Abstract

A key issue in the development of volumetric bubble displays whose voxels are femtosecond laser-excited bubbles is to enlarge the size of displayed graphics. In our previous research in which used glycerin as a screen, this size was less than several millimeters. To increase the size, it is important to reduce the excitation energy, because increasing the display size leads results in a larger focus volume due to the use of laser scanning optics with a low numerical aperture and requires more laser energy to excite the material. The use of gold nanoparticles in glycerin has been proposed as one way of reducing the excitation energy, because such materials are commercially available with controlled shapes, and consequently a controlled absorption spectrum. It was found that glycerin containing gold nanoparticles (GNPs), including gold nanospheres (GNSs) and gold nanorods (GNRs), reduced the pulse energy required for bubble generation compared with the use of pure glycerin. Larger GNSs resulted in a smaller threshold energy and, in particular, GNRs resulted in a threshold energy one-quarter that of pure glycerin. It was also found that the density had almost no effect on the threshold energy, but did affect the bubble generation probability. Finally, it was demonstrated that the bubble graphics with a size on the order of centimeters were rendered in GNR-containing glycerin.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Three-dimensional (3D) display technologies are expected to be applied to a wide range of applications in fields such as virtual reality and augmented reality. Most of these technologies present 3D graphics on a two-dimensional plane, and they are based on the principles of stereo images on near-eye displays [1], holography [2], and light fields [3]. By contrast, in future technologies depicted in science fiction a world has been imagined in which AI image agents that can interact with humans and telepresence using 3D images (volumetric image) are realized in real 3D space.

Volumetric displays have gathered much attention as a technology that can realize a 3D image experience in real space. This type of display directly creates 3D graphics in real space by generating volumetric pixels (voxels), which enables the presentation of graphics that appear realistic to human depth perception [4]. The generation of voxels involves obtaining light emission points or light scattering points with a certain 3D spatial resolution, and various method have been proposed so far. Systems based on active voxels that emit light by themselves have been proposed, including: a method that used two-step excitation with two laser sources in an image space using glass doped rare earth elements [5]; a system for forming aerial plasma emission via focused irradiation of pulsed laser light [6]; and high-speed rotation of a drone equipped with LEDs [7]. Systems based on the method of generating passive voxels that are visualized by scattering illumination light include: a system that uses image projection by a projector on a rotating screen [8]; multilayer image projection based on the chromatic dispersion of a diffractive optical element [9]; and a particle trap using ultrasound [10] or photophoresis [11].

Among the various implementations described above, we have proposed volumetric displays based on a femtosecond laser-excited voxel and a focal point design technique using a computer-generated hologram (CGH) [1215]. The volumetric bubble display [14] employed bubbles generated by femtosecond laser irradiation in liquid as voxels. When a femtosecond ultrashort laser pulse is focused into a liquid, a bubble voxel is generated via multi-photon excitation induced by the high photon density in the vicinity of the focal point [16]. This system allowed the placement of bubble voxels at arbitrary spatial positions by 3D high-speed scanning of the focal points that were simultaneously generated by CGH. Then, the bubble’s floating speed was reduced by adopting glycerin having a high viscosity as the screen. As a result, volumetric graphics with a size of several tens of mm3 were realized. However, considering the practical use of this approach in display applications, it will be necessary to increase the size of the displayed graphics. Increasing the image size needs expansion of the beam scanning range and a higher number of focal points generated in parallel via CGH, and in order to achieve improvements in both of these aspects, it is important to be able to generate voxels with less pulse energy.

In this paper, we describe a method for improving the generation effect of femtosecond laser-induced bubbles using liquid glycerin containing gold nanoparticles (GNPs), including gold nanospheres (GNSs) and gold nanorods (GNRs), for increasing the size of the displayed bubble graphics. In Sec. 2, we describe the structure and features of a volumetric bubble display through experiments using glycerin as an excitation target. In Sec. 3, we describe the details of the experimental setup. In Sec. 4, we report that the use of GNPs increased the photoexcitation efficiency near the focal point of the femtosecond laser, and effectively reduced the pulse energy required for bubble generation. The glycerin containing GNSs and GNRs resulted in smaller pulse energy for the bubble generation than pure glycerin. Larger GNSs resulted in smaller threshold energy, and in particular, the GNRs resulted in a threshold energy one-quarter that of pure glycerin. The density had almost no effect on the threshold energy, but did affect the bubble generation probability. We demonstrated that the use of GNR-containing glycerin enlarged the bubble graphics to several centimeters, compared with our previous version with several millimeters [14]. In Sec. 5, we summarize this work and discuss future volumetric bubble displays.

