Abstract

Based on silica microsphere resonators embedded with iron oxide nanoparticles, we proposed and fabricated an all-optical and continuously tunable polarization beam splitter (PBS), and a broadband optical power sensor (OPS) with high sensitivity. The PBS is realized since the effective refractive indexes of the transverse-electric and transverse-magnetic polarization modes in the microsphere resonator are different. Due to the excellent photothermal effect of iron oxide nanoparticles, we realized the all-optical and continuously tunable PBS based on the hybrid microsphere resonator. A maximum polarization splitting ratio of 20 dB and a tuning range of 5 nm are achieved. Based on this mechanism, the hybrid microsphere resonator can also be used as a broadband OPS. The sensitivity of the OPS is 0.487 nm/mW, 0.477 nm/mW, and 0.398 nm/mW when the probe wavelength is 690 nm, 980 nm, and 1550 nm, respectively. With such good performances, the tunable PBS and the broadband OPS have great potential in applications such as optical routers, switches and filters.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Polarization beam splitter (PBS) [14] is a key photonic device capable of separately extracting transverse-electric (TE) and transverse-magnetic (TM) polarizations from an unpolarized beam based on the birefringence of the device [5,6]. Conventional PBSs rely on the birefringence of crystalline materials or multilayer structures for polarization selection. L. B. Soldano et al. proposed a PBS with an extinction ratio (ER) of 19 dB based on a Mach-Zehnder interferometer [7]. J. Hong et al. proposed a PBS with an ER less than 15 dB based on multimode interference [8]. However, the sizes of these devices are relatively large. PBSs with small footprints, which possess higher birefringence, were proposed. J. B. Feng et al. presented the design of a PBS with an ER over 20 dB by using a binary blazed grating coupler [9]. D. Dai. et al. realized an ultrashort broadband PBS with an ER of over 20 dB and a length of 6.9 μm based on an asymmetrical directional coupler [10]. K. Saitoh et al. realized a PBS with an ER around 20 dB based on a photonic crystal fiber structure [11]. However, a tunable PBS is rarely reported.

Besides, whispering gallery modes (WGMs) have been observed in various kinds of optical microresonators [1216]. Due to the high Q factors and small mode volumes, WGM microresonators have a wide range of applications in fundamental research and applied technologies, such as nonlinear optics [1720], cavity optomechanics [2123], lasing [2427], and sensing [2832]. As a resonance structure, the WGM microresonator can effectively improve the ER, and thus it is a good candidate for realizing polarization beam splitting. Several resonator-based PBSs were proposed, such as the microring resonator [33] and photonic crystal resonant cavity [34,35]. These works still do not report the tuning function. Therefore, we proposed a tunable PBS using an optofluidic ring resonator based on its birefringence and fluidic tunability [36]. However, there is a relatively large ER variation during the tuning process and it is difficult to obtain continuous tuning. Due to strong and broadband optical absorption and magnetic properties [37], iron oxide nanoparticles have many potential applications such as magnetic field sensing, dispersion engineering, optical switching and filtering. In our previous work, we proposed a silica microsphere resonator embedded with iron oxide nanoparticles, which can realize continuous wavelength tuning based on the excellent photothermal effect of iron oxide nanoparticles [38]. Here, by using a novel fabrication method, we obtained the hybrid microsphere resonators with higher device performances and realized an all-optical and continuously tunable PBS. A maximum wavelength tuning range of 5 nm is achieved. Besides, we also realized a broadband optical power sensor (OPS) based on this hybrid microsphere resonator. The OPS possesses a sensitivity up to 0.487 nm/mW, 0.477 nm/mW, and 0.398 nm/mW corresponding to the probe wavelength (λprobe) of 690 nm, 980 nm, and 1550 nm, respectively.

2. Device principle and fabrication

The schematic diagram of an all-optical and continuously tunable PBS we proposed is illustrated in Fig. 1. It consists of two coupling microfibers and a silica microsphere resonator embedded with iron oxide nanoparticles. The two microfibers, which act as the through and drop ports, are parallel to each other and coupled with the microsphere in the same equatorial plane. The microfiber is fabricated from a single-mode fiber (SMF) through the flame-heated technique [39,40]. In our experiments, both microfibers are about 1 μm in diameter, which possess strong evanescent fields for light coupling [41,42].

 figure: Fig. 1.

