Abstract

Inverted quantum dot light-emitting diodes (QLEDs) were fabricated through all-solution processing by sandwiching quantum dot (QD) emitting layers (EMLs) between dual polyethylenimine-ethoxylated (PEIE) layers. First, a PEIE layer as EML protecting layer (EPL) was formed on a QD EML to protect the EML from the hole transport layer (HTL) solvents and to facilitate the formation of a well-organized structure in the all-solution-processed inverted QLEDs. Second, another PEIE layer was introduced as an electron-blocking layer (EBL) on the zinc oxide (ZnO) electron transport layer (ETL) and effectively suppressed the excessive electron injection to the QD EML, thereby enhancing device efficiency.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Colloidal quantum dots (QDs) have attracted considerable attention as emitting materials in next-generation display systems because of their high photoluminescence (PL) quantum yield, outstanding narrow-band and widely tunable emission, and low-cost solution-based processability [16]. Electrically driven quantum dot light-emitting diodes (QLEDs) have been intensively investigated as an alternative to organic light-emitting diodes (OLEDs) because of their high color purity and low-cost solution-based processability [79]. The efficiency of QLEDs has substantially improved over the past two decades. The performance of state-of-the-art QLEDs is comparable to that of commercial OLEDs in terms of theoretical external quantum efficiency (EQE) [1013] because of the advancement in the synthesis of high-quality QD materials [1416] and sophistication of device structures [17,18].

So far, QLEDs having conventional or inverted structures have been fabricated. Conventional QLEDs have been widely applied in various optoelectronic devices. However, inverted QLEDs are advantageous because its indium tin oxide (ITO) cathode with pixel patterns can be directly connected to an n-type thin film transistor backplane with a low driving voltage [1820]. Moreover, zinc oxide (ZnO) nanoparticle films are typically used as electron transport layers (ETLs), and their mobility in inverted QLEDs can be improved by annealing at high temperature after coating the ETLs on the ITO substrate [18]. Inverted QLEDs are widely fabricated by vacuum processes, and solution-based processes are rarely conducted. However, solution-based processes are advantageous because they are cost effective for large-scale production, promote low material loss, are compatible with flexible substrates, and facilitate large-area processing [8,21].

However, the efficiency of all-solution-processed inverted QLEDs is lower than that of the conventional QLEDs. One of the reasons for the low efficiency is the destruction of the QD emitting layers (EMLs) by typical hole transport layer (HTL) solvents, such as toluene, chlorobenzene, and chloroform. Conventional QDs have hydrophobic aliphatic ligands (e.g., oleic acid) and are readily soluble in non-polar HTL solvents, leading to the mixing of the QD EMLs and the neighboring HTLs. The rough surface caused by EML dissolution is known to cause a decrease in the efficiency and stability of the devices because of non-uniform exciton recombination and leakage current in the EML [2224]. Various approaches have been attempted to address the issues caused by solvent damage, including the use of orthogonal solvents [2527], surface modification of the QD EML [24], and addition of a protective layer on the QD EML [23]. Another challenge is the charge imbalance caused by excess electrons in QLEDs owing to higher electron mobility through the ZnO nanoparticle ETL than the hole mobility through the common organic HTLs. Excess electrons cause exciton quenching by Auger recombination, thereby decreasing efficiency [2830]. The injection and transport of electrons have been effectively suppressed by doping various elements (e.g., Al, Li, Mg, Ga) onto ZnO [3134] or by introducing an insulating interfacial layer, such as poly [(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-ioctylfluorene)] (PFN) [35], poly(methyl methacrylate) (PMMA) [10], polyethylenimine (PEI) [23,36], and aluminum oxide [37]. However, few studies have been conducted on all-solution-processed inverted QLEDs.

Herein, QD EML was sandwiched between polyethylenimine-ethoxylated (PEIE) layers to overcome the solvent damage and charge imbalance in all-solution-processed inverted QLEDs. First, PEIE layers were formed on the QD EML as an EML protecting layer (EPL) to offer protection from the HTL solvents. The PEIE EPL thickness was optimized, and solvent resistance was evaluated. The integrity of the device was confirmed with and without the presence of PEIE layers. The surface hydrophilicity of the QD EML was also determined in the absence and presence of the PEIE EPL. Next, the PEIE EPL was introduced between the QD EML and the ZnO ETL as an electron-blocking layer (EBL) to suppress electron injection in devices. Finally, inverted QLEDs with different PEIE EBL thicknesses were fabricated via an all-solution process, and their optical performance was evaluated.

