L. Chen, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

Burns, W. K.

Calonico, D.

Campanella, C. E.

V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017).
[Crossref]

Cao, Y.

Carelli, G.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Carr, A. J.

K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207–1214 (2009).
[Crossref]

Celebi, M.

W. H. K. Lee, M. Celebi, M. I. Todorovska, and H. Igel, “Introduction to the Special Issue on Rotational Seismology and Engineering Applications,” Bull. Seismol. Soc. Am. 99(2B), 945–957 (2009).
[Crossref]

Chen, C.-L.

W. Burns, C.-L. Chen, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

Chen, F.

Chouvin, S.

F. Guattari, S. Chouvin, C. Moluçon, and H. Lefèvre, “A simple optical technique to compensate for excess rin in a fiber-optic gyroscope,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2014), pp. 1–14.

Clivati, C.

Cochard, A.

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

Costanzo, G. A.

Cuccato, D.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Cuccovillo, A.

V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017).
[Crossref]

De Arruda, J.

De Carlo, M.

V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017).
[Crossref]

de Carvalho, R. T.

De Luca, G.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

de Toldi, E.

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

Deineka, I. G.

A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016).
[Crossref]

Deng, S.

Di Virgilio, A.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Donner, S.

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

Ducloux, E.

F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

Ezekiel, S.

S. Ezekiel and H. Arditty, “Fiber-optic rotation sensors. tutorial review,” in Fiber-Optic Rotation Sensors and Related Technologies (Springer, 1982), pp. 2–26.

Flaws, A.

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

Franco-Anaya, R.

K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207–1214 (2009).
[Crossref]

Frenois, A.

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

Gaillot, A.

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

Gebauer, A.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Gronau, Y.

Guang, X.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Guattari, F.

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

F. Guattari, S. Chouvin, C. Moluçon, and H. Lefèvre, “A simple optical technique to compensate for excess rin in a fiber-optic gyroscope,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2014), pp. 1–14.

F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

Häusler, M.

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

Hautmann, J. N.

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

He, D.

Ho, W.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Honthaas, J.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

Igel, H.

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

F. Bernauer, J. Wassermann, and H. Igel, “Rotational sensors-comparison of different sensor types,” J. Seismol. 16(4), 595–602 (2012).
[Crossref]

W. H. K. Lee, H. Igel, and M. D. Trifunac, “Recent advances in rotational seismology,” Seismol. Res. Lett. 80(3), 479–490 (2009).
[Crossref]

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

W. H. K. Lee, M. Celebi, M. I. Todorovska, and H. Igel, “Introduction to the Special Issue on Rotational Seismology and Engineering Applications,” Bull. Seismol. Soc. Am. 99(2B), 945–957 (2009).
[Crossref]

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

Jankowski, R.

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

Jaroszewicz, L. R.

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018).
[Crossref]

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014).
[Crossref]

Kim, I. S.

Kimura, T.

J.-l. Sakai, S. Machida, and T. Kimura, “Degree of polarization in anisotropic single-mode optical fibers: Theory,” IEEE J. Quantum Electron. 18(4), 488–495 (1982).
[Crossref]

Kowalski, J. K.

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018).
[Crossref]

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014).
[Crossref]

Krajewski, Z.

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018).
[Crossref]

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014).
[Crossref]

Kurzych, A.

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018).
[Crossref]

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014).
[Crossref]

Lasko, T. A.

R. F. Mathis, B. A. May, and T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[Crossref]

Lee, W. H. K.

W. H. K. Lee, H. Igel, and M. D. Trifunac, “Recent advances in rotational seismology,” Seismol. Res. Lett. 80(3), 479–490 (2009).
[Crossref]

W. H. K. Lee, M. Celebi, M. I. Todorovska, and H. Igel, “Introduction to the Special Issue on Rotational Seismology and Engineering Applications,” Bull. Seismol. Soc. Am. 99(2B), 945–957 (2009).
[Crossref]

Lefèvre, H.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

F. Guattari, S. Chouvin, C. Moluçon, and H. Lefèvre, “A simple optical technique to compensate for excess rin in a fiber-optic gyroscope,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2014), pp. 1–14.

Lefèvre, H. C.

H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013).
[Crossref]

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech house, 2014).

Levi, F.

Li, X.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Li, Y.

Li, Z.

Lin, C.-J.

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

Ling, W.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Liu, P.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Lu, P.

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Luo, R.

Maccioni, E.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Machida, S.

J.-l. Sakai, S. Machida, and T. Kimura, “Degree of polarization in anisotropic single-mode optical fibers: Theory,” IEEE J. Quantum Electron. 18(4), 488–495 (1982).
[Crossref]

Marc, P.