Fig. 1. Schematic diagram of an all-optical and continuously tunable PBS.

Download Full Size | PPT Slide | PDF

Mode field distributions with TE and TM polarizations were numerically calculated by the finite element method (COMSOL Multiphysics). The hybrid microsphere was regarded as a rotationally axisymmetric dielectric cavity, and the two-dimensional axisymmetric simulation was performed. Figures 2(a) and 2(b) show the electric field distributions in the silica microsphere with a diameter of 38 μm. The effective refractive indexes (neff) of TE and TM modes under different microsphere radiuses are shown in Fig. 2(c), and it verifies that the two polarization modes have different neff and both of them increase with the increasing microsphere radius. Figure 2(d) shows that the effective refractive index difference (Δneff) of the two polarization modes decreases as the increase of the microsphere radius. It can be seen from Figs. 2(a) and 2(b) that the penetration depth into air is larger for the resonance with TM polarization [43]. The evanescent field of the TM mode is a little stronger than that of the TE mode, which results in that neff of the TM mode is smaller than that of the TE mode.

 figure: Fig. 2.

Fig. 2. Electric field distributions of (a) TE and (b) TM modes in the silica microsphere with a diameter of 38 μm. The arrow indicates the polarization direction of the electric field. (c) neff of TE and TM modes as a function of the hybrid microsphere radius ranging from 5 μm to 50 μm. (d) Δneff as a function of the hybrid microsphere radius ranging from 5 μm to 50 μm.

Download Full Size | PPT Slide | PDF

Figure 3 illustrates the fabrication process of a hybrid microsphere resonator. First, a SMF attached with a small weight is fixed in a fiber clamp, and then the fiber clamp is vertically fixed on a high-precision three-dimensional (3-D) displacement stage. Counter-propagating carbon oxide (CO2) laser beams are focused on the SMF, then two tapers emerge due to gravity. Next, the CO2 laser beams are focused on one taper and a taper tip remains. After that, the fiber clamp is removed from the 3-D displacement stage and the taper tip is immersed into water-based magnetic fluid (i.e., iron oxide nanoparticle solution) and pulled out. Finally, the fiber clamp is vertically fixed on the 3-D displacement stage again and the CO2 laser beams are focused on the taper tip and an iron-oxide-nanoparticle-embedded hybrid microsphere forms due to surface tension. Here, in order to realize a strong birefringence, a hybrid microsphere with a diameter of about 38 μm is used in the following PBS experiment. The counter-propagating CO2 laser beams ensure that the hybrid microsphere has good sphericity and smooth surface. The inset in Fig. 3 is the optical microscope image of a fabricated hybrid microsphere.

 figure: Fig. 3.

Fig. 3. Fabrication process of a hybrid microsphere resonator. (a) Formation of a tapered fiber. (b) Formation of a taper tip. (c) Melting the taper tip coated with magnetic fluid. (d) Formation of a silica microsphere embeded with iron oxide nanoparticles, i.e., a hybrid microsphere. Inset: the optical microscope image of a fabricated hybrid microsphere. The scale bar is 20 μm.

Download Full Size | PPT Slide | PDF

Signal light is coupled into the hybrid microsphere resonator to launch WGMs through the strong evanescent of one microfiber [44,45]. The other microfiber acting as the drop port is used to extract WGMs. The resonance conditions for TE and TM polarization modes in the microsphere resonator can be described as:

$$\begin{array}{l} 2\pi R \cdot n_{eff}^{TE} = m{\lambda _{TE}}\\ 2\pi R \cdot n_{eff}^{TM} = m{\lambda _{TM}} \end{array}$$
where R is the radius of the microsphere, m is the angular number as an integer, neff is the effective refractive index, and λ is the resonance wavelength in vacuum. The difference of the resonance wavelength between TE and TM modes can be described as$\Delta \lambda = {\lambda _{TM}} \cdot \Delta {n_{eff}}/{n_{TM}}$, where $\Delta \lambda = {\lambda _{TE}} - {\lambda _{TM}},\,\Delta {n_{eff}} = n_{eff}^{TE} - n_{eff}^{TM}$. From Fig. 2, it can be seen that there is an effective refractive index difference between TE and TM modes, so that their corresponding resonance wavelengths are different. Only one polarization mode at a resonance wavelength can be coupled into the microsphere resonator and extracted by the drop port, while the other polarization mode is non-resonant and directly outputs from the through port. Pump light is fed into the microsphere resonator through the axial direction of its fiber stem. Since iron oxide nanoparticles have the ultrahigh photothermal conversion efficiency [37], the temperature of the microsphere will significantly increase with the pump power (Ppump), which results in the increase of the microsphere radius and the refractive index (RI) of the microsphere. It will lead to the shift of the resonance wavelength according to Eq. (1). The relation between the wavelength shift δλ and the change of the temperature δT can be described as [46]:
$$\mathrm{\delta }\lambda = {\lambda _0}\left( {\frac{1}{n}\frac{{\partial n}}{{\partial T}} + \frac{1}{R}\frac{{\partial R}}{{\partial T}}} \right)\mathrm{\delta }T$$
where n and R are the RI and the radius of the microsphere, respectively. Here, $\partial n/\partial T = 1.1 \times {10^{ - 5}}{K^{ - 1}}$ [47] is the thermo-optic coefficient of silica, and $\partial R/({R \cdot \partial T} )= 5.5 \times {10^{ - 7}}{K^{ - 1}}$ is the expansion coefficient of the microsphere. It can be predicted that the resonance wavelength will present a redshift when the temperature of the microsphere increases since both the thermo-optic and expansion coefficients are positive.

Amplified spontaneous emission (ASE) broadband light derived from two cascaded erbium-doped fiber amplifiers is fed into the microfiber after transmitting through a fiber-optic polarizer and a polarization controller (PC), and then outputs from the through and drop ports. Polarized light is obtained after ASE light passes through the polarizer, and the PC is used to control the polarization state of light. The coupling gap between the microsphere and the microfiber is adjusted by a high-precision 3-D displacement stage, so that both microfibers can obtain the optimal coupling state with the microsphere simultaneously.

3. Experimental results and discussion

Figure 4(a) shows the transmission spectra of TE and TM modes from the through port without pump light. The existence of resonant dips illustrates the resonance wavelengths of the two orthogonal polarization modes. The maximum ER of the TE mode is approximately 19 dB, while the maximum ER of the TM mode is approximately 20 dB. There are five evident dips in the transmission spectra of TE and TM modes within a free spectral range (FSR). Dip a and dip b denote the fundamental modes of the two orthogonal polarization modes. Besides the fundamental mode, there exist higher-order modes in the transmission spectra, since the microsphere radius is not small enough. Q factors of the high-order modes are lower than that of the fundamental mode, because the high-order modes possess larger transmission and coupling losses. It can be seen that the resonance wavelengths of TE and TM modes with the same angular number are different. This phenomenon is related to the polarization dependence of WGMs. From Fig. 4(a), it can be seen that the difference of the resonance wavelength with the same angular number between the fundamental TE and TM modes is 10.7 nm, which agrees well with the theoretical value calculated by$\Delta \lambda = {\lambda _{TM}} \cdot \Delta {n_{eff}}/{n_{TM}}$, where ${n_{TM}}\textrm{ = }1.334$. Figures 4(b) and 4(c) show the transmission spectra of TE and TM modes, respectively, when Ppump at 1550 nm increases from 0 mW to 75.32 mW. It can be seen that the resonance wavelength presents a redshift as Ppump increases. The maximum resonance wavelength shifts of 4.8 nm and 5 nm for TE and TM modes are obtained under Ppump = 75.32 mW, respectively. Compared with the TE mode, the TM mode possesses a larger mode volume, thus the TM mode presents a larger tuning range than that of the TE mode under the same Ppump. Moreover, Q factors change little and ERs are always higher than 15 dB during the tuning process.

 figure: Fig. 4.

Fig. 4. (a) Transmission spectra of the through port when Ppump = 0 mW. Transmission spectra of (b) TE and (c) TM modes as the increase of Ppump.