2. Experimental section

2.1 Synthesis of green-emitting CdSe@ZnS/ZnS QDs

Green-emitting CdSe@ZnS/ZnS QDs with a chemical composition gradient were prepared according to methods described in literature [16]. First, 0.14 mM of cadmium acetate, 3.14 mM of zinc oxide, and 7 mL of oleic acid were mixed in 15 mL of 1-octadecene and degassed at 110 °C under vacuum for 1 h to prepare cadmium oleate. The reactor temperature was then increased to 310 °C in an inert environment (nitrogen gas). Next, 1.5 mM Se and 2.5 mM S were dissolved in 3 mL TOP to prepare a stock solution that was injected into the reactor and stirred vigorously for 10 min. To synthesize alloyed CdSe@ZnS/ZnS QDs, a sulfur stock solution (1.6 mM of S dissolved in 2.4 mL of OED) was injected sequentially and the reaction was maintained at 270 °C for 10 min. The crude solution was precipitated with ethanol and centrifuged to remove excess free ligands, unreacted precursors, and impurities. Finally, the precipitate was re-dispersed in a mixture of hexane and octane for further analysis, including UV-vis, PL, TEM, and for device fabrication. The green-emitting QDs exhibited excellent PL quantum yield (QY) of 90% in solution. The PL spectra show the peak wavelength at 523 nm with a narrow full width at half-maximum (FWHM) of 20 nm. A distinguishable excitonic absorption peak is also observed and the QDs exhibited uniform size distribution of 13.5 nm on average, as shown in Fig. 1.

 

Fig. 1. (a) Absorption and PL spectra of green-emitting QD solution in hexane/octane. (inset) Image of QD solution under UV light at 365 nm. (b) TEM image of QDs.

Download Full Size | PPT Slide | PDF

2.2 QLEDs fabrication of inverted QLEDs

A patterned ITO glass substrate with a sheet resistance of ∼15 Ω sq−1 was cleaned sequentially with deionized water (DIW), acetone, and methanol. The colloidal ZnO NP solution (200 mg/mL) in ethanol was spin-coated (1500 rpm, 60 s) on the ITO and annealed at 180 °C for 20 min. The PEIE concentration for EBL was varied from 0 to 0.5 wt% in 2-methoxyethanol, and the PEIE solution was spin-coated (3000 rpm, 30 s) onto the ZnO film, followed by drying at 150 ˚C for 5 min. Then, the green CdSe@ZnS/ZnS QD dispersion (optical density = 1.5 at 514 nm, corresponding to ∼25 mg/mL) in a mixed solvent of octane/hexane was deposited on the PEIE film and annealed at 150 °C for 5 min. Another PEIE EPL with a thickness of 7.5 nm (concentration of 0.5 wt% in 2-methoxyethanol) was then deposited by spin coating. Poly-TPD, 10 mg/mL in chlorobenzene, added as an HTL and MoOx, 10 mg/mL in acetonitrile, added as a hole injection layer (HIL) were each spin-coated at 3000 rpm for 30 s, followed by heating at 150 °C. All processes were performed in a glove box filled with nitrogen (H2O < 1 ppm). Finally, Al electrodes were deposited at a deposition rate of ∼6 Å/s by a thermal evaporation process under a high vacuum of ∼6 × 10−6 Torr.

2.3 Characterizations

UV-vis absorption spectra and PL emission spectra of the QD solution and films were obtained using a UV-visible spectrophotometer (JASCO, V630) and a Cary Eclipse fluorescence spectrometer (Agilent Technologies, G9803AA), respectively, at room temperature. The absolute PL QY of the QDs was measured using a quantum efficiency measurement system (Otsuka Electronics Co., Ltd., QD-2100). The surface roughness of the ZnO layer as a function of EBL PEIE thickness was measured using a high-resolution atomic force microscope (SII Nanotechnology, SPA-300HV). The images of the QDs and the cross-sectional images of the inverted QLEDs were obtained by high-resolution transmission electron microscopy (HR-TEM; JEOL, JEM-ARM 200F) at an accelerating voltage of 200 kV. The electrical and optical properties of the inverted QLEDs were determined using a spectroradiometer (Konica-Minolta, CS-2000) coupled with a voltage-current source unit (Tektronix, Keithley 2400). All the device evaluations were performed in air under ambient conditions and without encapsulation.

3. Results and discussion

First, with PEIE serving as the EPL, PL intensity was evaluated before and after rinsing the QD films with chlorobenzene at different thicknesses of the PEIE layer, as shown in Fig. 2(a). The PL intensity decreased until the PEIE EPL thickness was 5 nm, but was constant when the layer has a thickness of 7.5 nm, even after rinsing. This result indicates that the QD film is well preserved after rinsing with chlorobenzene. The thickness of the PEIE EPL needs to be minimized because of its insulating properties. Therefore, the optimal PEIE EPL thickness was determined to be 7.5 nm, based on the results obtained. The emission of QD films was monitored under 365 nm UV irradiation while dropping chlorobenzene onto the films to evaluate the damage of the EML upon HTL deposition, as shown in Fig. 2(b). A circular shape developed rapidly on the films without the PEIE EPL due to solvent evaporation from the surface, and a clear ring shape remained without many QDs left in the circle. In contrast, a less clear circle was observed on the films with 7.5-nm-thick PEIE EPL, indicating less damage by the chlorobenzene.

 

Fig. 2. (a) PL spectra of QD films depending on the PEIE thicknesses (without PEIE and with 5-nm- and 7.5-nm-thick layers) before and after chlorobenzene rinsing. (b) Photos after dropping chlorobenzene on QD films without and with a 7.5-nm-thick PEIE layer.