2. Volumetric bubble display

2.1 Structure

A volumetric bubble display is a system that employs microbubbles in a liquid as voxels, and the 3D arrangement of the bubbles forms volumetric graphics. The microbubbles are generated by irradiating the liquid with focused femtosecond laser pulses to render volumetric graphics around the focal point. The number of pulses is from one to several, and the diameters of the bubbles and the generation region tend to become larger with the increase in the number of the pulses. The diameter of a microbubble is from several micrometers to several tens of micrometers. Smaller bubbles are generated simultaneously, but the extinction time is shorter. The number of bubbles in a voxel is usually from several to many. That is, the axial size of the voxel corresponds to the generation length of the bubbles. The generation length extends along the axial direction of the laser light, and is derived from the shape of the focus beam, as shown in Fig. 1. In our experiments, the property of the voxel has been estimated with the generation length of bubble voxel.

 figure: Fig. 1.

Fig. 1. Generation length of a femtosecond laser-induced bubble voxel.

Download Full Size | PPT Slide | PDF

The generation region of bubbles in the 3D liquid space, that is, the volumetric bubble graphics, is controlled by two beam scanning methods. The first method is a combination of ordinary beam scanning based on a mirror rotating in the lateral direction, which were galvanometer scanner mirrors in this research, and an active liquid lens in the axial direction. In some cases, axial beam scanning is implemented with an ordinary lens on a mechanical stage, because an active liquid lens with a relatively small diameter does not have a high damage threshold.

The second method uses holographic laser beam shaping performed by a CGH displayed on a liquid-crystal-on-silicon spatial light modulator (LCoS-SLM). The scanning area is described as S = λfN/4R, where λ is the wavelength, f is the focal length, N is the effective number of pixels of the LCoS-SLM, and R is the beam radius. As an example, when λ = 800 nm, f = 50 mm, N = 500, and R = 5 mm, the scanning area S = 1 mm, which is not so large. In addition, the frame rate of the LCoS-SLM, typically several tens of Hz, is not so high. Considering the specifications of the present LCoS-SLM, it can be effectively used to control the shape and brightness of the voxels via beam shaping. It can also be used to control the axial position of the focusing.

A voxel is generated by irradiating a liquid with focused femtosecond laser pulses to render volumetric graphics. This display system generated volumetric bubble graphics based on our proposed holographic laser rendering method in which spatial scanning of femtosecond laser-excited voxels was combined with phase control of the beam using a CGH displayed on a liquid crystal spatial light modulator (LCSLM). Here, the spatial scanning of the beam determined the voxel’s position, and the CGH was used for designing a focal point that realized simultaneous generation of multiple voxels and shape control. We used glycerin as a screen material because it is transparent, easy to use as a host material for additional agents, very cheap, and has high viscosity. The high viscosity enabled us to create an image in the liquid because, by using a high-viscosity material as a screen, the generated bubble voxels have a slow floating speed, for example, 1/1000th of the floating speed in water. In addition, the viscosity strongly depends on the temperature, and this property can be effectively used to achieve additional functions, such as erasing the displayed graphics and position control of added agents.

The volumetric graphics which could be viewed from the 360-degree direction with naked eye have been realized. The time duration of the bubble graphics depends on the floating velocity of a microbubble associated with the diameter of the bubble and the viscosity of the liquid. Although it is difficult to completely determine the velocity because the number and diameter of microbubbles generated by femtosecond laser pulses are variable due to nonlinear phenomenon, the bubble graphics tested in our previous study using pure glycerin was retained for approximately 30 s. Furthermore, the bubble graphics was is colored by applying the illumination light with different colors by taking advantage of the feature that is light scattering medium.

2.2 Property of bubble generation

Enlargement of volumetric graphics is directly connected to the beam scanning range. The beam scanning range, $h$, is given by $h = f\tan {\theta _h}$, where f is the focal length of the lens, and ${\theta _h}$ is the beam deflection angle. Therefore, increasing f will enlarge the volumetric graphics. However, the NA, which determines the focal size, is reduced with increasing f. Figure 2 shows the generation length of bubbles along the axial direction versus the irradiated pulse energy. The NA of the focused beam was changed by adjusting the diameter of the beam on the objective lens. The bubbles were generated by a single pulse irradiation, and 5 trials were performed for each pulse energy. The respective generation lengths and the average are shown by the points and the solid lines, respectively. For irradiation with NAs of 0.02, 0.04, and 0.05, the minimum pulse energies, that is, the threshold energies, for bubble generation were 4.9, 2.0, and 1.0 µJ, respectively, as indicated by the dotted-line circles. The respective scanning ranges were ±45, ±23, and ±18 mm with a beam diameter of 10 mm and a beam diffraction angle of ±10 degrees. Therefore, expansion of the scanning range requires larger pulse energy for the bubble generation.

 figure: Fig. 2.