Download Full Size | PPT Slide | PDF

Figure 5 shows the optical spectra of the through and the drop ports with TE and TM polarizations under different Ppump. Figures 5(a) and 5(b) show the spectra with the two polarizations without pump light. It can be seen that the resonance peaks at the drop port and the resonance dips at the through port of the fundamental modes align well. ERs of TE and TM modes extracted by the drop port are about 32 dB and 31 dB, respectively, and polarization splitting ratios (PSRs) of the fundamental TE and TM modes are about 18 dB and 20 dB, respectively. It proves that the two orthogonal polarization modes at a certain resonance wavelength can be distinguished and thus separated to different output ports. The PSR of the TM mode is a little higher than that of the TE mode, which indicates that the TM mode has a higher coupling efficiency compared with the TE mode. It can also be seen that the resonance peaks at the drop port align well with those at the through port for the higher-order modes, while their corresponding PSRs are lower than that of the fundamental mode, because the coupling losses of the higher-order modes are higher. A few resonance peaks extracted by the drop port have no corresponding resonance dips at the through port, which could be caused by intermodal interference in the non-adiabatic drop-port microfiber [48].

 figure: Fig. 5.

Fig. 5. Optical spectra of TE and TM modes extracted by the through and drop ports when Ppump is (a, b) 0 mW, (c, d) 41.42 mW, (e, f) 72.32 mW, respectively.

Download Full Size | PPT Slide | PDF

Figures 5(c)–5(f) show the optical spectra of the two polarization modes at the through and drop ports when Ppump is 41.42 mW and 75.32 mW, respectively. It can be seen that ERs extracted by the drop port and PSRs of TE and TM modes change little during the tuning process. On the one hand, the microfiber gets in touch with the microsphere, thus the coupling state can remain unchanged. On the other hand, this all-optical tuning scheme does not introduce mechanical interference to the microcavity system. These two advantages indicate that the PBS possesses the better stability compared with the previous work [36]. The resonance wavelengths with TE and TM polarizations possess corresponding tuning ranges of 4.8 nm and 5 nm, when Ppump = 75.32 mW. To improve the tuning range, magnetic fluid with a higher nanoparticle concentration can be used for the fabrication. Besides, a hybrid microsphere with a smaller diameter and a higher nanoparticle-doping concentration can suppress higher-order WGMs.

Based on the previous analysis, iron oxide nanoparticles possess strong optical absorption in a wide wavelength range [37], and thus the hybrid microsphere resonator can be used as a broadband OPS, as shown in Fig. 6(a). The device consists of a microfiber and a hybrid microsphere resonator with a fiber stem. Probe light is injected into the microsphere resonator through the axial direction of its fiber stem. We can detect the probe power by measuring the transmission spectrum shift of the signal light. Here, λprobe of 690 nm, 980 nm, and 1550 nm are selected to verify its broadband sensing ability, as shown in Fig. 7. The nanoparticle-doping concentration and the diameter of the hybrid microsphere are two key parameters, which can influence the sensitivity of the OPS. In this experiment, we obtain the hybrid microsphere with a higher nanoparticle-doping concentration, and the diameter of the hybrid microsphere is about 26 μm, which is smaller than that of the preceding PBS. From Fig. 6(b), it can be seen that the FSR is 17.9 nm, which agrees well with the theoretical value. We also find that there is only one evident mode with an ER of 24 dB in a FSR, which results from the higher nanoparticle-doping concentration and the smaller cavity diameter, and this mode possesses a 3-dB linewidth of 11.3 GHz corresponding to a Q factor of about 1.7 × 104. Figure 7(a) shows the sensing performance when λprobe is 690 nm. The resonance wavelength presents a redshift and the ER maintains well, when the probe power increases from 0 mW to 10.66 mW. Figure 7(b) shows the resonance wavelength shift as a function of the probe power. It can be seen that the maximum wavelength shift is 5.2 nm and the sensitivity is 0.487 nm/mW. Figures 7(c) and 7(e) show the sensing performances when λprobe is 980 nm and 1550 nm, respectively. The maximum wavelength shifts of 10.9 nm and 12.8 nm are obtained with the probe powers of 22.06 mW at 980 nm and 37.98 mW at 1550 nm, respectively. Figures 7(d) and 7(f) show the wavelength shift as a function of the probe power, and it can be seen that the sensitivities are 0.477 nm/mW and 0.398 nm/mW corresponding to λprobe of 980 nm and 1550 nm, respectively. In addition, the wavelength shift has an evident linear relation with the probe power, and it means that the OPS has a good linearity. With such a good performance, the OPS has the potential to play its role from the ultraviolet to the mid-infrared based on strong optical absorption in a wide wavelength range of iron oxide nanoparticles.

 figure: Fig. 6.