Download Full Size | PPT Slide | PDF

The integrity of the EML in the inverted QLED was further verified by cross-sectional TEM analysis, as shown in Fig. 3. A clear interface between the layers was observed with the 7.5-nm-thick PEIE EPL protected the EML even after HTL deposition, resulting in the formation of well-defined multilayers in the inverted QLED via the all-solution process. On the other hand, the QD EML without a PEIE EPL was considerably damaged and mixed with the adjacent poly-TPD. The QDs spread randomly and mixed with the MoOx HIL, leading to an uneven interface. A damaged bumpy surface is known to cause a non-uniform exciton recombination zone and leakage current in devices, leading to a decrease in device efficiency and stability [2224]. The contact angle of the QD films with and without the PEIE EPL was measured, as shown in Figs. 3(c) and (d). The contact angle sharply decreased from 99.8° without the PEIE EPL to 63.5° with the 7.5-nm-thick PEIE EPL on the QD EML. Thus, we can conclude that the PEIE layer imparts hydrophilic properties on the QD EML and effectively protects the EML from HTL solvents.

 

Fig. 3. Cross-sectional TEM images of devices (a) without PEIE and (b) with a 7.5-nm-thick PEIE EPL. Contact angle measurement of the QD films (c) without and (d) with PEIE layer.

Download Full Size | PPT Slide | PDF

The PEIE EPL layer was applied to inverted QLEDs. The device performance was significantly improved by adding the 7.5-nm-thick PEIE EPL, as shown in Fig. 4. A maximum current efficiency (CE) of 31 cd A−1 and EQE of 8.9% were obtained. These values indicate a six-fold increase in CE and EQE compared with those of devices without the PEIE layer. This significant improvement is attributed to the well-organized device structure discussed above. However, the overall excessive leakage current were observed in both devices, and the efficiency of the PEIE-EPL-based device was still relatively low, especially at low driving voltages.

 

Fig. 4. (a) Current density-voltage-luminance (J-V-L) characteristics. (b) CE and EQE as function of luminance of QLEDs with a 7.5-nm-thick PEIE EPL and without PEIE

Download Full Size | PPT Slide | PDF

A PEIE layer was then introduced as an EBL between the ZnO ETL and the QD EML to improve the charge balance in inverted QLEDs. It is known that excitons are typically quenched at the interface between the metal oxide and the QD EML due to the presence of surface defects of ZnO nanoparticles, resulting in a decrease in the PLQY of the QDs [10,12,30]. Therefore, the effects of the PEIE interlayer on exciton quenching were investigated by steady-state and time-resolved PL (TRPL) analysis of the QD films, as shown in Fig. 5. The PL intensity of the ZnO/QD film was significantly lower than that of the pristine QD film and the decrease in PL intensity was relatively less when a PEIE EBL was added on the ZnO film. This result indicates that some of the excitons generated from the QDs were extinguished by ZnO film and the PEIE EBL effectively suppresses exciton quenching. The PL decay time was measured and fitted to a biexponential decay model. The average PL decay time of the ZnO/QD film increased from 5.6 ns to 7.2 ns with a 5-nm-thick PEIE EBL on the ZnO film, which is in good agreement with the above results. PEIE is believed to reduce non-radiative exciton quenching by preventing the direct contact of the QD EML with the surface defects of the ZnO film.

 

Fig. 5. (a) Steady-state PL spectra of glass/QD, glass/ZnO/QD, and glass/ZnO/PEIE/QD films. (b) Time-resolved PL of glass/QD, glass/ZnO/QD, glass/ZnO/PEIE/QD films, and QDs in solution

Download Full Size | PPT Slide | PDF

Next, the surface roughness of the ZnO film was investigated with different PEIE EPL thicknesses, as shown in Fig. 6. Rough surfaces are known to cause high contact resistance and leakage current, leading to low efficiency and short lifetime of QLEDs [22,38]. The roughness of the ZnO films was gradually reduced from 1.37 nm (pristine ZnO film) to 0.52 nm with the increase in PEIE EPL thickness. The thin PEIE EPL reduced the RMS roughness of the ZnO surface by filling the deep valleys of the ZnO film. This flat film morphology enables uniform QD EML deposition and reduces leakage current [38].

 

Fig. 6. AFM images of ZnO film with different PEIE layer thicknesses; (a) without PEIE and (b) PEIE layers with thicknesses of 2 nm, (c) 5 nm, (d) 7.5 nm. (An area of 5 × 5 μm2 was measured for AFM)