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018).
[Crossref]

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

Mathis, R. F.

R. F. Mathis, B. A. May, and T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[Crossref]

May, B. A.

R. F. Mathis, B. A. May, and T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[Crossref]

Mead, D.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Moeller, R.

W. Burns, C.-L. Chen, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

Moeller, R. P.

Moluçon, C.

F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

F. Guattari, S. Chouvin, C. Moluçon, and H. Lefèvre, “A simple optical technique to compensate for excess rin in a fiber-optic gyroscope,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2014), pp. 1–14.

Mosor, S.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Mura, A.

Napoli, J.

J. Napoli and R. Ward, “Two decades of KVH fiber optic gyro technology: From large, low performance FOGs to compact, precise FOGs and FOG-based inertial systems,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–19.

Napolitano, F.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

Neforosnyi, S. T.

A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016).
[Crossref]

Ortolan, A.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Otero, J.

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

Passaro, V.

V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017).
[Crossref]

Paturel, Y.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

Pavlath, G. A.

Peng, C.

Pham Dinh, N.

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

Pizzocaro, M.

Polynkin, P.

Ponceau, D.

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

Porzio, A.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Qiu, T.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Rabelo, R. C.

Robertsson, J.

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

Rupasov, A. V.

A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016).
[Crossref]

Saccorotti, G.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Sakai, J.-l.

J.-l. Sakai, S. Machida, and T. Kimura, “Degree of polarization in anisotropic single-mode optical fibers: Theory,” IEEE J. Quantum Electron. 18(4), 488–495 (1982).
[Crossref]

Sakowicz, B.

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, B. Sakowicz, J. K. Kowalski, and P. Marc, “Fibre-optic sagnac interferometer in a fog minimum configuration as instrumental challenge for rotational seismology,” J. Lightwave Technol. 36(4), 879–884 (2018).
[Crossref]

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

Salit, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, G. A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, S. J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Schmelzbach, C.

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

Schreiber, K. U.

K. U. Schreiber and J.-P. R. Wells, “Invited review article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013).
[Crossref]

K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207–1214 (2009).
[Crossref]

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

Schreiber, U.

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

Shaw, H. J.

Simonelli, A.

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Smiciklas, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Smolovik, M. A.

A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016).
[Crossref]

Sollberger, D.

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

Steib, A.

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

Strandjord, L. K.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Taufiqurrahman, T.

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

Teisseyre, K. P.

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014).
[Crossref]

Terreni, G.

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Todorovska, M. I.

W. H. K. Lee, M. Celebi, M. I. Todorovska, and H. Igel, “Introduction to the Special Issue on Rotational Seismology and Engineering Applications,” Bull. Seismol. Soc. Am. 99(2B), 945–957 (2009).
[Crossref]

Trifunac, M. D.

W. H. K. Lee, H. Igel, and M. D. Trifunac, “Recent advances in rotational seismology,” Seismol. Res. Lett. 80(3), 479–490 (2009).
[Crossref]

Tur, M.

Vaiani, L.

V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017).
[Crossref]

Van Renterghem, C.

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

Velikoseltsev, A.

K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207–1214 (2009).
[Crossref]

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

Vernon, F.

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

Wang, Z.

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Y. Yang, Z. Wang, and Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37(14), 2841–2843 (2012).
[Crossref]

Ward, R.

J. Napoli and R. Ward, “Two decades of KVH fiber optic gyro technology: From large, low performance FOGs to compact, precise FOGs and FOG-based inertial systems,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–19.

Wassermann, J.

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

F. Bernauer, J. Wassermann, and H. Igel, “Rotational sensors-comparison of different sensor types,” J. Seismol. 16(4), 595–602 (2012).
[Crossref]

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

Wells, J.-P. R.

K. U. Schreiber and J.-P. R. Wells, “Invited review article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013).
[Crossref]

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

Wu, J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Wu, Y.

Xu, Z.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Yang, H.

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Yang, Y.

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Y. Yang, Z. Wang, and Z. Li, “Optically compensated dual-polarization interferometric fiber-optic gyroscope,” Opt. Lett. 37(14), 2841–2843 (2012).
[Crossref]

Yuan, S.

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

Zembaty, Z.

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

Zhang, Z.

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Zhao, D.