Fig. 6. (a) Schematic diagram and (b) transmission spectrum of a broadband OPS.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. Transmission spectra and resonance wavelength shifts when λprobe is (a, b) 690 nm, (c, d) 980 nm, (e, f) 1550 nm, respectively.

Download Full Size | PPT Slide | PDF

4. Conclusion

In this work, we proposed and realized an efficiently and continuously tunable PBS, and a broadband and highly sensitive OPS based on the hybrid microsphere resonators. The PBS is based on Δneff between TE and TM modes in the microsphere resonator, and a maximum polarization split ratio of 20 dB is achieved. Due to the excellent photothermal effect of iron oxide nanoparticles, the tunable PBS with a maximum tuning range of 5 nm is realized. Based on this hybrid microsphere resonator, we also realized an OPS operating in a wide wavelength range. The sensitivity of the OPS is 0.487 nm/mW, 0.477 nm/mW, and 0.398 nm/mW when λprobe is 690 nm, 980 nm, and 1550 nm, respectively. We achieved the continuous tunability of the PBS which has potential applications such as optical routers and switches, and we also realized a broadband OPS which possesses the capability to detect the optical power covering the ultraviolet to the mid-infrared.

Funding

National Natural Science Foundation of China (11774110, 91850115); Fundamental Research Funds for the Central Universities (HUST: 2019kfyXKJC036, 2019kfyRCPY092); Open Fund of IPOC (BUPT) (IPOC2019A012).

Disclosures

The authors declare no conflicts of interest.

References

1. D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013). [CrossRef]  

2. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015). [CrossRef]  

3. L. Li and J. A. Dobrowolski, “Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter,” Appl. Opt. 35(13), 2221–2225 (1996). [CrossRef]  

4. A. A. Salvekar, H. Chou, C. Cheng, and A. Scherer, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14(7), 1627–1636 (1997). [CrossRef]  

5. P. Bianucci, C. R. Fietz, J. W. Robertson, G. Shvets, and C.-K. Shih, “Whispering gallery mode microresonators as polarization converters,” Opt. Lett. 32(15), 2224–2226 (2007). [CrossRef]  

6. F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017). [CrossRef]  

7. L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994). [CrossRef]  

8. J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003). [CrossRef]  

9. J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32(12), 1662–1664 (2007). [CrossRef]  

10. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011). [CrossRef]  

11. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004). [CrossRef]  

12. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef]  

13. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef]  

14. L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013). [CrossRef]  

15. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014). [CrossRef]  

16. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015). [CrossRef]  

17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef]  

18. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17(18), 16209–16215 (2009). [CrossRef]  

19. X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019). [CrossRef]  

20. S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019). [CrossRef]  

21. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef]  

22. A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006). [CrossRef]  

23. Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016). [CrossRef]  

24. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef]  

25. C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015). [CrossRef]  

26. S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018). [CrossRef]  

27. H. Li, X. Hao, Y. Li, L. Xu, B. Shi, and L. Liu, “Nanoheater-tuned whispering gallery mode lasing in liquid-filled hollow microcavities,” Opt. Lett. 45(4), 815–818 (2020). [CrossRef]  

28. C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009). [CrossRef]  

29. L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013). [CrossRef]  

30. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014). [CrossRef]  

31. W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017). [CrossRef]  

32. S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018). [CrossRef]  

33. X. Cai, D. Huang, and X. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express 14(23), 11304–11311 (2006). [CrossRef]  

34. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005). [CrossRef]  

35. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006). [CrossRef]  

36. S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016). [CrossRef]  

37. A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J,” Phys. C 12(6), 1157–1164 (1979). [CrossRef]  

38. P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticle embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39(13), 3845–3848 (2014). [CrossRef]  

39. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004). [CrossRef]  

40. N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018). [CrossRef]  

41. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef]  

42. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12(10), 2303–2316 (2004). [CrossRef]  

43. M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33(11), 2177–2195 (2016). [CrossRef]  

44. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997). [CrossRef]  

45. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000). [CrossRef]  

46. Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002). [CrossRef]  

47. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).