Download Full Size | PPT Slide | PDF

The inverted QLEDs were fabricated with the PEIE EBL, and their electroluminescence (EL) properties and performance were characterized, as shown in Fig. 7 and Table 1. The layer structure and a flat-band energy diagram of an inverted QLED with dual PEIE interfacial layer are illustrated in Figs. 7(a) and (b). The EL emission spectrum exhibits a peak at 524 nm with a FWHM of 21 nm, which is considered a highly pure green emission (as expressed in the Commission Internationale de l'Eclairage (CIE) color coordination of (0.14, 0.79)). No change in the EL emission spectra was observed with different PEIE EBL thicknesses. As shown in current density-voltage-luminance (J-V-L) characteristics, the current density gradually decreased, especially below turn-on voltage, with the increase in PEIE EBL thickness. This is attributed to the smooth surface and reduced leakage current. Although PEIE is an insulating polymer, the current density remained similar above the turn-on voltage, indicating that a PEIE layer, with up to 5 nm thickness, does not affect electron injection. The maximum luminance was enhanced by a factor greater than 2 when a 5-nm-thick PEIE EBL was added. The device efficiency further improved with the addition of the PEIE EBL and gradually increased until the PEIE EBL thickness was 5 nm. In particular, the efficiency significantly improved at low current densities due to the reduced leakage current, as shown in Fig. 7(f). A maximum CE of 54.1 cd A−1 and EQE of 12.4% were obtained for the device with the 5-nm-thick PEIE EBL. These values are approximately 1.6 times higher than those for devices without a PEIE EBL. On the other hand, the turn-on voltage slightly increased and the efficiency decreased for the device with the 7.5-nm-thick PEIE EBL, indicating that a PEIE layer that is too thick limits electron injection.

 

Fig. 7. (a) Schematic structure and (b) flat-band energy level diagram of the all-solution-processed inverted QLED. (c) CIE coordinates (0.14, 0.79) marked with a star. (d) Normalized EL spectra of the QLEDs with different PEIE EBL thicknesses. Device characteristics of inverted QLEDs with different PEIE EBL thicknesses: (e) Current density-voltage-luminance (J-V-L) characteristics. (f) CE and EQE as a function of luminance of QLEDs.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Device performance of QLEDs with different PEIE layer thicknesses.

Single carrier devices were fabricated to understand charge transport through the PEIE EBL, as shown in Fig. 8. The current density of the electron-only device (EOD) without PEIE is more than three orders of magnitude higher than that of the hole-only device (HOD). However, the current density of the EOD decreases gradually as the PEIE EBL thickness increases, which indicates that insulating property of PEIE EBL mitigate excessive electron injection to the QD EML, and the leakage current of the device is mainly due to electron leakage. We believe that the hole and electron carrier densities are relatively balanced in a 5 nm-thick PEIE EBL, which results in the most improved device efficiency.

 

Fig. 8. Current densities of hole-only device (HOD) and electron-only device (EOD) with different PEIE EBL thicknesses. (HOD: ITO/poly-TPD/QD/PEIE/poly-PTD/MoOx/Al, EOD: ITO/ZnO/PEIE/QD/ZnO/Al)

Download Full Size | PPT Slide | PDF

We fabricated over 20 devices to confirm the reproducibility of the resulting QLEDs. The maximum CE, EQE, and the maximum luminance of the device with the 5-nm-thick PEIE EBL reached 70.0 cd A−1, 17.3%, and 380 000 cd m−2, respectively. The luminance obtained in this study is the highest value reported for all-solution-processed inverted QLEDs investigated so far. Thus, we can conclude that the PEIE EBL not only reduces exciton quenching caused by ZnO but also suppresses excessive electron injection to the QD EML, leading to the enhancement of device performance.

4. Conclusion

Quantum dot (QD) emitting layers (EML) were sandwiched between polyethylenimine-ethoxylated (PEIE) layers for all-solution-processed inverted quantum dot light-emitting diodes (QLEDs). First, PEIE was coated onto the QD EML as an EML protecting layer (EPL), and the PEIE thickness was optimized by investigating solvent resistance and device integrity. The hydrophilic property of PEIE effectively protects the QD EML from the hydrophobic HTL solvent damage. The optimal PEIE EPL thickness was determined to be 7.5nm, which is close to the minimum thickness required to protect the QD EML. A PEIE layer was then introduced as an electron-blocking layer (EBL) between the ZnO electron ETL and QD EML to improve the charge balance in the inverted QLEDs. The insulating property of PEIE effectively suppressed the electron injection to the QD EML. The inverted QLEDs were thus fabricated to examine the effect of the PEIE EPL, and their performances were compared to those without PEIE layers. The maximum current efficiency increased from 31.1 cd A−1 in a device without the PEIE EBL to 54.1 cd A−1 in a device with a 5-nm-thick PEIE EBL. The maximum external quantum efficiency (EQE) was also enhanced from 8.9% to 12.4%. In addition, the maximum luminance was drastically improved by a factor of 2.3 with the introduction of the PEIE EBL. The 5-nm-thick PEIE EBL not only reduced exciton quenching caused by ZnO but also suppressed the excessive electron injection to the QD EML. This study demonstrated that the QD EML structure sandwiched with PEIE layers is an effective approach for fabricating all-solution-processed inverted QLEDs.

Funding

National Research Foundation of Korea (2012M3A6A7054855).

Acknowledgments

Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea (Grant No. 2012M3A6A7054855). ABC: 123 Corporation (I,E,P), DEF: 456 Corporation (R,S). GHI: 789 Corporation (C).

Disclosures

The authors declare no conflicts of interest.