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

Appl. Opt. (2)

Bull. Seismol. Soc. Am. (4)

W. H. K. Lee, M. Celebi, M. I. Todorovska, and H. Igel, “Introduction to the Special Issue on Rotational Seismology and Engineering Applications,” Bull. Seismol. Soc. Am. 99(2B), 945–957 (2009).
[Crossref]

K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J.-P. R. Wells, “Ring Laser Measurements of Ground Rotations for Seismology,” Bull. Seismol. Soc. Am. 99(2B), 1190–1198 (2009).
[Crossref]

K. U. Schreiber, A. Velikoseltsev, A. J. Carr, and R. Franco-Anaya, “The Application of Fiber Optic Gyroscopes for the Measurement of Rotations in Structural Engineering,” Bull. Seismol. Soc. Am. 99(2B), 1207–1214 (2009).
[Crossref]

S. Yuan, A. Simonelli, C.-J. Lin, F. Bernauer, S. Donner, T. Braun, J. Wassermann, and H. Igel, “Six degree-of-freedom broadband ground-motion observations with portable sensors: Validation, local earthquakes, and signal processing,” Bull. Seismol. Soc. Am. 110(3), 953–969 (2020).
[Crossref]

Geophys. J. Int. (1)

H. Igel, A. Cochard, J. Wassermann, A. Flaws, U. Schreiber, A. Velikoseltsev, and N. Pham Dinh, “Broad-band observations of earthquake-induced rotational ground motions,” Geophys. J. Int. 168(1), 182–196 (2007).
[Crossref]

Geophysics (1)

C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Häusler, C. Van Renterghem, J. Wassermann, and J. Robertsson, “Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology,” Geophysics 83(3), WC53–WC69 (2018).
[Crossref]

Gyroscopy Navig. (2)

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month fog-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navig. 5(1), 1–8 (2014).
[Crossref]

A. S. Aleinik, I. G. Deineka, M. A. Smolovik, S. T. Neforosnyi, and A. V. Rupasov, “Compensation of excess rin in fiber-optic gyro,” Gyroscopy Navig. 7(3), 214–222 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

J.-l. Sakai, S. Machida, and T. Kimura, “Degree of polarization in anisotropic single-mode optical fibers: Theory,” IEEE J. Quantum Electron. 18(4), 488–495 (1982).
[Crossref]

IEEE Photonics J. (1)

Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li, “All-depolarized interferometric fiber-optic gyroscope based on optical compensation,” IEEE Photonics J. 6(1), 1–8 (2014).
[Crossref]

J. Lightwave Technol. (3)

J. Seismol. (1)

F. Bernauer, J. Wassermann, and H. Igel, “Rotational sensors-comparison of different sensor types,” J. Seismol. 16(4), 595–602 (2012).
[Crossref]

Opt. Commun. (2)

P. Liu, X. Li, X. Guang, Z. Xu, W. Ling, and H. Yang, “Drift suppression in a dual-polarization fiber optic gyroscope caused by the faraday effect,” Opt. Commun. 394, 122–128 (2017).
[Crossref]

Y. Li, F. Ben, R. Luo, C. Peng, and Z. Li, “Excess relative intensity noise suppression in depolarized interferometric fiber optic gyroscopes,” Opt. Commun. 440, 83–88 (2019).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013).
[Crossref]

Opt. Lett. (6)

Proc. SPIE (2)

R. F. Mathis, B. A. May, and T. A. Lasko, “Polarization coupling in unpolarized interferometric fiber optic gyros (IFOGs): effect of imperfect components,” Proc. SPIE 2292, 283–291 (1994).
[Crossref]

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyhoneyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Rev. Sci. Instrum. (2)

K. U. Schreiber and J.-P. R. Wells, “Invited review article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013).
[Crossref]

J. Belfi, N. Beverini, F. Bosi, G. Carelli, D. Cuccato, G. De Luca, A. Di Virgilio, A. Gebauer, E. Maccioni, A. Ortolan, A. Porzio, G. Saccorotti, A. Simonelli, and G. Terreni, “Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso,” Rev. Sci. Instrum. 88(3), 034502 (2017).
[Crossref]

Seismol. Res. Lett. (2)

W. H. K. Lee, H. Igel, and M. D. Trifunac, “Recent advances in rotational seismology,” Seismol. Res. Lett. 80(3), 479–490 (2009).
[Crossref]

F. Bernauer, J. Wassermann, F. Guattari, A. Frenois, A. Bigueur, A. Gaillot, E. de Toldi, D. Ponceau, U. Schreiber, and H. Igel, “BlueSeis3A: Full characterization of a 3C broadband rotational seismometer,” Seismol. Res. Lett. 89(2A), 620–629 (2018).
[Crossref]

Sensors (3)

L. R. Jaroszewicz, A. Kurzych, Z. Krajewski, P. Marc, J. K. Kowalski, P. Bobra, Z. Zembaty, B. Sakowicz, and R. Jankowski, “Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications,” Sensors 16(12), 2161 (2016).
[Crossref]

V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, “Gyroscope technology and applications: A review in the industrial perspective,” Sensors 17(10), 2284 (2017).
[Crossref]

A. Kurzych, L. R. Jaroszewicz, Z. Krajewski, K. P. Teisseyre, and J. K. Kowalski, “Fibre optic system for monitoring rotational seismic phenomena,” Sensors 14(3), 5459–5469 (2014).
[Crossref]

Other (6)

J. Napoli and R. Ward, “Two decades of KVH fiber optic gyro technology: From large, low performance FOGs to compact, precise FOGs and FOG-based inertial systems,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–19.