48. M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006). [CrossRef]  

References

  • View by:

  1. D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
    [Crossref]
  2. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  3. L. Li and J. A. Dobrowolski, “Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter,” Appl. Opt. 35(13), 2221–2225 (1996).
    [Crossref]
  4. A. A. Salvekar, H. Chou, C. Cheng, and A. Scherer, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14(7), 1627–1636 (1997).
    [Crossref]
  5. P. Bianucci, C. R. Fietz, J. W. Robertson, G. Shvets, and C.-K. Shih, “Whispering gallery mode microresonators as polarization converters,” Opt. Lett. 32(15), 2224–2226 (2007).
    [Crossref]
  6. F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
    [Crossref]
  7. L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
    [Crossref]
  8. J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
    [Crossref]
  9. J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32(12), 1662–1664 (2007).
    [Crossref]
  10. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
    [Crossref]
  11. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004).
    [Crossref]
  12. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref]
  13. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref]
  14. L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
    [Crossref]
  15. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  16. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref]
  17. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref]
  18. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17(18), 16209–16215 (2009).
    [Crossref]
  19. X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
    [Crossref]
  20. S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
    [Crossref]
  21. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
    [Crossref]
  22. A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
    [Crossref]
  23. Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
    [Crossref]
  24. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [Crossref]
  25. C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
    [Crossref]
  26. S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
    [Crossref]
  27. H. Li, X. Hao, Y. Li, L. Xu, B. Shi, and L. Liu, “Nanoheater-tuned whispering gallery mode lasing in liquid-filled hollow microcavities,” Opt. Lett. 45(4), 815–818 (2020).
    [Crossref]
  28. C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [Crossref]
  29. L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [Crossref]
  30. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref]
  31. W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
    [Crossref]
  32. S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018).
    [Crossref]
  33. X. Cai, D. Huang, and X. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express 14(23), 11304–11311 (2006).
    [Crossref]
  34. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
    [Crossref]
  35. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
    [Crossref]
  36. S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016).
    [Crossref]
  37. A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J,” Phys. C 12(6), 1157–1164 (1979).
    [Crossref]
  38. P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticle embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39(13), 3845–3848 (2014).
    [Crossref]
  39. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [Crossref]
  40. N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
    [Crossref]
  41. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref]
  42. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12(10), 2303–2316 (2004).
    [Crossref]
  43. M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33(11), 2177–2195 (2016).
    [Crossref]
  44. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref]
  45. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref]
  46. Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
    [Crossref]
  47. M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).
  48. M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006).
    [Crossref]

2020 (1)

2019 (2)

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

2018 (3)

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018).
[Crossref]

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref]

2017 (2)

W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

2016 (3)

2015 (3)

C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

2014 (3)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticle embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39(13), 3845–3848 (2014).
[Crossref]

2013 (3)

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

2011 (2)

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

2009 (2)

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17(18), 16209–16215 (2009).
[Crossref]

2007 (2)

2006 (4)

A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

X. Cai, D. Huang, and X. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express 14(23), 11304–11311 (2006).
[Crossref]

M. Sumetsky, “How thin can a microfiber be and still guide light?” Opt. Lett. 31(7), 870–872 (2006).
[Crossref]

2005 (2)

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]

2004 (4)

2003 (3)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

2002 (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[Crossref]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

1997 (2)

1996 (1)

1994 (1)

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
[Crossref]

1979 (1)

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J,” Phys. C 12(6), 1157–1164 (1979).
[Crossref]

Agha, I. H.

Alvarado, S. F.

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J,” Phys. C 12(6), 1157–1164 (1979).
[Crossref]

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Bianucci, P.

Birks, T.

Birks, T. A.

Bowers, J. E.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Cai, X.

Cai, Z.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[Crossref]

Cao, Q.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Carmon, T.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]

Chardon, A.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[Crossref]

Chen, W.

W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Chen, Y.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Cheng, C.

Cheung, G.

Chou, H.