References

1. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010). [CrossRef]  

2. E. Nam, C. Lee, S. J. Kim, H. K. Chung, and H. Chae, “Stability and dispersion improvement of quantum-dot ligands and a siloxane matrix,” Opt. Express 27(14), 20037–20046 (2019). [CrossRef]  

3. H. Kim, W. Lee, H. Moon, S. J. Kim, H. K. Chung, and H. Chae, “Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes,” Opt. Express 27(16), A1287–A1296 (2019). [CrossRef]  

4. X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29, 1607022 (2017). [CrossRef]  .

5. J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020). [CrossRef]  

6. E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019). [CrossRef]  

7. C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016). [CrossRef]  

8. J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017). [CrossRef]  

9. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011). [CrossRef]  

10. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014). [CrossRef]  

11. P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020). [CrossRef]  

12. Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018). [CrossRef]  

13. Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018). [CrossRef]  

14. X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016). [CrossRef]  

15. H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015). [CrossRef]  

16. Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017). [CrossRef]  

17. L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017). [CrossRef]  

18. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012). [CrossRef]  

19. E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater. 24(22), 2945–2986 (2012). [CrossRef]  

20. W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016). [CrossRef]  

21. H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013). [CrossRef]  

22. H. M. Kim, J. H. Youn, G. J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” J. Mater. Chem. C 1(8), 1567–1573 (2013). [CrossRef]  

23. D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017). [CrossRef]  

24. Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017). [CrossRef]  

25. W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014). [CrossRef]  

26. A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007). [CrossRef]  

27. H. Zhang, H. Li, X. Sun, and S. Chen, “Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing,” ACS Appl. Mater. Interfaces 8(8), 5493–5498 (2016). [CrossRef]  

28. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000). [CrossRef]  

29. W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes,” MRS Bull. 38(9), 721–730 (2013). [CrossRef]  

30. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013). [CrossRef]  

31. H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014). [CrossRef]  

32. H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016). [CrossRef]  

33. H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017). [CrossRef]  

34. Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017). [CrossRef]  

35. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013). [CrossRef]  

36. K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017). [CrossRef]  

37. H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019). [CrossRef]  

38. A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
    [Crossref]
  2. E. Nam, C. Lee, S. J. Kim, H. K. Chung, and H. Chae, “Stability and dispersion improvement of quantum-dot ligands and a siloxane matrix,” Opt. Express 27(14), 20037–20046 (2019).
    [Crossref]
  3. H. Kim, W. Lee, H. Moon, S. J. Kim, H. K. Chung, and H. Chae, “Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes,” Opt. Express 27(16), A1287–A1296 (2019).
    [Crossref]
  4. X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29, 1607022 (2017)..
    [Crossref]
  5. J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
    [Crossref]
  6. E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
    [Crossref]
  7. C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
    [Crossref]
  8. J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
    [Crossref]
  9. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
    [Crossref]
  10. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref]
  11. P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
    [Crossref]
  12. Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
    [Crossref]
  13. Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
    [Crossref]
  14. X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
    [Crossref]
  15. H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
    [Crossref]
  16. Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
    [Crossref]
  17. L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
    [Crossref]
  18. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
    [Crossref]
  19. E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater. 24(22), 2945–2986 (2012).
    [Crossref]
  20. W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
    [Crossref]
  21. H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
    [Crossref]
  22. H. M. Kim, J. H. Youn, G. J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” J. Mater. Chem. C 1(8), 1567–1573 (2013).
    [Crossref]
  23. D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
    [Crossref]
  24. Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
    [Crossref]
  25. W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
    [Crossref]
  26. A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007).
    [Crossref]
  27. H. Zhang, H. Li, X. Sun, and S. Chen, “Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing,” ACS Appl. Mater. Interfaces 8(8), 5493–5498 (2016).
    [Crossref]
  28. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000).
    [Crossref]
  29. W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes,” MRS Bull. 38(9), 721–730 (2013).
    [Crossref]
  30. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
    [Crossref]
  31. H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
    [Crossref]
  32. H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
    [Crossref]
  33. H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
    [Crossref]
  34. Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
    [Crossref]
  35. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
    [Crossref]
  36. K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
    [Crossref]
  37. H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
    [Crossref]
  38. A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
    [Crossref]

2020 (2)

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

2019 (4)

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

E. Nam, C. Lee, S. J. Kim, H. K. Chung, and H. Chae, “Stability and dispersion improvement of quantum-dot ligands and a siloxane matrix,” Opt. Express 27(14), 20037–20046 (2019).
[Crossref]

H. Kim, W. Lee, H. Moon, S. J. Kim, H. K. Chung, and H. Chae, “Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes,” Opt. Express 27(16), A1287–A1296 (2019).
[Crossref]

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

2018 (2)

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

2017 (9)

Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
[Crossref]

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29, 1607022 (2017)..
[Crossref]

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

2016 (5)

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

H. Zhang, H. Li, X. Sun, and S. Chen, “Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing,” ACS Appl. Mater. Interfaces 8(8), 5493–5498 (2016).
[Crossref]

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

2015 (2)

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

2014 (3)

H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
[Crossref]

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

2013 (5)

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

H. M. Kim, J. H. Youn, G. J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” J. Mater. Chem. C 1(8), 1567–1573 (2013).
[Crossref]

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

2012 (2)

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater. 24(22), 2945–2986 (2012).
[Crossref]

2011 (1)

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

2010 (1)

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref]

2007 (1)

A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007).
[Crossref]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000).
[Crossref]

Adinolfi, V.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Ahn, T. K.

Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
[Crossref]

Ai, N.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Amaratunga, G.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Bae, W. K.

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Ban, X.

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

Barquinha, P.

E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater. 24(22), 2945–2986 (2012).
[Crossref]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000).
[Crossref]

Beauregard, E.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

bin Mohd Yusoff, A. R.

H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
[Crossref]

Brovelli, S.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Cao, Y.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

Castelli, A.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Chae, H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

E. Nam, C. Lee, S. J. Kim, H. K. Chung, and H. Chae, “Stability and dispersion improvement of quantum-dot ligands and a siloxane matrix,” Opt. Express 27(14), 20037–20046 (2019).
[Crossref]

H. Kim, W. Lee, H. Moon, S. J. Kim, H. K. Chung, and H. Chae, “Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes,” Opt. Express 27(16), A1287–A1296 (2019).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

Chae, J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Char, K.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Chen, H.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Chen, H. Y.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Chen, L.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Chen, M.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Chen, S.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
[Crossref]

H. Zhang, H. Li, X. Sun, and S. Chen, “Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing,” ACS Appl. Mater. Interfaces 8(8), 5493–5498 (2016).
[Crossref]

Cho, H.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Cho, K.-S.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Chung, H. K.

E. Nam, C. Lee, S. J. Kim, H. K. Chung, and H. Chae, “Stability and dispersion improvement of quantum-dot ligands and a siloxane matrix,” Opt. Express 27(14), 20037–20046 (2019).
[Crossref]

H. Kim, W. Lee, H. Moon, S. J. Kim, H. K. Chung, and H. Chae, “Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes,” Opt. Express 27(16), A1287–A1296 (2019).
[Crossref]

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Chung, R. J.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Comin, R.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Cui, Z.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Dai, X.

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29, 1607022 (2017)..
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Deng, Y.

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29, 1607022 (2017)..
[Crossref]

Ding, K.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Do, Y. R.

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

Duan, L.

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

Fan, L.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Fan, Y.

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

Fortunato, E.

E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater. 24(22), 2945–2986 (2012).
[Crossref]

Fu, Y.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Galeotti, F.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Garcia, A.

A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007).
[Crossref]

Geng, D.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Giovanella, U.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Gong, X.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Guo, L.

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

Han, C.-Y.

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

Han, S.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

He, Z.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

Heo, J. H.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Hu, B.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Hu, D.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Hu, Z.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

Huang, B.

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

Huang, Z.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Hwang, E.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Hwangbo, H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

Jang, E.-P.

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

Jang, J.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
[Crossref]

H. M. Kim, J. H. Youn, G. J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” J. Mater. Chem. C 1(8), 1567–1573 (2013).
[Crossref]

Jeong, S. H.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Jiang, C.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

Jiang, W.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
[Crossref]

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

Jiang, Y.

Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
[Crossref]

Jin, H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

Jin, Y.

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29, 1607022 (2017)..
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007).
[Crossref]

Jo, D.-Y.

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

Jo, J.-H.

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

Kim, D.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Kim, D. H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, H.

Kim, H. M.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
[Crossref]

H. M. Kim, J. H. Youn, G. J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” J. Mater. Chem. C 1(8), 1567–1573 (2013).
[Crossref]

Kim, H. P.

H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
[Crossref]

Kim, J.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

Kim, J. W.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, S.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Kim, S. J.

Kim, T. W.

H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
[Crossref]

Kim, T.-H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, Y. H.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Klimov, V. I.

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000).
[Crossref]

Kovalenko, M. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref]

Kuang, Y.

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

Kwak, J.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Kwon, J.-Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lan, L.

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000).
[Crossref]

Lee, B.-J.

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

Lee, C.

E. Nam, C. Lee, S. J. Kim, H. K. Chung, and H. Chae, “Stability and dispersion improvement of quantum-dot ligands and a siloxane matrix,” Opt. Express 27(14), 20037–20046 (2019).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Lee, C. L.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Lee, D.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Lee, E. K.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, H. J.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Lee, J.-S.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref]

Lee, K. H.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Lee, S.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Lee, S. J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, S. Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, S.-H.

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

Lee, W.

H. Kim, W. Lee, H. Moon, S. J. Kim, H. K. Chung, and H. Chae, “Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes,” Opt. Express 27(16), A1287–A1296 (2019).
[Crossref]

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Li, H.

H. Zhang, H. Li, X. Sun, and S. Chen, “Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing,” ACS Appl. Mater. Interfaces 8(8), 5493–5498 (2016).
[Crossref]

Li, L. S.

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

Li, Z.

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Lim, H.-B.

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

Lim, J.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Lim, S.-W.

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

Lin, J.

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

Lin, Q.

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

Liu, B.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

Liu, H.