Fig. 2. Generation length of bubble voxel along optical axis direction verses irradiated pulse energy using three different NAs.

Download Full Size | PPT Slide | PDF

The number of voxels that can be generated in parallel based on holographic beam shaping using a CGH displayed on an LCoS-SLM is an important parameter. This number, P, is simply calculated as $P = {E_{tol}}/{E_{th}}$, where ${E_{tol}}$ is the total pulse energy that can be applied to the screen space, and ${E_{th}}$ is the threshold energy for voxel generation. Therefore, a reduction of the pulse energy obviously contributes to an increase of P. To improve the performance of the holographic bubble display, it will be important to reduce the excitation energy for the bubble generation.

2.3 Usefulness of GNPs for efficient generation of bubbles

A GNP has specific optical properties that amplify the interaction with a femtosecond laser pulse near the focal point [17]. Localized surface plasmon resonance, which is obtained by resonant oscillation of incident light and free electrons inside a particle, and plasmon-assisted optical antennas that collect light in the vicinity of particles bring about a dramatic enhancement of the electric field of incident light. These optical properties have been exploited in a wide range of fields such as biosensors [18] and optical nanofabrication [19]. In the interaction between pulsed laser light and GNPs in liquid, the GNPs are heated by the pulsed light and explosively evaporate around the particles and enhance bubble generation [20]. A GNR which is a rod-shaped particle, can adjust the resonance wavelength according to the aspect ratio of the particle. Therefore, the absorption peak of the plasmon resonance wavelength can be shifted to the near infrared region. We conceived the idea that the use of these optical properties of GNPs would be useful for efficient generation of bubble voxels in glycerin.

3. Experimental setup

The experimental setup used in this study consisted of a microscope optical system for observing bubbles generated near the focal point of femtosecond laser light and our proposed volumetric bubble display system for rendering graphics, as shown in Fig. 3.

 figure: Fig. 3.

Fig. 3. Experimental setup for observing a microbubble voxel and rendering bubble graphics based on holographic laser drawing.

Download Full Size | PPT Slide | PDF

A microscope optical system was used to observe the bubble generation length and the pulse energy threshold required for bubble generation in order to show the effect of the GNP-containing liquid screen. This system formed a 6-times magnified image of a bubble voxel generated in a liquid screen by focused irradiation of amplified femtosecond laser light on a CMOS image sensor (DMK 42BUC03, Imaging Source). At this time, the bubble was illuminated with a halogen lamp (PHL-150, Mejiro Precision) from a direction perpendicular to the optical axis. The femtosecond laser had a center wavelength of 800 nm, and the repetition frequency was set to 1 kHz. The bubble voxel was generated via single-pulse irradiation by adjusting the timing using a mechanical shutter (LS055, NM Laser Products) to ignore the effect of multiple pulse irradiation.

The volumetric bubble display system was constructed by introducing a 3D beam scanning system and an LCOS-SLM (X13139-02, Hamamatsu Photonics) in addition to bubble generation by the focused femtosecond laser. The 3D beam scanner, which was composed of a 2D galvanometer scanner (GM-1010, Canon) and a varifocal lens (EL-10-30-Ci, Optotune), formed a spatial arrangement of voxels in the liquid screen. The LCOS-SLM displayed a CGH in a display area of 1248 × 1024 pixels and reflected the laser light after modulating the phase of the wavefront, thus enabling focal point designability. In this paper, an Fθ lens having a focal length of 88.6 mm was placed after the galvanometer mirror to obtain a wide beam deflection angle for rendering bubble graphics.