Dai, D.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[Crossref]

de Vreede, A. I.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
[Crossref]

Del’ Haye, P.

A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Dobrowolski, J. A.

Dong, C.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Fallahi, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Fan, X.

S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Feng, J.

Féron, P.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[Crossref]

Fietz, C. R.

Foreman, M. R.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33(11), 2177–2195 (2016).
[Crossref]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Fu, W.

C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Gaddam, V. R.

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Gaeta, A. L.

Gao, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Gong, Q.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Green, F. H.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
[Crossref]

Guo, G.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Han, Z.

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Hao, X.

He, L.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

He, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Hong, J.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Huang, D.

Jacques, F.

Jeong, J. W.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Jiang, B.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

Jiang, X.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Kaya Özdemir, S.

W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Kim, S.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Knight, J. C.

Koshiba, M.

Lee, E. H.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Lee, S. G.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Leon-Saval, S.

Leuchs, G.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33(11), 2177–2195 (2016).
[Crossref]

Li, B.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Li, H.

Li, L.

Li, Y.

Liu, L.

H. Li, X. Hao, Y. Li, L. Xu, B. Shi, and L. Liu, “Nanoheater-tuned whispering gallery mode lasing in liquid-filled hollow microcavities,” Opt. Lett. 45(4), 815–818 (2020).
[Crossref]

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Liu, N.

Liu, T.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Liu, Y.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Ma, R.

S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018).
[Crossref]

Mansuripur, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Marquardt, C.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Mason, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Metaal, E. G.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
[Crossref]

Michel Stéphan, G.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[Crossref]

Moloney, J. V.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Nooshi, N.

A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]

O, B. H.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Okawachi, Y.

Ozdemir, S. K.

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Park, S. G.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Park, S. R.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Pu, S.

Qiu, C.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Ren, L.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

Robertson, J. W.

Rokhsari, H.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]

Russell, P. S. J.

Ryu, H. H.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Saitoh, K.

Salvekar, A. A.

Sato, Y.

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]

A. A. Salvekar, H. Chou, C. Cheng, and A. Scherer, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14(7), 1627–1636 (1997).
[Crossref]

Schlegel, A.

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J,” Phys. C 12(6), 1157–1164 (1979).
[Crossref]

Schliesser, A.

A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]

Schunk, G.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

Schwefel, H. G.

Schwefel, H. G. L.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

Sedlmeir, F.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

M. R. Foreman, F. Sedlmeir, H. G. Schwefel, and G. Leuchs, “Dielectric tuning and coupling of whispering gallery modes using an anisotropic prism,” J. Opt. Soc. Am. B 33(11), 2177–2195 (2016).
[Crossref]

Shao, L.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Shen, Z.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Shi, B.

Shi, L.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018).
[Crossref]

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref]

S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016).
[Crossref]

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticle embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39(13), 3845–3848 (2014).
[Crossref]

Shih, C.-K.

Shvets, G.

Smit, M. K.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
[Crossref]

Soldano, L. B.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

Strekalov, D. V.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

Sumetsky, M.

Sun, F.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Vahala, K. J.

A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Verbeek, B. H.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
[Crossref]

Vogl, U.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Wachter, P.

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J,” Phys. C 12(6), 1157–1164 (1979).
[Crossref]

Wadsworth, W.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, W.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Wang, Z.

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).

Wiersig, J.

W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

William, W. R.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Woo, D.

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Wosinski, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Xiao, B.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Xiao, Y.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Xu, D. X.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Xu, H.

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[Crossref]

Xu, L.

Xu, X.

Yang, L.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Yu, X.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Yuan, S.

Zakharian, A. R.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Zeltner, R.

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

Zhang, X.

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018).
[Crossref]

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref]

S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016).
[Crossref]

P. Zhao, L. Shi, Y. Liu, Z. Wang, S. Pu, and X. Zhang, “Iron-oxide nanoparticle embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability,” Opt. Lett. 39(13), 3845–3848 (2014).
[Crossref]

X. Cai, D. Huang, and X. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express 14(23), 11304–11311 (2006).
[Crossref]

Zhang, Y.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Zhao, G.

W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

Zhao, P.

Zhao, Y.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

Zhou, Z.

Zhu, S.