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

Liu, N.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Liu, R. S.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Liu, X.

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

Lorenzon, M.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Lv, Y.

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

Manna, L.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Martins, R.

E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater. 24(22), 2945–2986 (2012).
[Crossref]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000).
[Crossref]

McDaniel, H.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Meinardi, F.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000).
[Crossref]

Moon, H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

H. Kim, W. Lee, H. Moon, S. J. Kim, H. K. Chung, and H. Chae, “Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes,” Opt. Express 27(16), A1287–A1296 (2019).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

Moreels, I.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Myoung, N.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Nam, E.

Nguyen, T. Q.

A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007).
[Crossref]

Ning, Z.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Padilha, L. A.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Park, I.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Park, M.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Park, M. H.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Park, Y. S.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Pasini, M.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Peng, H.

Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
[Crossref]

Peng, J.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

Peng, X.

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29, 1607022 (2017)..
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Pietryga, J. M.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Pinchetti, V.

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Qiu, Y.

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

Robel, I.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Sadhanala, A.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Sargent, E. H.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Seo, G. J.

H. M. Kim, J. H. Youn, G. J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” J. Mater. Chem. C 1(8), 1567–1573 (2013).
[Crossref]

Seol, Y. G.

H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
[Crossref]

Shen, H.

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

Shevchenko, E. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref]

Song, C.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

Su, W.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Sun, X.

H. Zhang, H. Li, X. Sun, and S. Chen, “Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing,” ACS Appl. Mater. Interfaces 8(8), 5493–5498 (2016).
[Crossref]

Sun, Y.

Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
[Crossref]

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

Talapin, D. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref]

Tang, P.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Tseng, M. R.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Voznyy, O.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Walker, B.

A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007).
[Crossref]

Walters, G.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Wang, B.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Wang, H.

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

Wang, H. C.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Wang, J.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Wang, L.

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

Wang, Q.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Wang, Y.

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

Wei, C.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Wei, J.

Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
[Crossref]

Wolf, C.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Woo, H.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Wu, S.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Xie, L.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Xiong, X.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Xu, H.

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

Xu, W.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

Yang, H.

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

Yang, R.

A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007).
[Crossref]

Yang, Z.

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

Yeh, H. C.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Yin, W.

Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
[Crossref]

Ying, L.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

Yong, S. H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

Yoo, S.

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

Yoon, D. Y.

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

Yoon, S.-Y.

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

Youn, J. H.

H. M. Kim, J. H. Youn, G. J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” J. Mater. Chem. C 1(8), 1567–1573 (2013).
[Crossref]

Yu, S.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Yuan, G.

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

Zhang, H.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

H. Zhang, H. Li, X. Sun, and S. Chen, “Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing,” ACS Appl. Mater. Interfaces 8(8), 5493–5498 (2016).
[Crossref]

Zhang, S.

Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
[Crossref]

Zhang, Z.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Zhao, J.

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

Zhao, W.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Zheng, H.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Zheng, Y.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Zhong, Z.

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

Zhou, J.

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Zhuang, J.

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Zhuang, S.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Zou, J.

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (7)

E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters,” ACS Appl. Mater. Interfaces 11(49), 46062–46069 (2019).
[Crossref]

C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, and Y. Cao, “Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices,” ACS Appl. Mater. Interfaces 8(39), 26162–26168 (2016).
[Crossref]

P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, and Z. Cui, “Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer,” ACS Appl. Mater. Interfaces 12(11), 13087–13095 (2020).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

H. Zhang, H. Li, X. Sun, and S. Chen, “Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing,” ACS Appl. Mater. Interfaces 8(8), 5493–5498 (2016).
[Crossref]

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-Oxide Stacked Electron Transport Layer for Highly Efficient Inverted Quantum-Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 8(42), 28727–28736 (2016).
[Crossref]

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

ACS Appl. Nano Mater. (1)

J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, H.-B. Lim, B.-J. Lee, Y. R. Do, and H. Yang, “InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices,” ACS Appl. Nano Mater. 3(2), 1972–1980 (2020).
[Crossref]

ACS Nano (2)

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

ACS Photonics (1)

Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo, Y. Kuang, H. Wang, and L. S. Li, “Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process,” ACS Photonics 5(3), 939–946 (2018).
[Crossref]

Adv. Mater. (2)

E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Adv. Mater. 24(22), 2945–2986 (2012).
[Crossref]

X. Dai, Y. Deng, X. Peng, and Y. Jin, “Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization,” Adv. Mater. 29, 1607022 (2017)..
[Crossref]

Appl. Phys. Lett. (1)

A. Garcia, R. Yang, Y. Jin, B. Walker, and T. Q. Nguyen, “Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes,” Appl. Phys. Lett. 91(15), 153502 (2007).
[Crossref]

Chem. Rev. (1)

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[Crossref]

J. Mater. Chem. C (4)

J. Wang, C. Song, Z. Zhong, Z. Hu, S. Han, W. Xu, J. Peng, L. Ying, J. Wang, and Y. Cao, “In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display,” J. Mater. Chem. C 5(20), 5005–5009 (2017).
[Crossref]