4. Experimental results

Figure 4 shows the bubble generation length versus the irradiation pulse energy for each excitation target. The samples were pure glycerin and glycerin containing GNPs enclosed in a 10 mm × 10 mm × 45 mm glass cell. The GNPs were GNSs with diameters of 20 nm and 80 nm, and GNRs with a diameter of 10 nm and a length of 45 nm. All samples were prepared by mixing a gold colloid of 0.2 mL with pure glycerin of 2.8 mL. The particle concentrations of 20 nm and 80 nm GNS were 0.0043 mg/mL, and that of GNR was 0.0023 mg/mL. A lens with a focal length of 100 mm was used to focus a laser beam with a diameter of 12 mm, and consequently the calculated Rayleigh length and spot diameter were 223 µm and 16 µm, respectively. The observation was performed with a custom-made optical microscope having an objective lens with an NA of 0.25. The generation length was plotted for five observations for each pulse energy, and the average value is indicated by the solid line. It is noted that sometimes the number of the plots was five or less because of the low generation probability when the pulse energy was near the threshold (see Fig. 5). The threshold pulse energies of glycerin screens containing the 20 nm GNSs, the 80 nm GNSs, and the GNRs were 0.25 µJ, 0.21 µJ, and 0.13 µJ, respectively. All had smaller threshold energy than pure glycerin. In particular, the GNR-containing glycerin had a threshold energy one-quarter that of pure glycerin, which had a threshold energy of 0.53 µJ. It is considered that this is because the 800 nm center wavelength of the femtosecond laser used as the excitation light source and the resonance wavelength of the GNRs were more closely matched than those of the 20 nm and 80 nm GNSs. In both the GNS- and GNR-containing glycerin, larger variations in bubble generation length and generation probability in the vicinity of the threshold pulse energy were observed as compared with pure glycerin. Although the particles of the GNP-containing glycerin were dispersed as much as possible using ultrasonic waves, it is considered that there was a partial concentration fluctuation because the screen material was a liquid. Therefore, we considered that the cause of this variation depends on the particle concentration in the liquid, that is, the number of particles existing at the focal point, and we observed the generated bubbles using GNR-containing glycerin screens with different concentrations in a subsequent experiment, described below.

 figure: Fig. 4.

Fig. 4. Generation length of bubbles verses irradiated pulse energy for pure glycerin and glycerin containing 20 nm GNSs, 80 nm GNSs, and GNRs.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. Bubble generation probability and threshold pulse energy versus the concentration of GNRs in the glycerin.

Download Full Size | PPT Slide | PDF

From the above, we demonstrated that the GNP-containing glycerin showed an enhanced interaction between the femtosecond laser light and the liquid at the focal point, and consequently contributed to lowering of the pulse energy required for bubble voxel generation. The energy reduction of one-quarter by GNR is expected to expand the scanning range up to two times because it enables the use of a lens with a focal length two times longer than that using pure glycerin.

Figure 5 shows the generation probability of bubbles and the pulse energy threshold required for the bubble generation with respect to the concentration of GNRs in glycerin. The observation of the generation probability indicated by the solid line in the graph was carried out with three irradiation pulse energies of 0.71 µJ, 0.78 µJ and 0.88 µJ, and the probabilities were calculated from the number of times the bubbles were generated in 25 trials at each concentration. As a result, we confirmed that increasing the concentration of the GNRs also increased the probability of bubble generation. This is considered to be due to the increase in the number of GNRs in the focal spot where glycerin was excited by increasing the particle concentration. On the other hand, although the pulse energy for bubble generation was dramatically decreased up to a concentration of 20 nps / mm3, no sensitive decrease was observed with a subsequent change in the concentration. In order to obtain the effect of decreasing the threshold energy of bubble generation in GNP-containing glycerin, it is necessary to accurately irradiate the region where GNRs exists in the flowing liquid medium.

Figure 6 shows bubble graphics generated in a glycerin screen. We demonstrated rendering of graphics using femtosecond laser-induced bubble voxels to confirm the effectiveness of the GNP-containing liquid screen for achieving enlarged graphics. The target image to be drawn was an outline of the Japanese print created by Hokusai Katsushika shown in Fig. 6(a). Figure 6(b) and Fig. 6(c) show bubble graphics in pure glycerin and the GNR-containing glycerin screen, respectively. These bubble graphics were captured by a camera (α7 III, Sony) with an exposure time of 1/4 s. The screen samples were contained in a glass box with dimensions 150 mm × 150 mm × 5 mm. Bubble graphics were rendered by 2D scanning of the galvanometer mirror within a scan range of 30 mm × 30 mm of the Fθ lens, and illuminated by ambient room light. The femtosecond laser light was radiated for 30 s with a pulse energy of 30 µJ on both liquid screens. The concentration of particles in the GNR-containing glycerin was adjusted to 55 × 106 nps / mm3.

 figure: Fig. 6.

Fig. 6. (a) Target image to be rendered. Rendered bubble graphics using (b) pure glycerin and (c) GNR-containing glycerin.