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018).
[Crossref]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref]

S. Zhu, Y. Liu, L. Shi, X. Xu, S. Yuan, N. Liu, and X. Zhang, “Tunable polarization beam splitter based on optofluidic ring resonator,” Opt. Express 24(15), 17511–17521 (2016).
[Crossref]

Zou, C.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Zou, X.

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Zou L, C.

C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

ACS Photonics (1)

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Adv. Mater. (1)

L. Shao, X. Jiang, X. Yu, B. Li, W. R. William, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Dong, L. He, Y. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. Han, G. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (3)

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photonics Technol. Lett. 6(3), 402–405 (1994).
[Crossref]

J. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

L. He, S. K. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7(1), 60–82 (2013).
[Crossref]

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Nanophotonics (2)

S. Zhu, L. Shi, S. Yuan, R. Ma, X. Zhang, and X. Fan, “All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities,” Nanophotonics 7(10), 1669–1677 (2018).
[Crossref]

S. Zhu, L. Shi, L. Ren, Y. Zhao, B. Jiang, B. Xiao, and X. Zhang, “Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators,” Nanophotonics 8(12), 2321–2329 (2019).
[Crossref]

Nat. Commun. (1)

C. Dong, Z. Shen, C. Zou L, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6(1), 6193 (2015).
[Crossref]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Nat. Photonics (3)

X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, and Y. Xiao, “Symmetry-breaking-induced nonlinear optics at a microcavity surface,” Nat. Photonics 13(1), 21–24 (2019).
[Crossref]

Z. Shen, Y. Zhang, Y. Chen, C. Zou, Y. Xiao, X. Zou, F. Sun, G. Guo, and C. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Nature (4)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[Crossref]

W. Chen, S. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548(7666), 192–196 (2017).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Opt. Commun. (1)

Z. Cai, A. Chardon, H. Xu, P. Féron, and G. Michel Stéphan, “Laser characteristics at 2002 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

Phys. C (1)

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J,” Phys. C 12(6), 1157–1164 (1979).
[Crossref]

Phys. Rev. Appl. (1)

F. Sedlmeir, M. R. Foreman, U. Vogl, R. Zeltner, G. Schunk, D. V. Strekalov, C. Marquardt, G. Leuchs, and H. G. L. Schwefel, “Polarization-selective out-coupling of whispering-gallery modes,” Phys. Rev. Appl. 7(2), 024029 (2017).
[Crossref]

Phys. Rev. Lett. (4)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95(3), 033901 (2005).
[Crossref]

A. Schliesser, P. Del’ Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Other (1)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2002).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of an all-optical and continuously tunable PBS.
Fig. 2.
Fig. 2. Electric field distributions of (a) TE and (b) TM modes in the silica microsphere with a diameter of 38 μm. The arrow indicates the polarization direction of the electric field. (c) neff of TE and TM modes as a function of the hybrid microsphere radius ranging from 5 μm to 50 μm. (d) Δneff as a function of the hybrid microsphere radius ranging from 5 μm to 50 μm.
Fig. 3.
Fig. 3. Fabrication process of a hybrid microsphere resonator. (a) Formation of a tapered fiber. (b) Formation of a taper tip. (c) Melting the taper tip coated with magnetic fluid. (d) Formation of a silica microsphere embeded with iron oxide nanoparticles, i.e., a hybrid microsphere. Inset: the optical microscope image of a fabricated hybrid microsphere. The scale bar is 20 μm.
Fig. 4.
Fig. 4. (a) Transmission spectra of the through port when Ppump = 0 mW. Transmission spectra of (b) TE and (c) TM modes as the increase of Ppump.
Fig. 5.
Fig. 5. Optical spectra of TE and TM modes extracted by the through and drop ports when Ppump is (a, b) 0 mW, (c, d) 41.42 mW, (e, f) 72.32 mW, respectively.
Fig. 6.
Fig. 6. (a) Schematic diagram and (b) transmission spectrum of a broadband OPS.
Fig. 7.
Fig. 7. Transmission spectra and resonance wavelength shifts when λprobe is (a, b) 690 nm, (c, d) 980 nm, (e, f) 1550 nm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2πRneffTE=mλTE2πRneffTM=mλTM
δλ=λ0(1nnT+1RRT)δT

Metrics