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech house, 2014).

F. Guattari, S. Chouvin, C. Moluçon, and H. Lefèvre, “A simple optical technique to compensate for excess rin in a fiber-optic gyroscope,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2014), pp. 1–14.

S. Ezekiel and H. Arditty, “Fiber-optic rotation sensors. tutorial review,” in Fiber-Optic Rotation Sensors and Related Technologies (Springer, 1982), pp. 2–26.

F. Guattari, C. Moluçon, A. Bigueur, E. Ducloux, E. de Toldi, J. Honthaas, and H. Lefèvre, “Touching the limit of FOG angular random walk: Challenges and applications,” in DGON Intertial Sensors and Systems (ISS) (IEEE, 2016), pp. 1–13.

E. de Toldi, H. Lefèvre, F. Guattari, A. Bigueur, A. Steib, D. Ponceau, C. Moluçon, E. Ducloux, J. Wassermann, and U. Schreiber, “First steps for a giant FOG: Searching for the limits,” in DGON Inertial Sensors and Systems (ISS) (IEEE, 2017), pp. 1–14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic setup of a dual-polarization IFOG. The intensity of polarized light input into the coupler is presented as $I(t)$. In addition, $\pm \phi _m(t)$ are a pair of sinusoidal phase modulation signals with opposite signs and x and y present the two orthogonal polarizations of the fiber coil.
Fig. 2.
Fig. 2. The degree of correlation between the two orthogonal polarizations when no modulation is applied.
Fig. 3.
Fig. 3. (a) The time domain outputs of an 8-h test for the dual-polarization IFOG at a rate of 200 Hz, and (b) the first 200-ms output of the test in (a).
Fig. 4.
Fig. 4. The quantitative indicator analysis corresponding to the 8-h test shown in Fig. 3. (a) Allan deviation curves and (b) the root PSDs.
Fig. 5.
Fig. 5. The root PSDs of the 1-h tests with different modulation frequencies. Dotted lines indicate the outputs under the first-order eigenfrequency ($f_e$), and solid lines indicate the outputs under the fifth-order eigenfrequency ($5f_e$).

Tables (2)

Tables Icon

Table 1. Comparison of ARW, BI, and self-noise.

Tables Icon

Table 2. Comparison of self-noise.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