Download Full Size | PPT Slide | PDF

From these results, the bubble graphics rendered in the GNR-containing glycerin were displayed more clearly than those using the pure glycerin. This is because the pulse energy required for generation of bubble voxels was reduced by using the GNRs, and the number of bubbles generated by the same irradiated pulse energy increased. Therefore, the proposed method can generate bubble voxels even if the scanning range is expanded by using a lens with a longer focal length, so that the graphics rendering range can be enlarged compared to a simple liquid screen. The unnecessary bubbles observed in the background were caused by the pulse irradiation during the moving of the focal point, which can be solved by accurately matching the timing of the laser pulse and the galvanometer scanner.

5. Conclusion

In this paper, we have proposed a GNP-containing glycerin screen for enlargement of volumetric bubble graphics. In an experiment for observing femtosecond laser-induced bubbles in GNP-containing glycerin, GNPs, especially GNRs, significantly reduced the pulse energy required for bubble generation compared to pure glycerin. Hence, the proposed method enabled expansion of the image scanning range using a low-NA lens, and its effectiveness for achieving enlarged graphics was shown through an experiment in which bubble graphics were rendered.

The achieved graphics size reached centimeter order in the lateral direction. To reach sizes of several meters with this system, it will be necessary to draw an image with a lens having a focal length of 2.8 m with a beam deflection angle of ±10 degree. At this time, since the spot diameter spread from 14 µm to 455 µm, the pulse energy for voxel generation will be about 1000-times larger. Regarding the drawing speed, the scanning speed of the galvanometer scanner is 280 µs per 0.1 degree step, which is too slow for rendering volumetric graphics. A higher scanning speed will be required, or it will be necessary to use multiple scanning systems with the current level of performance. In addition, when scaling up to meter size in the axial direction, it will be necessary to consider the spread of the focal point along the axial direction, and the energy loss of irradiated pulses due to the increasing depth of the irradiation position inside screen.

By using a GNR-containing glycerin screen, the number of simultaneously generated bubble voxels is 4-times higher than that of pure glycerin. If the maximum pulse energy of the light source is 7 mJ, the ideal number of simultaneously generated voxels via CGH will be increased from approximately 13,200 voxels to 53,800 voxels. Therefore, if the graphics are rendered at 24 fps and the repetition frequency of the laser is 1 kHz, the number of voxels that a system using a GNR-containing glycerin screen can render in 1 frame will be 2,240,000 voxels. However, in order to realize the design of the number and position of voxels for each pulse, it will be necessary to raise the refresh rate of the SLM (currently 10 Hz) to the same level as the repetition frequency of the laser.

In the GNP-containing glycerin, a variation in the bubble generation length, which is considered to be a phenomenon that depends on the number of particles existing inside the focal point, was observed. If the number of GNPs at an arbitrary position can be constrained to some extent by using non-contact-trap technologies such as an acoustic [10] or photophoretic [11] method, it will be possible to stabilize the generation enhancement effect because the femtosecond laser can irradiate the GNPs with high probability. In addition, the use of GNP with a surface coating which provides highly dispersibility can be expected as a way to maintain the uniformity of the particle concentration. In order to understand the phenomenon mentioned above more clearly, we consider that it is important to observe the interaction between the GNPs in the liquid and the focused femtosecond laser on a particle-by-particle basis. Therefore, as the next step of this research, we plan to observe this phenomenon based on the pump-probe imaging method [21].

Overall, this research is one step toward developing a method of enhancing femtosecond laser-induced phenomena in liquids, and we expect that it can be applied not only to display technologies but also to various applications using induced products generated by the interaction of focused femtosecond laser light and liquid.

Funding

Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Photonics and Quantum Technology for Society 5.0” (Funding agency : QST); Japan Society for the Promotion of Science (20K23338).

Disclosures

The authors declare no conflicts of interest.

References

1. G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019). [CrossRef]  

2. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008). [CrossRef]  

3. G. Wetzstein, D. Lanman, M. Hirsch, and R. Rasker, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012). [CrossRef]  

4. B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: Characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8(1), 66–75 (2002). [CrossRef]  

5. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996). [CrossRef]  

6. H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008). [CrossRef]  

7. W. Yamada, K. Yamada, H. Manabe, and D. Ikeda, “iSphere: self-luminous spherical drone display,” Proc. the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ‘17, 635–643 (2017).

8. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002). [CrossRef]  

9. C. Blackwell, C. Can, J. Khan, X. Chen, and I. Underwood, “Volumetric 3D display in real space using a diffractive lens, fast projector, and polychromatic light source,” Opt. Lett. 44(19), 4901–4904 (2019). [CrossRef]  

10. R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 575(7782), 320–323 (2019). [CrossRef]  

11. D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018). [CrossRef]  

12. K. Kumagai, D. Suzuki, S. Hasegawa, and Y. Hayasaki, “Volumetric display with holographic parallel optical access and multilayer fuorescent screen,” Opt. Lett. 40(14), 3356–3359 (2015). [CrossRef]  

13. Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016). [CrossRef]  

14. K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4(3), 298–302 (2017). [CrossRef]  

15. K. Kumagai, I. Yamaguchi, and Y. Hayasaki, “Three-dimensionally structured voxels for volumetric display,” Opt. Lett. 43(14), 3341–3344 (2018). [CrossRef]  

16. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002). [CrossRef]  

17. S. Hashimotoa, D. Wernera, and T. Uwad, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol., C 13(1), 28–54 (2012). [CrossRef]  

18. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef]  

19. K. Yamada, T. Itoh, and Y. Tsuboi, “Nanohole processing of polymer films based on the laser-induced superheating of Au nanoparticles,” Appl. Phys. Express 1(8), 087001 (2008). [CrossRef]  

20. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006). [CrossRef]  

21. Y. Hayasaki, S. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7(1), 10405 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
    [Crossref]
  2. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [Crossref]
  3. G. Wetzstein, D. Lanman, M. Hirsch, and R. Rasker, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
    [Crossref]
  4. B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: Characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8(1), 66–75 (2002).
    [Crossref]
  5. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
    [Crossref]
  6. H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
    [Crossref]
  7. W. Yamada, K. Yamada, H. Manabe, and D. Ikeda, “iSphere: self-luminous spherical drone display,” Proc. the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ‘17, 635–643 (2017).
  8. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
    [Crossref]
  9. C. Blackwell, C. Can, J. Khan, X. Chen, and I. Underwood, “Volumetric 3D display in real space using a diffractive lens, fast projector, and polychromatic light source,” Opt. Lett. 44(19), 4901–4904 (2019).
    [Crossref]
  10. R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 575(7782), 320–323 (2019).
    [Crossref]
  11. D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
    [Crossref]
  12. K. Kumagai, D. Suzuki, S. Hasegawa, and Y. Hayasaki, “Volumetric display with holographic parallel optical access and multilayer fuorescent screen,” Opt. Lett. 40(14), 3356–3359 (2015).
    [Crossref]
  13. Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016).
    [Crossref]
  14. K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4(3), 298–302 (2017).
    [Crossref]
  15. K. Kumagai, I. Yamaguchi, and Y. Hayasaki, “Three-dimensionally structured voxels for volumetric display,” Opt. Lett. 43(14), 3341–3344 (2018).
    [Crossref]
  16. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
    [Crossref]
  17. S. Hashimotoa, D. Wernera, and T. Uwad, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol., C 13(1), 28–54 (2012).
    [Crossref]
  18. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref]
  19. K. Yamada, T. Itoh, and Y. Tsuboi, “Nanohole processing of polymer films based on the laser-induced superheating of Au nanoparticles,” Appl. Phys. Express 1(8), 087001 (2008).
    [Crossref]
  20. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
    [Crossref]
  21. Y. Hayasaki, S. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7(1), 10405 (2017).
    [Crossref]

2019 (3)

G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
[Crossref]

C. Blackwell, C. Can, J. Khan, X. Chen, and I. Underwood, “Volumetric 3D display in real space using a diffractive lens, fast projector, and polychromatic light source,” Opt. Lett. 44(19), 4901–4904 (2019).
[Crossref]

R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 575(7782), 320–323 (2019).
[Crossref]

2018 (2)

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

K. Kumagai, I. Yamaguchi, and Y. Hayasaki, “Three-dimensionally structured voxels for volumetric display,” Opt. Lett. 43(14), 3341–3344 (2018).
[Crossref]

2017 (2)

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4(3), 298–302 (2017).
[Crossref]

Y. Hayasaki, S. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7(1), 10405 (2017).
[Crossref]

2016 (1)

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016).
[Crossref]

2015 (1)

2012 (2)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Rasker, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

S. Hashimotoa, D. Wernera, and T. Uwad, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol., C 13(1), 28–54 (2012).
[Crossref]

2008 (3)

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

K. Yamada, T. Itoh, and Y. Tsuboi, “Nanohole processing of polymer films based on the laser-induced superheating of Au nanoparticles,” Appl. Phys. Express 1(8), 087001 (2008).
[Crossref]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

2006 (1)

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref]

2002 (3)

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[Crossref]

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: Characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8(1), 66–75 (2002).
[Crossref]

1996 (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Aksit, K.