H. M. Kim, J. H. Youn, G. J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” J. Mater. Chem. C 1(8), 1567–1573 (2013).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

H. M. Kim, A. R. bin Mohd Yusoff, T. W. Kim, Y. G. Seol, H. P. Kim, and J. Jang, “Semi-transparent quantum-dot light emitting diodes with an inverted structure,” J. Mater. Chem. C 2(12), 2259−2265 (2014).
[Crossref]

MRS Bull. (1)

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

Nano Lett. (2)

J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, “Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure,” Nano Lett. 12(5), 2362–2366 (2012).
[Crossref]

A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, and S. Brovelli, “High-Efficiency All-Solution-Processed Light-Emitting Diodes Based on Anisotropic Colloidal Heterostructures with Polar Polymer Injecting Layers,” Nano Lett. 15(8), 5455–5464 (2015).
[Crossref]

Nanoscale (2)

Y. Sun, Y. Jiang, H. Peng, J. Wei, S. Zhang, and S. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9(26), 8962–8969 (2017).
[Crossref]

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang, and X. Liu, “High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection,” Nanoscale 9(20), 6748–6754 (2017).
[Crossref]

Nat. Commun. (2)

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

H. Zheng, Y. Zheng, N. Liu, N. Ai, Q. Wang, S. Wu, J. Zhou, D. Hu, S. Yu, and S. Han, “All-solution processed polymer light-emitting diode displays,” Nat. Commun. 4(1), 1971 (2013).
[Crossref]

Nat. Photonics (2)

X. Gong, Z. Yang, G. Walters, R. Comin, Z. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, “Highly efficient quantum dot near-infrared light-emitting diodes,” Nat. Photonics 10(4), 253–257 (2016).
[Crossref]

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, and S. Y. Lee, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Nature (1)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Opt. Express (2)

Org. Lett. (1)

W. Jiang, H. Xu, X. Ban, G. Yuan, Y. Sun, B. Huang, L. Duan, and Y. Qiu, “Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices,” Org. Lett. 16(4), 1140–1143 (2014).
[Crossref]

RSC Adv. (2)

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9(21), 11634–11640 (2019).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7(65), 40866–40872 (2017).
[Crossref]

Sci. Rep. (1)

W. Xu, Z. Hu, H. Liu, L. Lan, J. Peng, J. Wang, and Y. Cao, “Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel,” Sci. Rep. 6(1), 29055 (2016).
[Crossref]

Science (2)

H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, and S. Yoo, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350(6265), 1222–1225 (2015).
[Crossref]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science 287(5455), 1011–1013 (2000).
[Crossref]

Small (1)

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2,” Small 13(13), 1603962 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Absorption and PL spectra of green-emitting QD solution in hexane/octane. (inset) Image of QD solution under UV light at 365 nm. (b) TEM image of QDs.
Fig. 2.
Fig. 2. (a) PL spectra of QD films depending on the PEIE thicknesses (without PEIE and with 5-nm- and 7.5-nm-thick layers) before and after chlorobenzene rinsing. (b) Photos after dropping chlorobenzene on QD films without and with a 7.5-nm-thick PEIE layer.
Fig. 3.
Fig. 3. Cross-sectional TEM images of devices (a) without PEIE and (b) with a 7.5-nm-thick PEIE EPL. Contact angle measurement of the QD films (c) without and (d) with PEIE layer.
Fig. 4.
Fig. 4. (a) Current density-voltage-luminance (J-V-L) characteristics. (b) CE and EQE as function of luminance of QLEDs with a 7.5-nm-thick PEIE EPL and without PEIE
Fig. 5.
Fig. 5. (a) Steady-state PL spectra of glass/QD, glass/ZnO/QD, and glass/ZnO/PEIE/QD films. (b) Time-resolved PL of glass/QD, glass/ZnO/QD, glass/ZnO/PEIE/QD films, and QDs in solution
Fig. 6.
Fig. 6. AFM images of ZnO film with different PEIE layer thicknesses; (a) without PEIE and (b) PEIE layers with thicknesses of 2 nm, (c) 5 nm, (d) 7.5 nm. (An area of 5 × 5 μm2 was measured for AFM)
Fig. 7.
Fig. 7. (a) Schematic structure and (b) flat-band energy level diagram of the all-solution-processed inverted QLED. (c) CIE coordinates (0.14, 0.79) marked with a star. (d) Normalized EL spectra of the QLEDs with different PEIE EBL thicknesses. Device characteristics of inverted QLEDs with different PEIE EBL thicknesses: (e) Current density-voltage-luminance (J-V-L) characteristics. (f) CE and EQE as a function of luminance of QLEDs.
Fig. 8.
Fig. 8. Current densities of hole-only device (HOD) and electron-only device (EOD) with different PEIE EBL thicknesses. (HOD: ITO/poly-TPD/QD/PEIE/poly-PTD/MoOx/Al, EOD: ITO/ZnO/PEIE/QD/ZnO/Al)

Tables (1)

Tables Icon

Table 1. Device performance of QLEDs with different PEIE layer thicknesses.

Metrics