I PD1 ( t ) = I u x + I c x cos [ ϕ + ( t ) / 2 ] + I p cos [ ϕ + ( t ) ] ,
I PD2 ( t ) = I u y + I c y cos [ ϕ ( t ) / 2 ] + I p cos [ ϕ ( t ) ] ,
I odd ( t ) = [ I PD1 ( t ) I PD2 ( t ) ] / 2 ,
I even ( t ) = [ I PD1 ( t ) + I PD2 ( t ) ] / 2 ,
I odd c ( t ) = I c n = 1 C odd n sin ( ϕ s / 2 ) ,
I even c ( t ) = I c n = 1 C even n sin ( ϕ s / 2 ) ,
I p = I p 0 + I p RIN ( t ) ,
I PD1 n ( t ) = I p RIN ( t ) cos [ ϕ s + ϕ b cos ( ω m t ) ] ,
I PD2 n ( t ) = I p RIN ( t ) cos [ ϕ s ϕ b cos ( ω m t ) ] ,
I odd n ( t ) = I p RIN ( t ) sin [ ϕ b cos ( ω m t ) ] sin ϕ s ,
I even n ( t ) = I p RIN ( t ) cos [ ϕ b cos ( ω m t ) ] cos ϕ s ,
E c = [ E x E y ] = [ e ( t ) e ( t ) e j ϕ c ] e j ω t ,
C c w = [ 1 α e j β x L α e j [ β y l + β x ( L l ) ] α e j [ β x l + β y ( L l ) ] 1 α e j β y L ] e j ϕ s / 2 ,
C c c w = [ 1 α e j β x L α e j [ β x l + β y ( L l ) ] α e j [ β y l + β x ( L l ) ] 1 α e j β y L ] e j ϕ s / 2 ,
M c w i n = [ e j ϕ m ( t ) 0 0 e j ϕ m ( t ) ] , M c w o u t = [ e j ϕ m ( t τ g ) 0 0 e j ϕ m ( t τ g ) ] ,
M c c w i n = [ e j ϕ m ( t ) 0 0 e j ϕ m ( t ) ] , M c c w o u t = [ e j ϕ m ( t τ g ) 0 0 e j ϕ m ( t τ g ) ] ,
[ E c w x E c w y ] = 2 2 M c w o u t C c w M c w i n E c = 2 2 [ 1 α e j [ Δ ϕ m ( t ) β x L ] + α e j [ β y l + β x ( L l ) + ϕ c ] α e j [ β x l + β y ( L l ) ] + 1 α e j [ Δ ϕ m ( t ) + β y L + ϕ c ] ] e ( t ) e j ( ω t + ϕ s / 2 ) ,
[ E c c w x E c c w y ] = 2 2 M c c w o u t C c c w M c c w i n E c = 2 2 [ 1 α e j [ Δ ϕ m ( t ) + β x L ] α e j [ β x l + β y ( L l ) + ϕ c ] α e j [ β y l + β x ( L l ) ] + 1 α e j [ Δ ϕ m ( t ) β y L ϕ c ] ] e ( t ) e j ( ω t ϕ s / 2 ) ,
E P D 1 = E c w x + E c c w x , E P D 2 = E c w y + E c c w y .
I PD1 ( t ) = E P D 1 E P D 1 = I u x + I c x cos [ ϕ s / 2 + Δ ϕ m ( t ) ] + I p cos [ ϕ s + 2 Δ ϕ m ( t ) ] , { I u x = { 1 α γ ( L 2 l ) cos [ ϕ s Δ β ( L 2 l ) ] } | e ( t ) | 2 , I c x = 2 α α 2 { γ ( l ) cos ( ϕ s / 2 + Δ β l ϕ c ) γ ( L l ) cos [ ϕ s / 2 Δ β ( L l ) + ϕ c ] } | e ( t ) | 2 , I p = ( 1 α ) | e ( t ) | 2 ,
I PD2 ( t ) = E P D 2 E P D 2 = I u y + I c y cos [ ϕ s / 2 Δ ϕ m ( t ) ] + I p cos [ ϕ s 2 Δ ϕ m ( t ) ] , { I u y = { 1 α γ ( L 2 l ) cos [ ϕ s + Δ β ( L 2 l ) ] } | e ( t ) | 2 , I c y = 2 α α 2 { γ ( l ) cos ( ϕ s / 2 Δ β l + ϕ c ) γ ( L l ) cos [ ϕ s / 2 + Δ β ( L l ) ϕ c ] } | e ( t ) | 2 , I p = ( 1 α ) | e ( t ) | 2 ,
I PD1 p ( t ) = I p { [ J 0 ( ϕ b ) + 2 n = 1 J 2 n ( ϕ b ) cos ( 2 n ω m t ) ] cos ( ϕ s ) 2 n = 1 J 2 n 1 ( ϕ b ) sin [ ( 2 n 1 ) ω m t ] sin ( ϕ s ) } ,
I PD2 p ( t ) = I p { [ J 0 ( ϕ b ) + 2 n = 1 J 2 n ( ϕ b ) cos ( 2 n ω m t ) ] cos ( ϕ s ) + 2 n = 1 J 2 n 1 ( ϕ b ) sin [ ( 2 n 1 ) ω m t ] sin ( ϕ s ) } ,
I odd p ( t ) = 2 I p n = 1 J 2 n 1 ( ϕ b ) sin [ ( 2 n 1 ) ω m t ] sin ( ϕ s ) ,
I even p ( t ) = I p [ J 0 ( ϕ b ) + 2 n = 1 J 2 n ( ϕ b ) cos ( 2 n ω m t ) ] cos ( ϕ s ) ,
I PD\,1 c ( t ) = I c x ( C 0 n = 1 C odd n + n = 1 C even n ) ,
I PD\,2 c ( t ) = I c y ( C 0 + n = 1 C odd n + n = 1 C even n ) ,
{ C 0 = J 0 ( ϕ b / 2 ) cos ( ϕ s / 2 ) , C odd n = 2 J 2 n 1 ( ϕ b / 2 ) sin [ ( 2 n 1 ) ω m t ] s i n ( ϕ s / 2 ) , C even n = 2 J 2 n ( ϕ b / 2 ) cos ( 2 n ω m t ) cos ( ϕ s / 2 ) ,

Metrics