G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
[Crossref]

Aoki, J.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Asano, A.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Blackwell, C.

Blanche, P.-A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Blundell, B. G.

B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: Characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8(1), 66–75 (2002).
[Crossref]

Can, C.

Chen, X.

Chun, W. S.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Costner, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref]

Dorval, R. K.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Favalora, G. E.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Flores, D.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Fukuda, S.

Y. Hayasaki, S. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7(1), 10405 (2017).
[Crossref]

Giovinco, M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Glezer, E. N.

Gneiting, S.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Goodsell, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Gu, T.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Hall, D. M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Hasegawa, S.

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4(3), 298–302 (2017).
[Crossref]

Y. Hayasaki, S. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7(1), 10405 (2017).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016).
[Crossref]

K. Kumagai, D. Suzuki, S. Hasegawa, and Y. Hayasaki, “Volumetric display with holographic parallel optical access and multilayer fuorescent screen,” Opt. Lett. 40(14), 3356–3359 (2015).
[Crossref]

Hashimotoa, S.

S. Hashimotoa, D. Wernera, and T. Uwad, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol., C 13(1), 28–54 (2012).
[Crossref]

Hayasaki, Y.

K. Kumagai, I. Yamaguchi, and Y. Hayasaki, “Three-dimensionally structured voxels for volumetric display,” Opt. Lett. 43(14), 3341–3344 (2018).
[Crossref]

K. Kumagai, S. Hasegawa, and Y. Hayasaki, “Volumetric bubble display,” Optica 4(3), 298–302 (2017).
[Crossref]

Y. Hayasaki, S. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7(1), 10405 (2017).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016).
[Crossref]

K. Kumagai, D. Suzuki, S. Hasegawa, and Y. Hayasaki, “Volumetric display with holographic parallel optical access and multilayer fuorescent screen,” Opt. Lett. 40(14), 3356–3359 (2015).
[Crossref]

Haymore, B.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Hirayama, R.

R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 575(7782), 320–323 (2019).
[Crossref]

Hirsch, M.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Rasker, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Hoshi, T.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016).
[Crossref]

Ikeda, D.

W. Yamada, K. Yamada, H. Manabe, and D. Ikeda, “iSphere: self-luminous spherical drone display,” Proc. the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ‘17, 635–643 (2017).

Ino, K.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Ishikawa, H.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Itoh, T.

K. Yamada, T. Itoh, and Y. Tsuboi, “Nanohole processing of polymer films based on the laser-induced superheating of Au nanoparticles,” Appl. Phys. Express 1(8), 087001 (2008).
[Crossref]

Jarusirisawad, S.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Juodkazis, S.

Y. Hayasaki, S. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7(1), 10405 (2017).
[Crossref]

Kakehata, M.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Kayahara, J.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Khan, J.

Kim, A. M.-T.

Kimura, H.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Kimura, T.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref]

Koulieris, G. A.

G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
[Crossref]

Kumagai, K.

Lanman, D.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Rasker, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Lin, W.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Lindsey, M.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Manabe, H.

W. Yamada, K. Yamada, H. Manabe, and D. Ikeda, “iSphere: self-luminous spherical drone display,” Proc. the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ‘17, 635–643 (2017).

Mania, K.

G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
[Crossref]

Mantiuk, R. K.

G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
[Crossref]

Martinez Plasencia, D.

R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 575(7782), 320–323 (2019).
[Crossref]

Masuda, N.

R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 575(7782), 320–323 (2019).
[Crossref]

Mazur, E.

Monk, A.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Mori, M.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Murakami, T.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Naemura, T.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Napoli, J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Nishimura, N.

Norwood, R. A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Nozick, V.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Nygaard, E.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Ochiai, Y.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016).
[Crossref]

Pearson, M.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Peatross, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Peyghambarian, N.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Plech, A.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref]

Qaderi, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Rasker, R.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Rasker, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Rasmussen, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Rekimoto, J.

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016).
[Crossref]

Richard, C.

G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
[Crossref]

Richmond, M. J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Rogers, W.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Saito, H.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Sasaki, F.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Schaffer, C. B.

Schwarz, A. J.

B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: Characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8(1), 66–75 (2002).
[Crossref]

Shimada, S.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Smalley, D. E.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref]

Squire, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Stengel, M.

G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
[Crossref]

Subramanian, S.

R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 575(7782), 320–323 (2019).
[Crossref]

Suzuki, D.

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Thomas, J.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Torizuka, K.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Tsuboi, Y.

K. Yamada, T. Itoh, and Y. Tsuboi, “Nanohole processing of polymer films based on the laser-induced superheating of Au nanoparticles,” Appl. Phys. Express 1(8), 087001 (2008).
[Crossref]

Tunc, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Underwood, I.

Uwad, T.

S. Hashimotoa, D. Wernera, and T. Uwad, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol., C 13(1), 28–54 (2012).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Van Wagoner, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref]

Voorakaranam, R.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Wang, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Wernera, D.

S. Hashimotoa, D. Wernera, and T. Uwad, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol., C 13(1), 28–54 (2012).
[Crossref]

Wetzstein, G.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Rasker, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Yamada, K.

K. Yamada, T. Itoh, and Y. Tsuboi, “Nanohole processing of polymer films based on the laser-induced superheating of Au nanoparticles,” Appl. Phys. Express 1(8), 087001 (2008).
[Crossref]

W. Yamada, K. Yamada, H. Manabe, and D. Ikeda, “iSphere: self-luminous spherical drone display,” Proc. the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ‘17, 635–643 (2017).

Yamada, W.

W. Yamada, K. Yamada, H. Manabe, and D. Ikeda, “iSphere: self-luminous spherical drone display,” Proc. the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ‘17, 635–643 (2017).

Yamaguchi, I.

Yamamoto, M.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Yashiro, H.

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

ACM Trans. Graph. (2)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Rasker, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Y. Ochiai, K. Kumagai, T. Hoshi, J. Rekimoto, S. Hasegawa, and Y. Hayasaki, “Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields,” ACM Trans. Graph. 35(2), 1–14 (2016).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Appl. Phys. Express (1)

K. Yamada, T. Itoh, and Y. Tsuboi, “Nanohole processing of polymer films based on the laser-induced superheating of Au nanoparticles,” Appl. Phys. Express 1(8), 087001 (2008).
[Crossref]

Comput. Graph. Forum (1)

G. A. Koulieris, K. Akşit, M. Stengel, R. K. Mantiuk, K. Mania, and C. Richard, “Near-eye display and tracking technologies for virtual and augmented reality,” Comput. Graph. Forum 38(2), 493–519 (2019).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: Characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8(1), 66–75 (2002).
[Crossref]

J. Chem. Phys. (1)

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref]

J. Photochem. Photobiol., C (1)

S. Hashimotoa, D. Wernera, and T. Uwad, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol., C 13(1), 28–54 (2012).
[Crossref]

Nature (3)

R. Hirayama, D. Martinez Plasencia, N. Masuda, and S. Subramanian, “A volumetric display for visual, tactile and audio presentation using acoustic trapping,” Nature 575(7782), 320–323 (2019).
[Crossref]

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, “A photophoretic-trap volumetric display,” Nature 553(7689), 486–490 (2018).
[Crossref]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (1)

Proc. SPIE (2)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikawa, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[Crossref]

Sci. Rep. (1)

Y. Hayasaki, S. Fukuda, S. Hasegawa, and S. Juodkazis, “Two-color pump-probe interferometry of ultra-fast light-matter interaction,” Sci. Rep. 7(1), 10405 (2017).
[Crossref]

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Other (1)

W. Yamada, K. Yamada, H. Manabe, and D. Ikeda, “iSphere: self-luminous spherical drone display,” Proc. the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ‘17, 635–643 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Generation length of a femtosecond laser-induced bubble voxel.
Fig. 2.
Fig. 2. Generation length of bubble voxel along optical axis direction verses irradiated pulse energy using three different NAs.
Fig. 3.
Fig. 3. Experimental setup for observing a microbubble voxel and rendering bubble graphics based on holographic laser drawing.
Fig. 4.
Fig. 4. Generation length of bubbles verses irradiated pulse energy for pure glycerin and glycerin containing 20 nm GNSs, 80 nm GNSs, and GNRs.
Fig. 5.
Fig. 5. Bubble generation probability and threshold pulse energy versus the concentration of GNRs in the glycerin.
Fig. 6.
Fig. 6. (a) Target image to be rendered. Rendered bubble graphics using (b) pure glycerin and (c) GNR-containing glycerin.

Metrics